
Discrete Optimization: Home Exam
Chalmers, Period 3, 2018 (TDA206/DIT370)

Instructor: John Wiedenhoeft
Examiner: Devdatt Dubhashi

Instructions:

• There are 42 points in total for this exam. For the overall grading of this class, please
refer to the course website.

• You have until March 11, 2018, 15:00 to finish this exam and upload it to the FIRE
system, just as you did for the homework. Typed submissions and handwritten scans
are both fine. Submissions must be legible after printing on A4 paper. All submissions
must be in PDF format.

• Please start each problem on a new page (if you submit a LATEX solution, the command
for that is \newpage). Subproblems may be on the same page. For instance, (1a) and
(1c) may be on the same page, but (1a) and (2c) must be on different pages.

• Include a cover sheet containing your name as the first page (you may use the page
you are reading right now). Do NOT write any solutions on the cover sheet, it will not
be considered for grading. Do NOT write your name or other identifying information
on any other page.

• All work must be your own. You MAY use whatever tools and sources are available to
you. However, you may NOT invoke the help of others, be it your classmates or people
on the internet. For example, you MAY use existing answers on StackExchange.com
to help you solve the problems, but you may NOT post exam questions there and ask
for help. It is your responsibility to ensure that sources are reliable and information
found there is correct, so use external sources at your own risk (Exception: Potential
errors in the lecture notes or the suggested literature will not be counted against you,
of course). Please cite your sources!

Question: 1 2 3 4 Total

Points: 16 6 14 6 42
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Question 1 [16 points total]
Consider the following primal LP:

max
x∈R4

2x1 − 4x2 + 3x3 + x4

s.t. 3x1 − x2 + x3 + 4x4 ≤ 12

x1 + 3x2 + 2x3 + 3x4 = 7

−2x1 + x2 − 3x3 + x4 ≥ −10

x1 ≥ 0

x2 ≤ 0

x3 ≥ 0

x4 ∈ R

(a) [2 pts] Formulate the dual for this LP directly, without transforming it to standard
form first.

Solution:

min
y∈R3

12y1 + 7y2 − 10y3

s.t. 3y1 + y2 − 2y3 ≥ 2

−y1 + 3y2 + y3 ≤ −4

y1 + 2y2 − 3y3 ≥ 3

4y1 + 3y2 + y3 = 1

y1 ≥ 0

y2 ∈ R
y3 ≤ 0

(b) [1 pts] Write down the Lagrangian relaxation of the primal LP which relaxes the
constraint 3x1 − x2 + x3 + 4x4 ≤ 12.

Solution: The constraint to be relaxed is removed from the problem. The
expression 12− 3x1 + x2 − x3 − 4x4 is negative for solutions that violate the
relaxed constraint. We add it to the objective function, multiplied by a non-
negative weight λ. The relaxed problem becomes:

max
x∈R4

2x1 − 4x2 + 3x3 + x4 +λ(12− 3x1 + x2 − x3 − 4x4)

s.t. x1 + 3x2 + 2x3 + 3x4 = 7

−2x1 + x2 − 3x3 + x4 ≥ −10

x1 ≥ 0

x2 ≤ 0

x3 ≥ 0

x4 ∈ R
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(c) [2 pts] Rewrite the primal LP so that constraints are in standard form Ax ≤ b,
x≥ 0. Vectors may be extended to accommodate slack variables if necessary.

Solution: In order to have only positive variables, we introduce a variable x ′2
such that x2 = −x ′2, and two variables x+4 and x−4 such that x4 = x+4 − x−4 . We
multiply the ≥-constraint by -1, and replace the equality constraint by two
inequality constraints (≥, ≤), the first of which is then multiplied by -1 to
change its direction. The primal then becomes

max
x∈R4

2x1 + 4x ′2 + 3x3 + x+4 − x−4

s.t. 3x1 + x ′2 + x3 + 4x+4 − 4x−4 ≤ 12

x1 − 3x ′2 + 2x3 + 3x+4 − 3x−4 ≤ 7

−x1 + 3x ′2 − 2x3 − 3x+4 + 3x−4 ≤ −7

2x1 + x ′2 + 3x3 − x+4 + x−4 ≤ 10

~x ≥ ~0

(d) [3 pts] Compute the optimal primal and dual solutions x∗ , y∗. Write down the
complementary slackness conditions and check that they are indeed satisfied.

Solution:
We find the following optimal primal solution x∗:

x∗ =
§

0,
−91
55

,
37
11

,
96
55

ª

Similarly, we find the following optimal dual solution y∗:

y∗ =
§

1,
−7
11

,
−12
11

ª

The value of both solutions is 203
11 .

The second, third and fourth primal variables are non-zero, therefore we must
check that the second, third and fourth dual constraints are binding:

−1+ 3
�

−7
11

�

+
−12
11
= −4

1+ 2
�

−7
11

�

− 3
�

−12
11

�

= 3

4+ 3
�

−7
11

�

+
−12
11
= 1

All the dual variables are non-zero, therefore we must check that all the primal
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constraints are binding.

0−
−91
55
+

37
11
+ 4

�

96
55

�

= 12

0+ 3
�

−91
55

�

+ 2
�

37
11

�

+ 3
�

96
55

�

= 7

0+
−91
55
− 3

�

37
11

�

+
96
55
= −10

As expected, the complementary slackness conditions hold for x∗ and y∗.

(e) [2 pts] If x∗ is an optimal solution to the primal and the j-th dual constraint is
binding, what, if anything, do we know about the primal variable x j? Justify your
answer.

Solution: Let y∗ denote the dual solution to x∗. Since x∗ is optimal, by com-
plementary slackness we must have:

x∗j

 

c j −
∑

i

ai jy
∗
j

!

= 0

However we also know that the j-th constraint is binding, i.e. c j−
∑

i ai jy
∗
j = 0.

Therefore the complementary slackness condition corresponding to the j-th
primal variable and dual constraint will be satisfied for any value of x∗j . We
cannot deduce anything about the value of x∗j , other than the fact that it is in
the feasible region of the primal.

(f) [3 pts] Find a feasible, non-optimal dual solution such that some, but not all dual
variables are zero, and some, but not all dual constraints are binding. Formulate
the restricted primal for this solution.

Solution: Let us consider the solution:

y= {1, 0,−3}

We check that it is a feasible solution:

3+ 0− (−3)× (−3) = 9≥ 2

−1+ 0+ (−3) = −4≤ −4

1+ 0− 3× (−3) = 8≥ 3

4+ 0+ (−3) = 1

y2 = 0, and the second and fourth dual constraint are binding. In addition the
value of this solution is 42, which is greater than the optimal.
We have IC = {i | yi 6= 0} = {1,3} and J c = { j |

∑

i ai j x j 6= c j} = {1,3}.
Therefore the restricted primal is:
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max
x∈R4,s∈R2

−s1 − s3 − x1 − x3

s.t. 3x1 − x2 + x3 + 4x4 + s1 = 12

x1 + 3x2 + 2x3 + 3x4 = 7

−2x1 + x2 − 3x3 + x4 − s3 = −10

x1 ≥ 0

x2 ≤ 0

x3 ≥ 0

x4 ∈ R
s1 ≥ 0

s3 ≥ 0

Note: This restricted primal follows the formulation of the original LP. The sign
of each coefficient in the objective function depends on the sign of the associated
variable. Alternatively you could use the canonical form of the LP computed
previously.

(g) [3 pts] Formulate the restricted dual, and use it to compute a new feasible solution
y ′ which improves the dual objective value as much as possible over the one for
the solution found in (f). Write down the necessary LP, and compute the value of
y ′.

Solution: The dual of the restricted primal is the following problem:

min
z∈R3

12z1 + 7z2 − 10z3

s.t. 3z1 + z2 − 2z3 ≥ −1

−z1 + 3z2 + z3 ≤ 0

z1 + 2z2 − 3z3 ≥ −1

4z1 + 3z2 + z3 = 0

z1 ≥ −1

−z3 ≥ −1

One optimal solution is:

z∗ =
§

0,
−1
11

,
3
11

ª

We can use that solution to compute a new solution y′ = y + ε.z∗ for the
(unrestricted) dual. We must find the largest ε such that y′ remains a feasible
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solution of the dual. Let us consider the constraints of the dual:

3 (1+ ε0) + 2
�

0+ ε
−1
11

�

− 2
�

−3+ ε
3
11

�

≥ 2 ⇐⇒ ε≤ 11

− (1+ ε0) + 3
�

0+ ε
−1
11

�

−
�

−3+ ε
3

11

�

≤ −4 ⇐⇒ ε ∈ R

(1+ ε0) + 2
�

0+ ε
−1
11

�

− 3
�

−3+ ε
3
11

�

≥ 3 ⇐⇒ ε≤ 7

4 (1+ ε0) + 3
�

0+ ε
−1
11

�

+
�

−3+ ε
3
11

�

= 1 ⇐⇒ ε ∈ R

1+ ε0≥ 0 ⇐⇒ ε ∈ R

−3+ ε
3

11
⇐⇒ ε≤ 11

Thus we can take ε= 7, and we obtain

y′ =
§

1,
−7
11

,
−12
11

ª

The value of y′ is 203
11 , which means that we have found an optimal dual solution.
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Question 2 [6 points total]
Can the following ILPs be solved in polynomial time? Justify your answer, you may
include figures if you like.

(a) [3 pts] The constraint matrix is

A=









+1 +1 +1
−1 +1 −1

−1
−1 −1 +1









(zeros are omitted for clarity).

Solution: Yes. We notice that the matrix contains exactly one +1 and exactly
one −1 in each column. It is hence a node-arc incidence matrix of a directed
graph, and therefore totally unimodular. This guarantees that all corners of
the feasible polytope are integer, and we can solve a linear program, which is
polytime-solvable, instead of an ILP.

(b) [3 pts] The ILP has the following constraints:

−x1 + 2x2 ≤ 7

x1 + 3x2 ≤ 18

2x1 − x2 ≤ 8

2x1 + 3x2 ≥ 0

x ∈ Z

Solution: Yes. Although the matrix cannot be TUM, since it contains entries
other than {−1,0,1}, all vertices of the feasible polytope intersect at integer
points (TUM is sufficient, not necessary condition), as demonstrated in the
following figure:
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4 2 0 2 4 6 8
x1

4

2

0

2

4

6

8

x
2

Note: There are intersections which are not integer, however, these are outside the
polytope and therefore infeasible. A solution claiming that this is not polytime-
solvable because some hyperplanes intersect at non-integer coordinates is incorrect.
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Question 3 [14 points total]
Let a roundabout graph (RG) be an undirected graph obtained as a union of cycle graphs
Ci and path graphs Pj such that each end node of each path graph Pj is connected
to some cycle Ci or some path Pk, k 6= j. Notice that we do not require an RG to be
connected. Let the minimum spanning roundabout problem (MSR) be defined as such:
Let G = (V, E) be an undirected graph with non-negative edge weights c(ei). Find a
roundabout subgraph R= (V, F), F ⊆ E, such that total edge weight in R is minimized.

A B

D

C

E F

2

4 4

3 

 6

 3

5 4

56

3

(a) [2 pts] Show that the definition of a roundabout graph is equivalent to a graph in
which each node has at least a degree of two.

Solution:
To show that every roundabout graph has minimum node degree 2: All nodes
in a cycle and internal nodes in a path have degree 2. Union of graphs can
only increase the node degree. If the end nodes of each path (degree 1) are
connected to a cycle or an inner node of another path (degree 2), their degree
must be at least 3. The construction of a roundabout graph therefore only
yields nodes of minimum degree 2.
To show that every graph of minimum node degree 2 is a roundabout graph:
Conversely, let G be a graph in which all nodes have a degree of at least
2. Repeatedly find cycles and remove their edges, thereby decreasing node
degrees by 2 in each step. Once all cycles are removed, the remaining graph
contains isolated nodes and trees. The trees can be easily decomposed into
paths, in which each endpoint is either an internal node in a tree and therefore
connected to another path, or a leaf. The leaf must have been connected to a
cycle before, since the node degree is 1 and therefore must have been decreased
at some point by removing cycle edges. The isolated nodes must have had an
even degree before, and were therefore nodes in a cycle. A graph can therefore
be decomposed into cycles and paths as desired.

(b) [1 pts] Draw the scheme of ILP primal-dual relationships in the MSR for the
depicted graph. You may refer to this scheme when solving the other subproblems.
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Solution: Primal variables correspond to edges, dual variables to nodes, objec-
tive coefficients to edge weights and constraint coefficients form the node-edge
incidence matrix of the graphs (zeros are omitted for clarity):

0 0 0 0 0 0 0 0 0 0 0

≥ ≥ ≥ ≥ ≥ ≥ ≥ ≥ ≥ ≥ ≥

xAB xAC xAE xBC xBF xC D xC E xC F xDE xDF xEF

0 ≤ yA 1 1 1 ≥ 2
0 ≤ yB 1 1 1 ≥ 2
0 ≤ yC 1 1 1 1 1 ≥ 2
0 ≤ yD 1 1 1 ≥ 2
0 ≤ yE 1 1 1 1 ≥ 2
0 ≤ yF 1 1 1 1 ≥ 2

≥ ≥ ≥ ≥ ≥ ≥ ≥ ≥ ≥ ≥ ≥

2 3 4 3 4 6 5 4 6 5 3

(c) [2 pts] Describe a primal-dual method (PDM) for the MSR. You may assume that
there exists an order to process variables and constraints that will always yield a
feasible solution (like for vertex cover), even though this might not be the case.

Solution: Let primal variables xe represent the edges, and dual variables yv

represent the nodes. Raise node variables by integer amounts such that for
each edge e = (v, w) the sum of incident node variables does not exceed its cost,
i.e. yv+ yw ≤ c(e). Whenever that sum equals the edge weight (yv+ yw = c(e)),
select the edge by raising its variable xe = 1.

(d) [4 pts] Apply your PDM to the depicted graph by processing nodes in alphabetic
order, such that the result is a feasible MSR solution (be careful how much you
raise each variable, not all valuations will work). Describe what you do in each
step, and why you are doing it. Write down your primal and dual solutions, and
draw the corresponding graph.

Solution:

1. Set all primal variables xe and all dual variables yv to 0.

2. Raise yA to 1.

3. Raise yB to 1. The constraint for edge AB becomes binding, so raise xAB

to 1 to select the edge.

4. Raise yC to 2. Edges AC and BC become binding, raise xAC and xBC to 1.

5. Raise yD to 4. Edge CD becomes binding, raise xC D to 1.

6. Raise yE to 2. Edge DE becomes binding, raise xDE to 1.
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7. Raise yF to 1. Edges DF and EF become binding, raise xDF and xEF to 1.

Using the same order of variables as in the scheme above, the primal solution
is

x= (1,1, 0,1, 0,1, 0,0, 1,1, 1)

and the dual solution is
y= (1,1, 2,4, 2,1).

The solution consists of all edges e for which xe = 1.

1 1

4

2

2 1

2

3 

 6

 3

56

3

This is clearly a feasible solution, as all nodes have a degree of at least 2.

(e) [3 pts] Let ∆ be the largest degree in G. Show that, if your PDM yields a feasible
solution, it is a ∆

2 -approximation for MSR.

Solution: Primal complementary slackness and feasibility is maintained by
the PDM, so α= 1. We take the dual complementary slackness condition

∀i : yi 6= 0 ⇒ aᵀi x= 2

which does not hold, and show that the relaxed dual complementary slackness
condition

∃β : ∀i : yi 6= 0 ⇒ 2β ≥ aᵀi x≥ 2

holds. Since A is the incidence matrix of the undirected graph G, each row
ai contains at most ∆ nonzero entries, which are all 1 (see scheme above, ∆
is the largest number of ones in a row). Furthermore, x is also a 0-1-vector.
Hence, ∆≥ aᵀi x, and therefore,

∀i : 2
∆

2
≥ aᵀi x

We also assume that the solution is feasible, i.e.

∀i : aᵀi x≥ 2
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so relaxed dual complementary slackness holds for β = ∆
2 , yielding an approxi-

mation ratio of αβ = ∆
2 .

(f) [2 pts] Let G be a complete, weighted and connected graph. Consider the following
heuristic: Compute a minimum spanning tree T on G, find the set S of nodes with
odd degree in T , compute a minimum weight maximum matching M on S. Show
that, for general weighted graphs G (not necessarily metric weights!), the sum of
edge weights

∑

e∈T∪M

c(e)

is an upper bound for the MSR.

Solution: All internal nodes in an MST T have a degree of at least 2, whereas
the leaves have degree 1. There is always an even number of odd-degree nodes
in an MST. Adding a matching M for these nodes increases all odd-degree
nodes in T by 1. Most importantly, it increases all nodes of degree 1 (all leaves
in T) to degree 2. Therefore, all nodes in T ∪M have a degree of at least 2,
which yields a feasible solution for MSR. In any minimization problem, any of
its feasible solutions provides an upper bound on the optimal solution. Note:
Although this looks like the beginning of the Christofides heuristic, and you may
use applicable facts about it from the lecture notes, this is a different problem. In
particular, the edge weights are not necessarily metric, so any argument based on
“shortcuts” is invalid.
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Question 4 [6 points total]
Let G = (V, E) be a graph with positive edge costs c(e). Let the odd-degree connected
subgraph problem (OCS) be as follows: find a connected, spanning subgraph S = (V, F),
F ⊆ E, of minimum weight, such that all nodes in S have an odd degree.

(a) [2 pts] Argue why both the constraints for connectedness of S as well as for odd
node degree might be problematic in an ILP formulation.

Solution: Connectedness means that there is an edge across every possible cut
in the solution, however, there are exponentially many such cuts. This means
that we cannot in practice add all constraints at once, since even formulating
the ILP would have the same complexity as brute-forcing its solution.
Odd degrees cannot be easily enforced using ILP constraints. In LP, constraints
can only be affine or linear, either describing a hyperplane (equality constraints),
or a halfspace on one side of such hyperplane (inequality constraints). In ILP,
feasible solutions are in the complete integer subset of such (half-)spaces.
However, an oddness constraint will not contain a complete subset of integer
points, and the holes between feasible points cannot be removed by other
affine constraints. There is no (obvious) way to enforce odd solutions.
Note: There may be other possible arguments.

(b) [4 pts] Describe, in general terms, an algorithm which solves the OCS while
alleviating these problems, using ideas such as branching, pruning, and cutting
planes. Be specific about how you would solve the separation problem as well as
the branching problem.

Solution: We can use a branch-and-cut approach here, and there are many
possible ways to do this (e.g. bound by LP relaxation, Lagragian etc., use
cutting planes to improve bounds or only to add constraints etc.). Whichever
variant you choose, it will most likely have to contain versions of the following:
Separation problem: The problem of exponentially many constraints for connect-
edness can be alleviated by a cutting plane method. Relax all connectedness
constraints (i.e. ignore them), find a feasible solution, and add a constraint for
a connectedness violation (for ILP: find connected components combinatori-
cally, e.g. by spanning trees; for LP relaxation bounds: find a minimum cut
with total weight less than 1).
Branching problem: We cannot directly formulate oddness as a linear constraint,
but we can recursively split our fesible region and make sure that feasible
polytopes of its subsets obtain the appropriate integer vertices. Given a problem
without oddness constraints (LP or ILP), find a solution, and within that solution
find a node v for which the degree deg(v) =

∑

e∈δ(v) yv is not an odd integer.
Split the problem into two by rounding deg(v) to the next lower and higher odd
integers b+v and b−v (notice the similarity to rounding non-integer LP variables
to their neighboring integers when solving ILP!). For example, if deg(v) = 4.1,
create one feasible subset by adding constraint deg(v)≤ b−v = 3, and another
by adding constraint deg(v)≥ b+v = 5.

2019-03-11 19:25:52 Page 12 of 12


