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Unsupervised learning

» Everything we've seen so far has been supervised

> \We were given a set of x, and associated label/target variable
tn (sometimes shown by y,).
> What if we just have x,?
P> For example:
» x, is a binary vector indicating products customer n has
bought.

» Can group customers that buy similar products.
» Can group products bought together.

» Known as Clustering
> And is an example of unsupervised learning.
> Supervised Learning is just the icing on the cake which is

unsupervised learning.
Yann Le Cun, NIPS 2016



Clustering
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» In this example each object has two attributes:
T
Xp = [Xn17Xn2]

> Left: data.

» Right: data after clustering (points coloured according to
cluster membership).
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» 2 algorithms:
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K-means

> Assume that there are K clusters.
» Each cluster is defined by a position in the input space:

B = [ty k2] "

» Each x,, is assigned to its closest cluster:
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» Distance is normally Euclidean distance:

Aok = (Xn — i) T (X0 — p2¢)
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How do we find g, 7

» No analytical solution — we can’t write down g, as a function
of X.

> Use an iterative algorithm:

1. Guess K1, o5 - o5 Bk
Assign each x, to its closest pt

2.
3. zp = 1 if x,, assigned to p, (0 otherwise)
4. Update pu, to average of x,s assigned to p,:

> pt Z0k%n

Zﬁyvzl Znk

5. Return to 2 until assignments do not change.

Ky =

» Algorithm will converge....it will reach a point where the
assignments don't change.



K-means — example
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» Cluster means randomly assigned (top left).

» Points assigned to their closest mean.
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» Cluster means updated to mean of assigned points.



K-means — example
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» Points re-assigned to closest mean.



K-means — example
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» Cluster means updated to mean of assigned points.



K-means — example

> Assign point to closest mean.
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» Update mean.



K-means — example
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» Assign point to

closest mean.
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» Update mean.



K-means — example
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> Assign point to closest mean.
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> Assign point to closest mean.
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» Update mean.



K-means — example
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> Assign point to closest mean.
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» Solution at convergence.
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» under which conditions?



K-means — Cost Function

» Simple (and effective) clustering strategy.

» Converges to (local) minima of:
-
Z Z Znk(Xn — pic) (X0 — i)
n k

such that: zp, € {0,1},

Zznk = 1,Vn.
k
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Two Issues with K-Means

» What value of K should we use?
» How should we pick the initial centers?

» Both these significantly affect resulting clustering.
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Initializing Centers

» Pick K random points.

v

Pick K points at random from input points.

» Assign points at random to K groups and then take centers of
these groups.

» Pick a random input point for first center, next center at a

point as far away from this as possible, next as far away from

first two ...



k—-Means++ (D. Arthur and S. Vassilvitskii (2007)

» Start with C; := {x} where x is chosen at random from input
points.

> For j > 2, pick a new point x according to a probability
distribution v;:

. C/2(X7 C,',l)
2w d*(¥, Gi1)

and set G := Cj_1 U {x}.

l/,'(X)

Gives a provably good O(log n) approximation to optimal
clustering.



Choosing k

» Intra-cluster variance:

> W .= Zk W.
> Pick k to minimize W
» Elbow heuristic, Gap Statistic ...
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Sum of Norms (SON) Formulation

SON Relaxation (Lindsten et al 2011)

mmZHX: DIP+A D e — Bgll2

p,a:p<q

where pi(7) indicates the centroid of the cluster that x; is assigned

to.
> If you take only first term ...
» .. u(i) =x; for all i (thus, K = N).
» If you take only second term ...
> ... p, = pg forall p, g (thus, K =1).
> By varying ), we steer between these two extremes.
>

Do not need to know K in advance and do not need to do
careful initialization.
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» Data has clear cluster structure.

» Outer cluster can not be represented as a single point.



When does K-means break?
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» Data has clear cluster structure.

» Outer cluster can not be represented as a single point.
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Kernelising K-means

» Maybe we can kernelise K-means?
» Distances:
T
(xn — p) " (Xn — Hek)
» Cluster means:
N
Zm:l kaxm

Zrlle Zmk

» Distances can be written as (defining Ny =), zn«):

My =

N T N
(xn— 1) (xn—p1s0) = ( —N Y kaxm> ( N kaXm>
m=1 m=1
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Kernelising K-means

> Multiply out:

N
T -1 T -2 T
X, Xp — 2N, g ZmkXmXn + N g ZmkZIkX mX]
m=1 m,l
» Kernel substitution:

N N
k(Xn,Xn) - 2N/:1 Z kak(Xn,Xm) + N/:Z Z kazlkk(xm;xl)

m=1 m,l=1
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Kernel K-means

» Algorithm:

1. Choose a kernel and any necessary parameters.

2. Start with random assignments z,.

3. For each x,, assign it to the nearest ‘center’ where distance is
defined as:

N N
k(xp,xn) — 2Nk_1 Z Zmkk(Xp, Xm) + Nk_2 Z ZmkZikk (Xm, X;)
m=1 m,I=1

4. If assignments have changed, return to 3.

> Note — no py. This would be N, ' 37 zyx$(x,) but we don't
know ¢(x,) for kernels. We only know ¢(x,)"é(xm) (kernel
SVM lecture)...



Kernel K-means — example
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> Solution at convergence.



Kernel K-means

> Makes simple K-means algorithm more flexible.
» But, have to now set additional parameters.

> Very sensitive to initial conditions — lots of local optima.
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K-means — summary

» Simple (and effective) clustering strategy.

» Converges to (local) minima of:
-
Z Z Znk(Xn — pic) (X0 — i)
n  k

» Sensitive to initialisation.
» How do we choose K7?

» Tricky, several heuristics have been proposed.
» Can we use CV (Cross-Validation)?
» The Sum of Norms method.
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Mixture models — thinking generatively

» Could we hypothesis a model that could have created this
data?

» Each x,, seems to have come from one of three distributions.
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