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Unsupervised learning

I Everything we’ve seen so far has been supervised

I We were given a set of xn and associated label/target variable
tn (sometimes shown by yn).

I What if we just have xn?
I For example:

I xn is a binary vector indicating products customer n has
bought.

I Can group customers that buy similar products.
I Can group products bought together.

I Known as Clustering

I And is an example of unsupervised learning.
I Supervised Learning is just the icing on the cake which is

unsupervised learning.
Yann Le Cun, NIPS 2016
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Clustering
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I In this example each object has two attributes:

xn = [xn1, xn2]T

I Left: data.

I Right: data after clustering (points coloured according to
cluster membership).



What we’ll cover

I 2 algorithms:
I K-means
I Mixture models

I The two are somewhat related.

I We’ll also see how K-means can be kernelised.
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K-means
I Assume that there are K clusters.
I Each cluster is defined by a position in the input space:

µk = [µk1, µk2]T

I Each xn is assigned to its closest cluster:
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I Distance is normally Euclidean distance:

dnk = (xn − µk)T(xn − µk)
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How do we find µk?

I No analytical solution – we can’t write down µk as a function
of X.

I Use an iterative algorithm:

1. Guess µ1,µ2, . . . ,µK

2. Assign each xn to its closest µk

3. znk = 1 if xn assigned to µk (0 otherwise)
4. Update µk to average of xns assigned to µk :

µk =

∑N
n=1 znkxn∑N
n=1 znk

5. Return to 2 until assignments do not change.

I Algorithm will converge....it will reach a point where the
assignments don’t change.



How do we find µk?

I No analytical solution – we can’t write down µk as a function
of X.

I Use an iterative algorithm:

1. Guess µ1,µ2, . . . ,µK

2. Assign each xn to its closest µk

3. znk = 1 if xn assigned to µk (0 otherwise)
4. Update µk to average of xns assigned to µk :

µk =

∑N
n=1 znkxn∑N
n=1 znk

5. Return to 2 until assignments do not change.

I Algorithm will converge....it will reach a point where the
assignments don’t change.



How do we find µk?

I No analytical solution – we can’t write down µk as a function
of X.

I Use an iterative algorithm:

1. Guess µ1,µ2, . . . ,µK

2. Assign each xn to its closest µk

3. znk = 1 if xn assigned to µk (0 otherwise)
4. Update µk to average of xns assigned to µk :

µk =

∑N
n=1 znkxn∑N
n=1 znk

5. Return to 2 until assignments do not change.

I Algorithm will converge....it will reach a point where the
assignments don’t change.



How do we find µk?

I No analytical solution – we can’t write down µk as a function
of X.

I Use an iterative algorithm:

1. Guess µ1,µ2, . . . ,µK

2. Assign each xn to its closest µk

3. znk = 1 if xn assigned to µk (0 otherwise)

4. Update µk to average of xns assigned to µk :

µk =

∑N
n=1 znkxn∑N
n=1 znk

5. Return to 2 until assignments do not change.

I Algorithm will converge....it will reach a point where the
assignments don’t change.



How do we find µk?

I No analytical solution – we can’t write down µk as a function
of X.

I Use an iterative algorithm:

1. Guess µ1,µ2, . . . ,µK

2. Assign each xn to its closest µk

3. znk = 1 if xn assigned to µk (0 otherwise)
4. Update µk to average of xns assigned to µk :

µk =

∑N
n=1 znkxn∑N
n=1 znk

5. Return to 2 until assignments do not change.

I Algorithm will converge....it will reach a point where the
assignments don’t change.



How do we find µk?

I No analytical solution – we can’t write down µk as a function
of X.

I Use an iterative algorithm:

1. Guess µ1,µ2, . . . ,µK

2. Assign each xn to its closest µk

3. znk = 1 if xn assigned to µk (0 otherwise)
4. Update µk to average of xns assigned to µk :

µk =

∑N
n=1 znkxn∑N
n=1 znk

5. Return to 2 until assignments do not change.

I Algorithm will converge....it will reach a point where the
assignments don’t change.



How do we find µk?

I No analytical solution – we can’t write down µk as a function
of X.

I Use an iterative algorithm:

1. Guess µ1,µ2, . . . ,µK

2. Assign each xn to its closest µk

3. znk = 1 if xn assigned to µk (0 otherwise)
4. Update µk to average of xns assigned to µk :

µk =

∑N
n=1 znkxn∑N
n=1 znk

5. Return to 2 until assignments do not change.

I Algorithm will converge....it will reach a point where the
assignments don’t change.



K-means – example
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I Cluster means randomly assigned (top left).

I Points assigned to their closest mean.
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K-means – example
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I Solution at convergence.



K-means – Cost Function

I Simple (and effective) clustering strategy.

I Converges to (local) minima of:∑
n

∑
k

znk(xn − µk)T(xn − µk)

I under which conditions?



K-means – Cost Function

I Simple (and effective) clustering strategy.

I Converges to (local) minima of:∑
n

∑
k

znk(xn − µk)T(xn − µk)

such that: znk ∈ {0, 1},∑
k

znk = 1, ∀n.



Two Issues with K-Means

I What value of K should we use?

I How should we pick the initial centers?

I Both these significantly affect resulting clustering.
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Initializing Centers

I Pick K random points.

I Pick K points at random from input points.

I Assign points at random to K groups and then take centers of
these groups.

I Pick a random input point for first center, next center at a
point as far away from this as possible, next as far away from
first two ...
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k–Means++ (D. Arthur and S. Vassilvitskii (2007)

I Start with C1 := {x} where x is chosen at random from input
points.

I For i ≥ 2, pick a new point x according to a probability
distribution νi :

νi (x) =
d2(x,Ci−1)∑
x′ d

2(x′,Ci−1)

and set Ci := Ci−1 ∪ {x}.

Gives a provably good O(log n) approximation to optimal
clustering.



Choosing k

I Intra-cluster variance:

Wk :=
1

|Ck |
∑
x∈Ck

(x− µk)2.

I W :=
∑

k Wk .

I Pick k to minimize Wk

I Elbow heuristic, Gap Statistic ...



Sum of Norms (SON) Formulation

SON Relaxation (Lindsten et al 2011)

min
µ

∑
i

‖xi − µ(i)‖2 + λ
∑

p,q:p<q

‖µp − µq‖2.

where µ(i) indicates the centroid of the cluster that xi is assigned
to.

I If you take only first term ...

I ... µ(i) = xi for all i (thus, K = N).

I If you take only second term ...

I ... µp = µq for all p, q (thus, K = 1).

I By varying λ, we steer between these two extremes.

I Do not need to know K in advance and do not need to do
careful initialization.
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When does K-means break?
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Kernelising K-means

I Maybe we can kernelise K-means?

I Distances:
(xn − µk)T(xn − µk)

I Cluster means:

µk =

∑N
m=1 zmkxm∑N
m=1 zmk

I Distances can be written as (defining Nk =
∑

n znk):

(xn−µk)T(xn−µk)

=

(
xn − N−1

k

N∑
m=1

zmkxm

)T(
xn − N−1

k

N∑
m=1
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)



Kernelising K-means

I Maybe we can kernelise K-means?

I Distances:
(xn − µk)T(xn − µk)

I Cluster means:

µk =

∑N
m=1 zmkxm∑N
m=1 zmk

I Distances can be written as (defining Nk =
∑

n znk):

(xn−µk)T(xn−µk) =

(
xn − N−1

k

N∑
m=1

zmkxm

)T(
xn − N−1

k

N∑
m=1

zmkxm

)



Kernelising K-means

I Maybe we can kernelise K-means?

I Distances:
(xn − µk)T(xn − µk)

I Cluster means:

µk =

∑N
m=1 zmkxm∑N
m=1 zmk

I Distances can be written as (defining Nk =
∑

n znk):

(xn−µk)T(xn−µk) =

(
xn − N−1

k

N∑
m=1

zmkxm

)T(
xn − N−1

k

N∑
m=1

zmkxm

)



Kernelising K-means

I Multiply out:

xTn xn − 2N−1k

N∑
m=1

zmkx
T
mxn + N−2k

∑
m,l

zmkzlkx
T
mxl

I Kernel substitution:

k(xn, xn)− 2N−1
k

N∑
m=1

zmkk(xn, xm) + N−2
k

N∑
m,l=1

zmkzlkk(xm, xl)
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Kernel K-means

I Algorithm:

1. Choose a kernel and any necessary parameters.

2. Start with random assignments znk .
3. For each xn assign it to the nearest ‘center’ where distance is

defined as:

k(xn, xn)− 2N−1
k

N∑
m=1

zmkk(xn, xm) + N−2
k

N∑
m,l=1

zmkzlkk(xm, xl)

4. If assignments have changed, return to 3.

I Note – no µk . This would be N−1k

∑
n znkφ(xn) but we don’t

know φ(xn) for kernels. We only know φ(xn)Tφ(xm) (kernel
SVM lecture)...
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Kernel K-means

I Makes simple K-means algorithm more flexible.

I But, have to now set additional parameters.

I Very sensitive to initial conditions – lots of local optima.



K-means – summary

I Simple (and effective) clustering strategy.

I Converges to (local) minima of:∑
n

∑
k

znk(xn − µk)T(xn − µk)

I Sensitive to initialisation.
I How do we choose K?

I Tricky, several heuristics have been proposed.
I Can we use CV (Cross-Validation)?
I The Sum of Norms method.
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Mixture models – thinking generatively

−2 −1 0 1 2 3 4 5
−6

−4

−2

0

2

4

6

x1

x
2

I Could we hypothesis a model that could have created this
data?

I Each xn seems to have come from one of three distributions.
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