
K-means Clustering

Morteza H. Chehreghani
morteza.chehreghani@chalmers.se

Department of Computer Science and Engineering
Chalmers University

May 16, 2019

Unsupervised learning

I Everything we’ve seen so far has been supervised

I We were given a set of xn and associated label/target variable
tn (sometimes shown by yn).

I What if we just have xn?
I For example:

I xn is a binary vector indicating products customer n has
bought.

I Can group customers that buy similar products.
I Can group products bought together.

I Known as Clustering

I And is an example of unsupervised learning.
I Supervised Learning is just the icing on the cake which is

unsupervised learning.
Yann Le Cun, NIPS 2016

Unsupervised learning

I Everything we’ve seen so far has been supervised

I We were given a set of xn and associated label/target variable
tn (sometimes shown by yn).

I What if we just have xn?
I For example:

I xn is a binary vector indicating products customer n has
bought.

I Can group customers that buy similar products.
I Can group products bought together.

I Known as Clustering

I And is an example of unsupervised learning.
I Supervised Learning is just the icing on the cake which is

unsupervised learning.
Yann Le Cun, NIPS 2016

Unsupervised learning

I Everything we’ve seen so far has been supervised

I We were given a set of xn and associated label/target variable
tn (sometimes shown by yn).

I What if we just have xn?
I For example:

I xn is a binary vector indicating products customer n has
bought.

I Can group customers that buy similar products.
I Can group products bought together.

I Known as Clustering

I And is an example of unsupervised learning.

I Supervised Learning is just the icing on the cake which is
unsupervised learning.
Yann Le Cun, NIPS 2016

Unsupervised learning

I Everything we’ve seen so far has been supervised

I We were given a set of xn and associated label/target variable
tn (sometimes shown by yn).

I What if we just have xn?
I For example:

I xn is a binary vector indicating products customer n has
bought.

I Can group customers that buy similar products.
I Can group products bought together.

I Known as Clustering

I And is an example of unsupervised learning.
I Supervised Learning is just the icing on the cake which is

unsupervised learning.
Yann Le Cun, NIPS 2016

Clustering

0 2 4 6

−3

−2

−1

0

1

2

3

4

5

0 2 4 6

−3

−2

−1

0

1

2

3

4

5

I In this example each object has two attributes:

xn = [xn1, xn2]T

I Left: data.

I Right: data after clustering (points coloured according to
cluster membership).

What we’ll cover

I 2 algorithms:
I K-means
I Mixture models

I The two are somewhat related.

I We’ll also see how K-means can be kernelised.

What we’ll cover

I 2 algorithms:
I K-means
I Mixture models

I The two are somewhat related.

I We’ll also see how K-means can be kernelised.

K-means
I Assume that there are K clusters.
I Each cluster is defined by a position in the input space:

µk = [µk1, µk2]T

I Each xn is assigned to its closest cluster:

−2 0 2 4 6
−6

−4

−2

0

2

4

6

x1

x
2

I Distance is normally Euclidean distance:

dnk = (xn − µk)T(xn − µk)

K-means
I Assume that there are K clusters.
I Each cluster is defined by a position in the input space:

µk = [µk1, µk2]T

I Each xn is assigned to its closest cluster:

−2 0 2 4 6
−6

−4

−2

0

2

4

6

x1

x
2

I Distance is normally Euclidean distance:

dnk = (xn − µk)T(xn − µk)

K-means
I Assume that there are K clusters.
I Each cluster is defined by a position in the input space:

µk = [µk1, µk2]T

I Each xn is assigned to its closest cluster:

−2 0 2 4 6
−6

−4

−2

0

2

4

6

x1

x
2

I Distance is normally Euclidean distance:

dnk = (xn − µk)T(xn − µk)

How do we find µk?

I No analytical solution – we can’t write down µk as a function
of X.

I Use an iterative algorithm:

1. Guess µ1,µ2, . . . ,µK

2. Assign each xn to its closest µk

3. znk = 1 if xn assigned to µk (0 otherwise)
4. Update µk to average of xns assigned to µk :

µk =

∑N
n=1 znkxn∑N
n=1 znk

5. Return to 2 until assignments do not change.

I Algorithm will converge....it will reach a point where the
assignments don’t change.

How do we find µk?

I No analytical solution – we can’t write down µk as a function
of X.

I Use an iterative algorithm:

1. Guess µ1,µ2, . . . ,µK

2. Assign each xn to its closest µk

3. znk = 1 if xn assigned to µk (0 otherwise)
4. Update µk to average of xns assigned to µk :

µk =

∑N
n=1 znkxn∑N
n=1 znk

5. Return to 2 until assignments do not change.

I Algorithm will converge....it will reach a point where the
assignments don’t change.

How do we find µk?

I No analytical solution – we can’t write down µk as a function
of X.

I Use an iterative algorithm:

1. Guess µ1,µ2, . . . ,µK

2. Assign each xn to its closest µk

3. znk = 1 if xn assigned to µk (0 otherwise)
4. Update µk to average of xns assigned to µk :

µk =

∑N
n=1 znkxn∑N
n=1 znk

5. Return to 2 until assignments do not change.

I Algorithm will converge....it will reach a point where the
assignments don’t change.

How do we find µk?

I No analytical solution – we can’t write down µk as a function
of X.

I Use an iterative algorithm:

1. Guess µ1,µ2, . . . ,µK

2. Assign each xn to its closest µk

3. znk = 1 if xn assigned to µk (0 otherwise)

4. Update µk to average of xns assigned to µk :

µk =

∑N
n=1 znkxn∑N
n=1 znk

5. Return to 2 until assignments do not change.

I Algorithm will converge....it will reach a point where the
assignments don’t change.

How do we find µk?

I No analytical solution – we can’t write down µk as a function
of X.

I Use an iterative algorithm:

1. Guess µ1,µ2, . . . ,µK

2. Assign each xn to its closest µk

3. znk = 1 if xn assigned to µk (0 otherwise)
4. Update µk to average of xns assigned to µk :

µk =

∑N
n=1 znkxn∑N
n=1 znk

5. Return to 2 until assignments do not change.

I Algorithm will converge....it will reach a point where the
assignments don’t change.

How do we find µk?

I No analytical solution – we can’t write down µk as a function
of X.

I Use an iterative algorithm:

1. Guess µ1,µ2, . . . ,µK

2. Assign each xn to its closest µk

3. znk = 1 if xn assigned to µk (0 otherwise)
4. Update µk to average of xns assigned to µk :

µk =

∑N
n=1 znkxn∑N
n=1 znk

5. Return to 2 until assignments do not change.

I Algorithm will converge....it will reach a point where the
assignments don’t change.

How do we find µk?

I No analytical solution – we can’t write down µk as a function
of X.

I Use an iterative algorithm:

1. Guess µ1,µ2, . . . ,µK

2. Assign each xn to its closest µk

3. znk = 1 if xn assigned to µk (0 otherwise)
4. Update µk to average of xns assigned to µk :

µk =

∑N
n=1 znkxn∑N
n=1 znk

5. Return to 2 until assignments do not change.

I Algorithm will converge....it will reach a point where the
assignments don’t change.

K-means – example

−2 0 2 4 6
−6

−4

−2

0

2

4

6

x1

x
2

I Cluster means randomly assigned (top left).

I Points assigned to their closest mean.

K-means – example

−2 0 2 4 6
−6

−4

−2

0

2

4

6

x1

x
2

I Cluster means updated to mean of assigned points.

K-means – example

−2 0 2 4 6
−6

−4

−2

0

2

4

6

x1

x
2

I Points re-assigned to closest mean.

K-means – example

−2 0 2 4 6
−6

−4

−2

0

2

4

6

x1

x
2

I Cluster means updated to mean of assigned points.

K-means – example

−2 0 2 4 6
−6

−4

−2

0

2

4

6

x1

x
2

I Assign point to closest mean.

I Update mean.

K-means – example

−2 0 2 4 6
−6

−4

−2

0

2

4

6

x1

x
2

I Assign point to closest mean.

I Update mean.

K-means – example

−2 0 2 4 6
−6

−4

−2

0

2

4

6

x1

x
2

I Assign point to closest mean.

I Update mean.

K-means – example

−2 0 2 4 6
−6

−4

−2

0

2

4

6

x1

x
2

I Assign point to closest mean.

I Update mean.

K-means – example

−2 0 2 4 6
−6

−4

−2

0

2

4

6

x1

x
2

I Assign point to closest mean.

I Update mean.

K-means – example

−2 0 2 4 6
−6

−4

−2

0

2

4

6

x1

x
2

I Assign point to closest mean.

I Update mean.

K-means – example

−2 0 2 4 6
−6

−4

−2

0

2

4

6

x1

x
2

I Assign point to closest mean.

I Update mean.

K-means – example

−2 0 2 4 6
−6

−4

−2

0

2

4

6

x1

x
2

I Assign point to closest mean.

I Update mean.

K-means – example

−2 0 2 4 6
−6

−4

−2

0

2

4

6

x1

x
2

I Assign point to closest mean.

I Update mean.

K-means – example

−2 0 2 4 6
−6

−4

−2

0

2

4

6

x1

x
2

I Assign point to closest mean.

I Update mean.

K-means – example

−2 0 2 4 6
−6

−4

−2

0

2

4

6

x1

x
2

I Solution at convergence.

K-means – Cost Function

I Simple (and effective) clustering strategy.

I Converges to (local) minima of:∑
n

∑
k

znk(xn − µk)T(xn − µk)

I under which conditions?

K-means – Cost Function

I Simple (and effective) clustering strategy.

I Converges to (local) minima of:∑
n

∑
k

znk(xn − µk)T(xn − µk)

such that: znk ∈ {0, 1},∑
k

znk = 1, ∀n.

Two Issues with K-Means

I What value of K should we use?

I How should we pick the initial centers?

I Both these significantly affect resulting clustering.

Two Issues with K-Means

I What value of K should we use?

I How should we pick the initial centers?

I Both these significantly affect resulting clustering.

Two Issues with K-Means

I What value of K should we use?

I How should we pick the initial centers?

I Both these significantly affect resulting clustering.

Two Issues with K-Means

I What value of K should we use?

I How should we pick the initial centers?

I Both these significantly affect resulting clustering.

Initializing Centers

I Pick K random points.

I Pick K points at random from input points.

I Assign points at random to K groups and then take centers of
these groups.

I Pick a random input point for first center, next center at a
point as far away from this as possible, next as far away from
first two ...

Initializing Centers

I Pick K random points.

I Pick K points at random from input points.

I Assign points at random to K groups and then take centers of
these groups.

I Pick a random input point for first center, next center at a
point as far away from this as possible, next as far away from
first two ...

Initializing Centers

I Pick K random points.

I Pick K points at random from input points.

I Assign points at random to K groups and then take centers of
these groups.

I Pick a random input point for first center, next center at a
point as far away from this as possible, next as far away from
first two ...

Initializing Centers

I Pick K random points.

I Pick K points at random from input points.

I Assign points at random to K groups and then take centers of
these groups.

I Pick a random input point for first center, next center at a
point as far away from this as possible, next as far away from
first two ...

Initializing Centers

I Pick K random points.

I Pick K points at random from input points.

I Assign points at random to K groups and then take centers of
these groups.

I Pick a random input point for first center, next center at a
point as far away from this as possible, next as far away from
first two ...

k–Means++ (D. Arthur and S. Vassilvitskii (2007)

I Start with C1 := {x} where x is chosen at random from input
points.

I For i ≥ 2, pick a new point x according to a probability
distribution νi :

νi (x) =
d2(x,Ci−1)∑
x′ d

2(x′,Ci−1)

and set Ci := Ci−1 ∪ {x}.

Gives a provably good O(log n) approximation to optimal
clustering.

Choosing k

I Intra-cluster variance:

Wk :=
1

|Ck |
∑
x∈Ck

(x− µk)2.

I W :=
∑

k Wk .

I Pick k to minimize Wk

I Elbow heuristic, Gap Statistic ...

Sum of Norms (SON) Formulation

SON Relaxation (Lindsten et al 2011)

min
µ

∑
i

‖xi − µ(i)‖2 + λ
∑

p,q:p<q

‖µp − µq‖2.

where µ(i) indicates the centroid of the cluster that xi is assigned
to.

I If you take only first term ...

I ... µ(i) = xi for all i (thus, K = N).

I If you take only second term ...

I ... µp = µq for all p, q (thus, K = 1).

I By varying λ, we steer between these two extremes.

I Do not need to know K in advance and do not need to do
careful initialization.

Sum of Norms (SON) Formulation

SON Relaxation (Lindsten et al 2011)

min
µ

∑
i

‖xi − µ(i)‖2 + λ
∑

p,q:p<q

‖µp − µq‖2.

where µ(i) indicates the centroid of the cluster that xi is assigned
to.

I If you take only first term ...

I ... µ(i) = xi for all i (thus, K = N).

I If you take only second term ...

I ... µp = µq for all p, q (thus, K = 1).

I By varying λ, we steer between these two extremes.

I Do not need to know K in advance and do not need to do
careful initialization.

Sum of Norms (SON) Formulation

SON Relaxation (Lindsten et al 2011)

min
µ

∑
i

‖xi − µ(i)‖2 + λ
∑

p,q:p<q

‖µp − µq‖2.

where µ(i) indicates the centroid of the cluster that xi is assigned
to.

I If you take only first term ...

I ... µ(i) = xi for all i (thus, K = N).

I If you take only second term ...

I ... µp = µq for all p, q (thus, K = 1).

I By varying λ, we steer between these two extremes.

I Do not need to know K in advance and do not need to do
careful initialization.

Sum of Norms (SON) Formulation

SON Relaxation (Lindsten et al 2011)

min
µ

∑
i

‖xi − µ(i)‖2 + λ
∑

p,q:p<q

‖µp − µq‖2.

where µ(i) indicates the centroid of the cluster that xi is assigned
to.

I If you take only first term ...

I ... µ(i) = xi for all i (thus, K = N).

I If you take only second term ...

I ... µp = µq for all p, q (thus, K = 1).

I By varying λ, we steer between these two extremes.

I Do not need to know K in advance and do not need to do
careful initialization.

Sum of Norms (SON) Formulation

SON Relaxation (Lindsten et al 2011)

min
µ

∑
i

‖xi − µ(i)‖2 + λ
∑

p,q:p<q

‖µp − µq‖2.

where µ(i) indicates the centroid of the cluster that xi is assigned
to.

I If you take only first term ...

I ... µ(i) = xi for all i (thus, K = N).

I If you take only second term ...

I ... µp = µq for all p, q (thus, K = 1).

I By varying λ, we steer between these two extremes.

I Do not need to know K in advance and do not need to do
careful initialization.

Sum of Norms (SON) Formulation

SON Relaxation (Lindsten et al 2011)

min
µ

∑
i

‖xi − µ(i)‖2 + λ
∑

p,q:p<q

‖µp − µq‖2.

where µ(i) indicates the centroid of the cluster that xi is assigned
to.

I If you take only first term ...

I ... µ(i) = xi for all i (thus, K = N).

I If you take only second term ...

I ... µp = µq for all p, q (thus, K = 1).

I By varying λ, we steer between these two extremes.

I Do not need to know K in advance and do not need to do
careful initialization.

Sum of Norms (SON) Formulation

SON Relaxation (Lindsten et al 2011)

min
µ

∑
i

‖xi − µ(i)‖2 + λ
∑

p,q:p<q

‖µp − µq‖2.

where µ(i) indicates the centroid of the cluster that xi is assigned
to.

I If you take only first term ...

I ... µ(i) = xi for all i (thus, K = N).

I If you take only second term ...

I ... µp = µq for all p, q (thus, K = 1).

I By varying λ, we steer between these two extremes.

I Do not need to know K in advance and do not need to do
careful initialization.

When does K-means break?

−1.5 −1 −0.5 0 0.5 1 1.5
−1.5

−1

−0.5

0

0.5

1

1.5

x1

x
2

I Data has clear cluster structure.

I Outer cluster can not be represented as a single point.

When does K-means break?

−1.5 −1 −0.5 0 0.5 1 1.5
−1.5

−1

−0.5

0

0.5

1

1.5

x1

x
2

I Data has clear cluster structure.

I Outer cluster can not be represented as a single point.

Kernelising K-means

I Maybe we can kernelise K-means?

I Distances:
(xn − µk)T(xn − µk)

I Cluster means:

µk =

∑N
m=1 zmkxm∑N
m=1 zmk

I Distances can be written as (defining Nk =
∑

n znk):

(xn−µk)T(xn−µk)

=

(
xn − N−1

k

N∑
m=1

zmkxm

)T(
xn − N−1

k

N∑
m=1

zmkxm

)

Kernelising K-means

I Maybe we can kernelise K-means?

I Distances:
(xn − µk)T(xn − µk)

I Cluster means:

µk =

∑N
m=1 zmkxm∑N
m=1 zmk

I Distances can be written as (defining Nk =
∑

n znk):

(xn−µk)T(xn−µk) =

(
xn − N−1

k

N∑
m=1

zmkxm

)T(
xn − N−1

k

N∑
m=1

zmkxm

)

Kernelising K-means

I Maybe we can kernelise K-means?

I Distances:
(xn − µk)T(xn − µk)

I Cluster means:

µk =

∑N
m=1 zmkxm∑N
m=1 zmk

I Distances can be written as (defining Nk =
∑

n znk):

(xn−µk)T(xn−µk) =

(
xn − N−1

k

N∑
m=1

zmkxm

)T(
xn − N−1

k

N∑
m=1

zmkxm

)

Kernelising K-means

I Multiply out:

xTn xn − 2N−1k

N∑
m=1

zmkx
T
mxn + N−2k

∑
m,l

zmkzlkx
T
mxl

I Kernel substitution:

k(xn, xn)− 2N−1
k

N∑
m=1

zmkk(xn, xm) + N−2
k

N∑
m,l=1

zmkzlkk(xm, xl)

Kernelising K-means

I Multiply out:

xTn xn − 2N−1k

N∑
m=1

zmkx
T
mxn + N−2k

∑
m,l

zmkzlkx
T
mxl

I Kernel substitution:

k(xn, xn)− 2N−1
k

N∑
m=1

zmkk(xn, xm) + N−2
k

N∑
m,l=1

zmkzlkk(xm, xl)

Kernel K-means

I Algorithm:

1. Choose a kernel and any necessary parameters.

2. Start with random assignments znk .
3. For each xn assign it to the nearest ‘center’ where distance is

defined as:

k(xn, xn)− 2N−1
k

N∑
m=1

zmkk(xn, xm) + N−2
k

N∑
m,l=1

zmkzlkk(xm, xl)

4. If assignments have changed, return to 3.

I Note – no µk . This would be N−1k

∑
n znkφ(xn) but we don’t

know φ(xn) for kernels. We only know φ(xn)Tφ(xm) (kernel
SVM lecture)...

Kernel K-means

I Algorithm:

1. Choose a kernel and any necessary parameters.
2. Start with random assignments znk .

3. For each xn assign it to the nearest ‘center’ where distance is
defined as:

k(xn, xn)− 2N−1
k

N∑
m=1

zmkk(xn, xm) + N−2
k

N∑
m,l=1

zmkzlkk(xm, xl)

4. If assignments have changed, return to 3.

I Note – no µk . This would be N−1k

∑
n znkφ(xn) but we don’t

know φ(xn) for kernels. We only know φ(xn)Tφ(xm) (kernel
SVM lecture)...

Kernel K-means

I Algorithm:

1. Choose a kernel and any necessary parameters.
2. Start with random assignments znk .
3. For each xn assign it to the nearest ‘center’ where distance is

defined as:

k(xn, xn)− 2N−1
k

N∑
m=1

zmkk(xn, xm) + N−2
k

N∑
m,l=1

zmkzlkk(xm, xl)

4. If assignments have changed, return to 3.

I Note – no µk . This would be N−1k

∑
n znkφ(xn) but we don’t

know φ(xn) for kernels. We only know φ(xn)Tφ(xm) (kernel
SVM lecture)...

Kernel K-means

I Algorithm:

1. Choose a kernel and any necessary parameters.
2. Start with random assignments znk .
3. For each xn assign it to the nearest ‘center’ where distance is

defined as:

k(xn, xn)− 2N−1
k

N∑
m=1

zmkk(xn, xm) + N−2
k

N∑
m,l=1

zmkzlkk(xm, xl)

4. If assignments have changed, return to 3.

I Note – no µk . This would be N−1k

∑
n znkφ(xn) but we don’t

know φ(xn) for kernels. We only know φ(xn)Tφ(xm) (kernel
SVM lecture)...

Kernel K-means

I Algorithm:

1. Choose a kernel and any necessary parameters.
2. Start with random assignments znk .
3. For each xn assign it to the nearest ‘center’ where distance is

defined as:

k(xn, xn)− 2N−1
k

N∑
m=1

zmkk(xn, xm) + N−2
k

N∑
m,l=1

zmkzlkk(xm, xl)

4. If assignments have changed, return to 3.

I Note – no µk . This would be N−1k

∑
n znkφ(xn) but we don’t

know φ(xn) for kernels. We only know φ(xn)Tφ(xm) (kernel
SVM lecture)...

Kernel K-means – example

−1.5 −1 −0.5 0 0.5 1 1.5
−1.5

−1

−0.5

0

0.5

1

1.5

x1

x
2

I Solution at convergence.

Kernel K-means – example

−1.5 −1 −0.5 0 0.5 1 1.5
−1.5

−1

−0.5

0

0.5

1

1.5

x1

x
2

I Solution at convergence.

Kernel K-means – example

−1.5 −1 −0.5 0 0.5 1 1.5
−1.5

−1

−0.5

0

0.5

1

1.5

x1

x
2

I Solution at convergence.

Kernel K-means – example

−1.5 −1 −0.5 0 0.5 1 1.5
−1.5

−1

−0.5

0

0.5

1

1.5

x1

x
2

I Solution at convergence.

Kernel K-means – example

−1.5 −1 −0.5 0 0.5 1 1.5
−1.5

−1

−0.5

0

0.5

1

1.5

x1

x
2

I Solution at convergence.

Kernel K-means – example

−1.5 −1 −0.5 0 0.5 1 1.5
−1.5

−1

−0.5

0

0.5

1

1.5

x1

x
2

I Solution at convergence.

Kernel K-means – example

−1.5 −1 −0.5 0 0.5 1 1.5
−1.5

−1

−0.5

0

0.5

1

1.5

x1

x
2

I Solution at convergence.

Kernel K-means – example

−1.5 −1 −0.5 0 0.5 1 1.5
−1.5

−1

−0.5

0

0.5

1

1.5

x1

x
2

I Solution at convergence.

Kernel K-means

I Makes simple K-means algorithm more flexible.

I But, have to now set additional parameters.

I Very sensitive to initial conditions – lots of local optima.

K-means – summary

I Simple (and effective) clustering strategy.

I Converges to (local) minima of:∑
n

∑
k

znk(xn − µk)T(xn − µk)

I Sensitive to initialisation.
I How do we choose K?

I Tricky, several heuristics have been proposed.
I Can we use CV (Cross-Validation)?
I The Sum of Norms method.

K-means – summary

I Simple (and effective) clustering strategy.

I Converges to (local) minima of:∑
n

∑
k

znk(xn − µk)T(xn − µk)

I Sensitive to initialisation.
I How do we choose K?

I Tricky, several heuristics have been proposed.
I Can we use CV (Cross-Validation)?
I The Sum of Norms method.

K-means – summary

I Simple (and effective) clustering strategy.

I Converges to (local) minima of:∑
n

∑
k

znk(xn − µk)T(xn − µk)

I Sensitive to initialisation.

I How do we choose K?
I Tricky, several heuristics have been proposed.
I Can we use CV (Cross-Validation)?
I The Sum of Norms method.

K-means – summary

I Simple (and effective) clustering strategy.

I Converges to (local) minima of:∑
n

∑
k

znk(xn − µk)T(xn − µk)

I Sensitive to initialisation.
I How do we choose K?

I Tricky, several heuristics have been proposed.
I Can we use CV (Cross-Validation)?
I The Sum of Norms method.

Mixture models – thinking generatively

−2 −1 0 1 2 3 4 5
−6

−4

−2

0

2

4

6

x1

x
2

I Could we hypothesis a model that could have created this
data?

I Each xn seems to have come from one of three distributions.

Mixture models – thinking generatively

−2 −1 0 1 2 3 4 5
−6

−4

−2

0

2

4

6

x1

x
2

I Could we hypothesis a model that could have created this
data?

I Each xn seems to have come from one of three distributions.

	Introduction
	K-means
	Kernel K-means
	Mixture models

