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Some data and a problem
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Winning times for the
men’s Olympic 100m
sprint, 1896-2008.

In this lecture, we will use this data to predict the winning
time in London 2012

Reading: Section 1.1 of FCML
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What did we do?

Basically:

I Decided to draw a line through our data.

I Chose a straight line.

I Drew a good straight line.

I Extended the line to 2012.

I Read off the winning time for 2012.

Technically

I Decided we needed a model.

I Chose a linear model.

I Fitted a linear model.

I Evaluated the model at 2012.

I Used this as our prediction.
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Assumptions

Our Assumptions

1. That there exists a relationship between Olympic year
and winning time.

2. That this relationship is linear (i.e. a straight line).

3. That this relationship will continue into the future.

Are they any good?
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Definitions

Attributes and targets

Typically in Supervised Machine Learning, we have a set of
attributes and corresponding targets:

I Attributes: Olympic year.

I Targets: Winning time.

Variables

Mathematically, each is described by a variable:

I Olympic year: x .

I Winning time: t.
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Definitions

Model

Our goal is to create a model.

I This is a function that can relate x to t.

t = f (x)

I Hence, we can work out t when x = 2012.

Data

We’re going to create the model from data:

I N attribute-response pairs, (xn, tn)

I e.g. (1896, 12s), (1900, 11s), . . . , (2008, 9.69s)

I x1 = 1896, t1 = 12, etc
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Definitions
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Our goal is to create a model.

I This is a function that can relate x to t.

t = f (x)

I Hence, we can work out t when x = 2012.

Data

We’re going to create the model from data:

I N attribute-response pairs, (xn, tn)

I e.g. (1896, 12s), (1900, 11s), . . . , (2008, 9.69s)

I x1 = 1896, t1 = 12, etc

Often called training data



A linear model

t = f (x)

= w0 + w1x = f (x ;w0,w1)

I w0 and w1 are parameters of the model.

I They determine the properties of the line.
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What next?

We have data and a family of models:
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How good is a particular w0,w1?

I How good is a particular line (w0,w1)?

I We need to be able to provide a numerical value of goodness
for any w0,w1.
I How good is w0 = 5,w1 = 0.1?
I Is w0 = 5,w1 = −0.1 better or worse?

I Once we can answer these questions, we can search for the
best w0,w1 pair.
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This means that we can compute f (xn;w0,w1) for each xn.
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Squared loss

I The Squared loss of training point n is defined as:

Ln = (tn − f (xn;w0;w1))2

I It is the squared difference between the true response
(winning time), tn when the input is xn and the response
predicted by the model, f (xn;w0,w1) = w0 + w1xn.

I The lower Ln, the closer the line at xn passes to tn.
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Total squared loss
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I The average loss:

L =
1

N

N∑
n=1

(tn − f (xn;w0,w1))2

I L tells us how good the model is as a function of w0 and w1.
I Remember that lower is better!
I How good is w0 = 5,w1 = 0.1?
I How good is w0 = 6,w1 = −0.2?
I Which is better?



Example
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An optimisation problem

I We’ve derived an expression for how good the model is for
any w0 and w1.

L =
1

N

N∑
n=1

(tn − f (xn;w0,w1))2

I Could use trial and error to find a good w0,w1 combination.

I Can we get a mathematical expression?

argmin
w0,w1

L = argmin
w0,w1

1

N

N∑
n=1

(tn − f (xn;w0,w1))2
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Aside - finding maxima and minima

Say we want to find

argmin
z
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maximum), the gradient must
be zero.
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The gradient is given by the first derivative of the function:

df (z)

dz
= 4z − 12

Setting to zero and solving for z

4z − 12 = 0, z = 12/4 = 3



Finding maxima and minima

I So, we know that the gradient is 0 at z = 3.

I How do we know if it is a minimum or a maximum?
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Finding maxima and minima

I So, we know that the gradient is 0 at z = 3.

I How do we know if it is a minimum or a maximum?
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must be increasing.

Taking the second derivative:

df (z)

dz
= 4z − 12

d2z

dz2
= 4

The gradient is always increasing. Therefore, we have found a
minimum and it is the only minumum.



Finding maxima and minima

What about functions of more than one variable?

argmin
y ,z

f (y , z), f (y , z) = y2 + z2 + y + z + yz
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We now use partial
derivatives, ∂f

∂z and ∂f
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When calculating the partial derivative with respect to y we
assume everything else (including z) is a constant.

∂f

∂y
= 2y + 1 + z ,

∂f

∂z
= 2z + 1 + y



∂f

∂y
= 2y + 1 + z ,

∂f

∂z
= 2z + 1 + y

To find a potential minimum, set both to zero and solve for y and
z :

y = −1

3

z = −1

3
.

To make sure its a minimum, check second derivatives:

∂2f

∂y2
= 2,

∂2f

∂z2
= 2.

Both are positive so we have a minimum.



Back to our function

L =
1

N

N∑
n=1

(tn − f (xn;w0,w1))2.

Now, recall that:

f (xn;w0,w1) = w0 + w1x

So:

argmin
w0,w1

L = argmin
w0,w1

1

N

N∑
n=1

(tn − w0 − w1xn)2

We need to find ∂L
∂w0

and ∂L
∂w1

, and use thoese to find the best
values!
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Differentiating the loss

I Taking partial derivatives with respect to w0 and w1:

L =
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xn(tn − w0 − w1xn)
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∂L
∂w0

= − 2

N

N∑
n=1

(tn − w0 − w1xn)

0 = − 2

N

N∑
n=1

(tn − w0 − w1xn)

2

N

N∑
n=1

w0 =
2

N

N∑
n=1

tn −
2

N

N∑
n=1

w1xn

w0 = t̄ − w1x̄

Where

t̄ =
1

N

N∑
n=1

tn, x̄ =
1

N

N∑
n=1

xn



Finding w1:
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Substituting:

Substituting our expression for w0 into that for w1:

w0 = t − w1x

w1x2 = xt − w0x

w1x2 = xt − x(t̄ − w1x̄)

w1 =
xt − xt

x2 − (x)2

So, to summarise:

w1 =
xt − xt

x2 − (x)2
, w0 = t − w1x

Note that xt 6= xt and x2 6= (x)2.



Gradient Descent: an alternative approach

Repeatedly move in the direction of the gradient using step size η:

w0 ← w0 − η
∂L
∂w0

w1 ← w1 − η
∂L
∂w1

For convex functions, this is guaranteed to converge to the global
optimum.
There are many accelerated variations to speed up convergence.



searching for the best parameters
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“climbing down” formally: gradient descent

1. define a “learning rate” η

2. initialize the parameters w0,w1 (slope and intercept)

3. compute the gradients (steepest direction)

4. update the parameters as

w0 ← w0 − η
∂L
∂w0

w1 ← w1 − η
∂L
∂w1

5. is the gradient close to zero? if no, go back to 3



gradient descent example
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Olympic data

n xn tn xntn x2n
1 1896 12.00 22752.0 3.5948e+06
2 1900 11.00 20900.0 3.6100e+06
3 1904 11.00 20944.0 3.6252e+06
...

...
...

...
...

26 2004 9.85 19739.4 4.0160e+06
27 2008 9.69 19457.5 4.0321e+06

(1/N)
∑N

n=1 1952.37 10.39 20268.1 3.8130e+06

x t xt x2



Olympic data

n xn tn xntn x2n
1 1896 12.00 22752.0 3.5948e+06
2 1900 11.00 20900.0 3.6100e+06
3 1904 11.00 20944.0 3.6252e+06
...

...
...

...
...

26 2004 9.85 19739.4 4.0160e+06
27 2008 9.69 19457.5 4.0321e+06

(1/N)
∑N

n=1 1952.37 10.39 20268.1 3.8130e+06

x t xt x2

Substituting these values into our expressions gives:

w1 = −0.0133, w0 = 36.416



The model
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Our prediction

I We want to predict the winning time at London 2012.

I Substitute x = 2012 into our model.

t = 36.416− 0.0133x

t2012 = 36.416− 0.0133× 2012

t2012 = 9.5947 s

I Based on our modelling assumptions and the previous data,
we predict a winning time of 9.5947 seconds.



Assumptions

Our Assumptions

1. That there exists a relationship between Olympic year
and winning time.

2. That this relationship is linear (i.e. a straight line).

3. This this relationship will continue into the future.

Are they any good?

1. Is the relationship really between Olympic year and time?

2. Seems a bit simple? Does the line go through all of the
points?

3. Forever? Negative winning times?
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Some things to think about

I Is this a good prediction?

I Would you go to the bookmakers and place a bet on the
winning time being exactly 9.547 s?

I If we had done this before 2008 would we have been correct?

I Are we asking the correct question? Being too precise?



A question we could have answered in 1950
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Regression in statistics and machine learning

I regression models are among the most widely used tools in
statistics

I but regression is also an important problem in machine
learning

I difference in emphasis:
I in statistics, the purpose is often explanation: “how does x

affect t?” “is x important for t?”
I in machine learning, the purpose is typically prediction:

“what’s the most likely t, given x?”



Multivariate Data

I Olympic winning time may depend also on weather, track
conditions etc.

I Each data point is thus represented by a vector of dimension
D of features or attributes, x.

I Our problem thus is to find a function t = f (x).

I Multi-linear function:

t = f (x ,w0,w1, · · · ,wD) := w0 + w1x1 + · · ·+ wDxD .



Squared loss

I The squared loss of training point n is:

Ln = (tn − f (xn;w0;w1 · · · ,wD))2

I The averaged squared loss is:

L =
1

N

N∑
n=1

(tn − f (xn;w0,w1, · · · ,wD))2



Squared loss

I The averaged squared loss is:

L =
1

N

N∑
n=1

(tn − f (xn;w0,w1, · · · ,wD))2

I Then

L =
1

N

N∑
n=1

(tn −w
T
xn)2.

Note that: (we append 1 to the begining of xn)
xn ← [1 xn]

I Therefore

L =
1

N
(t− Xw)

T
(t− Xw)



Recipe
I Put data and parameters into vectors.
I Writte our model in vector form.
I Put all data vectors together into a matrix.
I Writte loss in vector/matrix form.

Why?

More features: t = w0 + w1x1 + · · ·+ wDxD
More complex model: t = w0 + w1x + w2x

2 + . . .+ wDx
D

w =


w0

w1
...

wD

 , xn =


1
xn
x2n
...
xDn

 ,X =


1 x11 x21 . . . xD1
1 x12 x22 . . . xD2
...

...
...

. . .
...

1 x1N x2N . . . xDN



t = wTx and t = Xw, L =
1

N
(t− Xw)T(t− Xw)



Recipe
I Put data and parameters into vectors.
I Writte our model in vector form.
I Put all data vectors together into a matrix.
I Writte loss in vector/matrix form.

Why?

More features: t = w0 + w1x1 + · · ·+ wDxD
More complex model: t = w0 + w1x + w2x

2 + . . .+ wDx
D

w =


w0

w1
...

wD

 , xn =


1
xn
x2n
...
xDn

 ,X =


1 x11 x21 . . . xD1
1 x12 x22 . . . xD2
...

...
...

. . .
...

1 x1N x2N . . . xDN



t = wTx and t = Xw, L =
1

N
(t− Xw)T(t− Xw)



Recipe
I Put data and parameters into vectors.
I Writte our model in vector form.
I Put all data vectors together into a matrix.
I Writte loss in vector/matrix form.

Why?

More features: t = w0 + w1x1 + · · ·+ wDxD
More complex model: t = w0 + w1x + w2x

2 + . . .+ wDx
D

w =


w0

w1
...

wD

 ,

xn =


1
xn
x2n
...
xDn

 ,X =


1 x11 x21 . . . xD1
1 x12 x22 . . . xD2
...

...
...

. . .
...

1 x1N x2N . . . xDN



t = wTx and t = Xw, L =
1

N
(t− Xw)T(t− Xw)



Recipe
I Put data and parameters into vectors.
I Writte our model in vector form.
I Put all data vectors together into a matrix.
I Writte loss in vector/matrix form.

Why?

More features: t = w0 + w1x1 + · · ·+ wDxD
More complex model: t = w0 + w1x + w2x

2 + . . .+ wDx
D

w =


w0

w1
...

wD

 , xn =


1
xn
x2n
...
xDn

 ,

X =


1 x11 x21 . . . xD1
1 x12 x22 . . . xD2
...

...
...

. . .
...

1 x1N x2N . . . xDN



t = wTx and t = Xw,

L =
1

N
(t− Xw)T(t− Xw)



Recipe
I Put data and parameters into vectors.
I Writte our model in vector form.
I Put all data vectors together into a matrix.
I Writte loss in vector/matrix form.

Why?

More features: t = w0 + w1x1 + · · ·+ wDxD
More complex model: t = w0 + w1x + w2x

2 + . . .+ wDx
D

w =


w0

w1
...

wD

 , xn =


1
xn
x2n
...
xDn

 ,X =


1 x11 x21 . . . xD1
1 x12 x22 . . . xD2
...

...
...

. . .
...

1 x1N x2N . . . xDN



t = wTx and t = Xw,

L =
1

N
(t− Xw)T(t− Xw)



Recipe
I Put data and parameters into vectors.
I Writte our model in vector form.
I Put all data vectors together into a matrix.
I Writte loss in vector/matrix form.

Why?

More features: t = w0 + w1x1 + · · ·+ wDxD
More complex model: t = w0 + w1x + w2x

2 + . . .+ wDx
D

w =


w0

w1
...

wD

 , xn =


1
xn
x2n
...
xDn

 ,X =


1 x11 x21 . . . xD1
1 x12 x22 . . . xD2
...

...
...

. . .
...

1 x1N x2N . . . xDN



t = wTx and t = Xw, L =
1

N
(t− Xw)T(t− Xw)



Different models, same loss

I We have a single loss that corresponds to many different
models, with different w and X

L =
1

N
(t− Xw)T(t− Xw).

I We can get an expression for the w that minimises L, that
will work for any of these models.



Minimising the loss

I When minimising the scalar loss

L =
1

N

N∑
n=1

(tn − w0 − w1xn)2,

I we took partial derivatives with respect to each parameter and
set to zero.

I We now have a vector/matrix loss

L =
1

N
(t− Xw)T(t− Xw),

I and will take partial derivatives with respect to the vector w
and set to zero:

∂L
∂w

= 0
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Partial diff. wrt vector

The result of taking the partial derivative with respect to a vector
is a vector where each element is the partial derivative with respect
to one parameter:

∂L
∂w

=


∂L
∂w0
∂L
∂w1

...
∂L
∂wD



Useful identites:

f (w) ∂f
∂w

wTx x
xTw x
wTw 2w

wTCw 2Cw



Partial diff. wrt vector

The result of taking the partial derivative with respect to a vector
is a vector where each element is the partial derivative with respect
to one parameter:

∂L
∂w

=


∂L
∂w0
∂L
∂w1

...
∂L
∂wD


Useful identites:

f (w) ∂f
∂w

wTx x
xTw x
wTw 2w

wTCw 2Cw



Computing ∂L
∂w

∂

∂w

(
1

N
(t− Xw)T(t− Xw)

)
=

1

N
(2XTXw − 2XTt)

= 0

XTXw = XTt

Matrix transpose

X =

 x11 x12
x21 x22
x31 x32

 , XT =

[
x11 x21 x31
x12 x22 x32

]

Transpose of sum/product

(a + b)T = aT + bT, (Xw)T = wTXT
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Computing ∂L
∂w

XTXw = XTt

(XTX)−1XTXw = (XTX)−1XTt

w = (XTX)−1XTt

Matrix inverse

Inverse is defined (for a square matrix A) as the matrix A−1 that
satisfies:

AA−1 = I

Where I is the identity matrix,

I =


1 0 . . . 0
0 1 . . . 0
...

...
. . .

...
0 0 . . . 1

 , and IA = A, for any A
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Computing ∂L
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XTXw = XTt

(XTX)−1XTXw = (XTX)−1XTt

w = (XTX)−1XTt

Matrix inverse

Inverse is defined (for a square matrix A) as the matrix A−1 that
satisfies:

AA−1 = I

Where I is the identity matrix,
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1 0 . . . 0
0 1 . . . 0
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An alternative optimization: Gradient Descent

Repeatedly move in the direction of the gradient for w using step
size η:

w← w − η ∂L
∂w

For convex functions, this is guaranteed to converge to the global
optimum.
There are many accelerated variations to speed up convergence.



Linear model - Olympic data

w =

[
w0

w1

]
, X =


1 1896
1 1900
...
1 2008

 , t =


12.00
11.00

...
9.85



ŵ = (XTX)−1XTt =

[
36.416
−0.0133

]
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Quadratic model - synthetic data

w =

 w0

w1

w2

 , X =

 1 x1 x21
...

...
...

1 xN x2N



ŵ = (XTX)−1XTt =

 −0.0149
−0.9987
1.0098


tn = −0.0149− 0.9987xn + 1.0098x2n
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8th order model - Olympic data

t = w0 + w1x + w2x
2 + . . .+ w8x

8

w =


w0

w1
...
w8

 , X =

 1 x1 x21 . . . x81
...

...
...

. . .
...

1 xN x2N . . . x8N
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More general models

I So far, we’ve only considered functions of the form

t = w0 + w1x + w2x
2 + . . .+ wDx

D

I In fact, each term can be any function of x (or even x)

t = w0h0(x) + w1h1(x) + . . .+ wDhD(x)

I For example,

t = w0 + w1x + w2 sin(x) + w3x
−1 + . . .

I In General:

X =


h0(x1) h1(x1) . . . hD(x1)
h0(x2) h1(x2) . . . hD(x2)

...
...

. . .
...

h0(xN) h1(xN) . . . hD(xN)
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Example – Olympic data

t = w0 + w1x + w2 sin

(
x − a

b

)

w =

 w0

w1

w2

 , X =

 1 x1 sin((x1 − a)/b)
...

...
...

1 xN sin((xN − a)/b)
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Summary

I Formulated our loss in terms of vectors and matrices.

I Differentiated it with respect to the parameter vector.

I Used this to find a general expression for ŵ - the parameters
that minimise the loss.

I Shown examples of models with differing numbers of terms.

I Not restricted to xD - can have any function of x (or even x).

I Shown example of model including a sin term.



Making predictions

ŵ = (XTX)−1XTt

Where X depends on the choice of model:

X =

 h0(x1) h1(x1) . . . hD(x1)
...

...
. . .

...
h0(xN) h1(xN) . . . hD(xN)



To predict t at a new value of x , we first create xnew:

xnew =

 h0(xnew)
...

hD(xnew)

 ,
and then compute

tnew = ŵTxnew
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Possible ways of choosing

I Lowest loss, L?



How does loss change?
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Loss always decreases as the model is made more complex (i.e.
higher order terms are added)



How does loss change?

1 2 3 4 5 6 7 8
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

Polynomial Order

T
ra

in
in

g 
Lo

ss

Loss, L, on the Olympic 100m data as additional terms (xD) are
added to the model.

Loss always decreases as the model is made more complex (i.e.
higher order terms are added)



Loss always decreases with model complexity

Data comes from t = x with some noise added:
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Loss always decreases with model complexity
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Generalisation and over-fitting

There is a trade-off between generalisation (predictive ability) and
over-fitting (decreasing the loss).

I Fitting a model perfectly to the training data is likely to lead
to poor predictions because there will almost always be noise
present.

1880 1900 1920 1940 1960 1980 2000 2020
9.5

10

10.5

11

11.5

12

Year

T
im

e 
(s

ec
on

ds
) Noise

Not necessarily ‘noise’, just
things we can’t, or don’t
need to model.



Generalisation and over-fitting

There is a trade-off between generalisation (predictive ability) and
over-fitting (decreasing the loss).

I Fitting a model perfectly to the training data is likely to lead
to poor predictions because there will almost always be noise
present.

1880 1900 1920 1940 1960 1980 2000 2020
9.5

10

10.5

11

11.5

12

Year

T
im

e 
(s

ec
on

ds
) Noise

Not necessarily ‘noise’, just
things we can’t, or don’t
need to model.



Generalisation and over-fitting

There is a trade-off between generalisation (predictive ability) and
over-fitting (decreasing the loss).

I Fitting a model perfectly to the training data is likely to lead
to poor predictions because there will almost always be noise
present.

1880 1900 1920 1940 1960 1980 2000 2020
9.5

10

10.5

11

11.5

12

Year

T
im

e 
(s

ec
on

ds
) Noise

Not necessarily ‘noise’, just
things we can’t, or don’t
need to model.



Possible ways of choosing

I Lowest loss, L?
I Loss always decreases as model gets more complex.

I Predictions don’t necessarily get better.

I Best predictions?
I Can’t use future predictions because we don’t know the

answer!

I Other data?
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Where can we get more data?

I We have N input-response pairs for training:

(x1, t1), (x2, t2), . . . , (xN , tN).

I We could use N −M pairs to find ŵ for several models.
I Choose the model that makes best predictions on remaining

M pairs.

I The N −M pairs constitute training data.
I The M pairs are known as validation data.

I Example – use Olympics pre 1980 to train and post 1980 to
validate.
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I Choose the model that makes best predictions on remaining

M pairs.
I The N −M pairs constitute training data.
I The M pairs are known as validation data.

I Example – use Olympics pre 1980 to train and post 1980 to
validate.



Validation example
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Results suggest that a first order (linear) model (t = w0 + w1x) is
best.
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How should we choose which data to hold back?

I In some applications it will be clear.
I Olympic data – validating on the most recent data seems

sensible.

I In many cases – pick it randomly.

I Do it more than once – average the results.
I Do cross-validation.

I Split the data into C equal sets. Train on C − 1, test on
remaining.
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Cross-validation
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Leave-one-out Cross-validation

I Cross-validation can be repeated to make results more
accurate.

I e.g. Doing 10-fold CV 10 times gives us 100 performance
values to average over.

I Extreme example is when C = N so each fold includes one
input-response pair.

I Leave-one-out (LOO) CV.

I Example....
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LOOCV – Olympic data
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LOO CV suggests a 3rd order model. Previous method suggests
1st order. Who knows which is right!



LOOCV – synthetic data (we know the answer!)
I Generate some data from a 3rd order model

t = w0 + w1x + w2x
2 + w3x

3.

I Use LOOCV to compare models from first to 7th order:
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(Testing loss comes from another dataset)
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Computational issues

I CV and LOOCV let us choose from a set of models based on
predictive performance.

I This comes at a computational cost:

I For C -fold CV, need to train our model C times.
I For LOO-CV, need to train our model N times.

I For t = wTx, this is feasible if D (number of terms in
function) isn’t too big:

t =
D∑

d=0

wdhd(x)

ŵ = (XTX)−1XTt

I For some models we will need to use C � N.
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Summary

I Showed how we can make predictions with our ‘linear’ model.

I Saw how choice of model has big influence in quality of
predictions.

I Saw how the loss on the training data, L, cannot be used to
choose models.
I Making model more complex always decreases the loss.

I Introduced the idea of using some data for validation.

I Introduced cross validation and leave-one-out cross validation.
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