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Some data and a problem

Use the model (line) to predict the winning time in 2012.
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Recipe for a linear model

More complex model: t = w0 + w1x + w2x
2 + . . .+ wDx

D
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
 , Model : tn = wTxn, or t = Xw
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What about the errors?

t = w0 + w1x = wTx

t = w0 + w1x1 + w2x2 + w3x3 + . . .+ wDxD =
D∑

d=0

wdxd = wTx

ŵ = (XTX)−1XTt
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We should model the errors

I We know they’re there - shouldn’t ignore them.

I They tell us how confident our predictions should be:
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Additive errors
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We’ll assume that the
noise is an additive term
in the model:

tn = wTx + εn

What assumptions can we make about εn?

I It’s different for each n.

I It’s positive and negative.

I There doesn’t seem to be any relationship between ε at
different n.

I Looks very hard to model exactly (if it were, it wouldn’t be
noise!)
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Gaussian noise model

I Our model:
tn = wTx + εn

I εn is continuous.

I We need to choose p(ε).

I Gaussian:
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}

I 2 parameters: Mean µ and Variance σ2.
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Gaussian examples
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µ = −2, σ2 = 0.1
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Effect of varying the mean (µ) and variance (σ2) parameters of the
Gaussian.



Generating data
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Likelihood

I Evaluate the density:

p(t|xn,w, σ2) = N (wTxn, σ
2)

I t is a random variable too!

I at t = tn is called for the Likelihood, i.e., the quantity
obtained when evaluating the density.

I The higher the value, the more likely tn is given the model....

I ....the better the model is.
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Likelihood
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Lets look at the 1980 Olympics (n = 20).
Dashed line shows t20.



Likelihood
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Model 1. Red line shows N (wTxn, σ2)
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Likelihood
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Model 2. Red line shows N (wTxn, σ2) for a different w



Likelihood
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Likelihood

I The value we get when we evaluate the density function is
called the likelihood.

I i.e.
I The likelihood for model 1 was 0.1.
I The likelihood for model 2 was 0.9.
I The likelihood for model 3 was 4.8.

I For continuous random variables, it is not a probability!
I As tn is fixed, we can find the values of w and σ2 that

maximise the likelihood.
I ...just like we found them that minimised the loss.
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Likelihood optimisation

I For each input-response pair, we have a Gaussian likelihood:

p(tn|w, xn, σ2) = N (wTxn, σ
2)

I To combine them all, we want the joint likelihood:

p(t1, . . . , tN |w, σ2, x1, . . . , xN)

I Assume that the tn are independent:

p(t1, . . . , tN |w, σ2, x1, . . . , xN) =
N∏

n=1

p(tn|w, xn, σ2)
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Likelihood optimisation

Finding the parameters that maximise the likelihood is expressed
mathematically as:

argmax
w,σ2

N∏

n=1

p(tn|w, xn, σ2)

In fact, we’ll optimise the (natural) log likelihood because it’s
easier.

I If we increase z , log(z) increases, if we decrease z , log(z)
decreases. So, at a maximum of z , log(z) will also be at a
maximum.

argmax
w,σ2

log
N∏

n=1

p(tn|w, xn, σ2)
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Some re-arranging...

p(tn|w, xn, σ2) =
1

σ
√

2π
exp

{
− 1

2σ2
(tn −wTxn)2

}

log L = log
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p(tn|w, xn, σ2)

=
N∑

n=1

log p(tn|w, xn, σ2)
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1

2σ2
(tn −wTxn)2

= −N log(σ
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2π)− 1

2σ2

N∑

n=1

(tn −wTxn)2

Looks familiar! To continue (good exercise):

∂ log L

∂w
= 0,

∂ log L

∂σ2
= 0
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A shortcut

The multi-variate Gaussian

y =

[
y1
y2

]
, p(y|µ,Σ) = N (µ,Σ)

N (µ,Σ) =
1

(2π)K/2|Σ|1/2 exp

{
−1

2
(y − µ)TΣ−1(y − µ)

}

K (= 2) is number of variables, |Σ| is the determinant.
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A shortcut

The multi-variate Gaussian

A special case:
N∏

n=1

N (µn, σ
2) = N (µ,Σ)

µ =



µ1
...
µN


 , Σ =



σ2 . . . 0
...

. . .
...

0 . . . σ2


 = σ2I

So, in our model:

log L = log
N∏

n=1

p(tn|w, xn, σ2) = logN (Xw, σ2I) = log p(t|w,X, σ2)



Maximising the multi-variate log-likelihood

I Partial derivative w.r.t. w, set to zero and solve:

log L = logN (Xw, σ2I)

∂ log L

∂w
= − 1

2σ2
(2XTXw − 2XTt) = 0

w = (XTX)−1XTt

I This is the same expression we’ve seen before!

I Same for σ2:

∂ log L

∂σ2
= − N

2σ2
+

1

2(σ2)2
(t− Xw)T(t− Xw) = 0

σ2 =
1

N
(t− Xw)T(t− Xw)
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Optimum parameters

I Compute optimum ŵ from:

ŵ = (XTX)−1XTt

I Use this to compute optimum σ̂2 from:

σ̂2 =
1

N
(t− Xŵ)T(t− Xŵ)

I e.g. Olympic 100 m data (again!)
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Optimum parameters

I We have point estimates of our parameters.
I How confident should we be in them?

I If we changed them a little bit, would the model still be good?



Confidence in parameter estimates

I Imagine there are true parameters, w and σ2.

I How good our our estimates ŵ and σ̂2?
I Are they correct (on average)?
I If we could keep adding data, would we converge on the true

value?

I How confident should we be in our estimates?
I Could we change parameters a little bit and still have a good

model?
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I Are they correct (on average)?
I If we could keep adding data, would we converge on the true

value?

I How confident should we be in our estimates?
I Could we change parameters a little bit and still have a good

model?

1 2 3 4 5 6 7 8 9 10
−5

0

5

10

15

20

25

30

35

x

t

1 2 3 4 5 6 7 8 9 10
0

5

10

15

20

25

30

x

t



Confidence in parameter estimates

I Imagine there are true parameters, w and σ2.

I How good our our estimates ŵ and σ̂2?
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Expectations – refresher

I To progress we need to understand Expectations

I Imagine a random variable X with density p(x)

I We want to work out the average value of X , x̃ .

I Generate S samples, x1, . . . , xS
I Average the samples:

x̃ ≈ 1

S

S∑

s=1

xs
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Expectations – refresher

I Our sample based approximation to x̃ will get better as we
take more samples.

I We can also (sometimes) compute it exactly using
expectations.

I Discrete: x̃ = Ep(x) {x} =
∑

x xp(x)
I Continuous: x̃ = Ep(x) {x} =

∫
x
xp(x) dx

I Example:
I X is outcome of rolling die. P(X = x) = 1/6
I x̃ =

∑
x xP(X = x) = 3.5

I Example:
I X is uniform distributed RV between a and b
I x̃ =

∫ x=b

x=a
xp(x) dx = (b − a)/2
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Expectations – refresher

I In general:

Ep(x) {f (x)} =

∫
f (x)p(x) dx

I Some important things:
I Ep(x) {f (x)} 6= f

(
Ep(x) {x}

)
I Ep(x) {kf (x)} = kEp(x) {f (x)}

I Mean, µ = Ep(x) {x}
I Variance: σ2 = Ep(x)

{
(x − µ)2

}
= Ep(x)

{
x2
}
− (Ep(x) {x})2

I For vectors of random variables:

I Ep(x) {f (x)} =
∫
f (x)p(x) dx

I Mean: µ = Ep(x) {x}
I Covariance:

cov{x} = Ep(x)

{
(x− µ)(x− µ)T

}

= Ep(x)

{
xxT
}
− Ep(x) {x}Ep(x)

{
xT
}
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Expectations – Gaussians

I Uni-variate
I p(x |µ, σ2) = N (µ, σ2)
I Mean: Ep(x) {x} = µ
I Variance: Ep(x)

{
(x − µ)2

}
= σ2

I Multi-variate
I p(x|µ, σ2) = N (µ,Σ)
I Mean: Ep(x) {x} = µ
I Variance: Ep(x)

{
(x− µ)(x− µ)T

}
= Σ
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Back to the model...

I Parameter estimates:

ŵ = (XTX)−1XTt

σ̂2 =
1

N
(t− Xw)T(t− Xw)

I True values: w, σ2

I Our model:
p(t|X,w, σ2) = N (Xw, σ2I)

I What’s Ep(t|X,w,σ2) {ŵ}?

I What do we expect our parameter estimate to be?
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Ep(t|X,w,σ2) {ŵ}

We’ll try and find Ep(t|X,w,σ2) {ŵ} in terms of the true value w:

Ep(t|X,w,σ2) {ŵ} =

∫
ŵp(t|X,w, σ2) dt

=

∫
(XTX)−1XTtp(t|X,w, σ2) dt

= (XTX)−1XTEp(t|X,w,σ2) {t}
= (XTX)−1XTXw

Ep(t|X,w,σ2) {ŵ} = Iw = w

ŵ is unbiased

On average, we expect our estimate to equal the true value!
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Ep(t|X,w,σ2) {ŵ} =
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cov{ŵ}
I What does cov{ŵ} tell us?

I Recall the linear model, w =

[
w0

w1

]

cov{ŵ} =

[
a b
b c

]

I Tells us how well defined the parameters are by the data. How
much can the parameters vary and still give a good model.
I a and c – how much can we change w0 and w1. b – how the

values should be changed together.
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cov{ŵ}

cov{ŵ} = Ep(t|X,w,σ2)

{
ŵŵT

}

−Ep(t|X,w,σ2) {ŵ}Ep(t|X,w,σ2) {ŵ}T

= E
{

ŵŵT
}
−wwT

=
...

cov{ŵ} = σ2(XTX)−1
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Example
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{
σ̂2
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– beyond this class

We saw that ŵ was unbiased, what about σ̂2?

Ep(t|X,w,σ2)

{
σ̂2
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=
1

N
Ep(t|X,w,σ2)

{
(t− Xŵ)T(t− Xŵ)

}

= σ2
(

1− D

N

)
.

Useful identity

p(t) = N (µ,Σ)

Ep(t)

{
tTAt

}
= Tr(AΣ) + µTAµ

Tr(A) =
∑

i

Aii

Another useful identity

Tr(AB) = Tr(BA)
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I In general D < N.

I So 1− D/N < 1.

I So σ̂2 < σ2

I σ̂2 is biased and will generally be too low.
I Why?

I Because it is based on ŵ which will, in general, be closer to
the data than w.

I As N increases, Ep(t|X,w,σ2)

{
σ̂2
}
→ σ2

I To think about – what if D = N or D > N?
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I Because it is based on ŵ which will, in general, be closer to
the data than w.

I As N increases, Ep(t|X,w,σ2)

{
σ̂2
}
→ σ2

I To think about – what if D = N or D > N?



Ep(t|X,w,σ2)

{
σ̂2
}

– beyond this class

Ep(t|X,w,σ2)

{
σ̂2
}

= σ2
(

1− D

N

)

I In general D < N.

I So 1− D/N < 1.

I So σ̂2 < σ2

I σ̂2 is biased and will generally be too low.
I Why?
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Example – beyond this class
Generate 100 datasets from the following model:

tn = w0 + w1xn + εn, p(εn) = N (0, 0.25)

For N = [10, 20, 50, 100, 200, 500, 1000, 2000, 5000, 10000]
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Red curve – average σ̂2 over 100 datasets. Black curve –
theoretical value. Dashed line – true value.
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Summary

I Computed Ep(t|X,w,σ2) {ŵ} = w
I ŵ is unbiased.

I Computed cov{ŵ} = σ2(XTX)−1

I Tells us how much slack there is in our parameters.

I Computed Ep(t|X,w,σ2)

{
σ̂2
}

= σ2(1− D/N) [beyond this

class!]

I σ̂2 is biased.
I Gets better and better as we get more data.
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Predictions

I Our aim is to make predictions (e.g. London 2012)

I The noise in our data tells us that we can’t predict exactly.
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Predictions

I Our model is defined as:

t = wTx + ε

I Given our estimate of the parameters, ŵ and a new input,
xnew, if we had to predict a single value:

tnew = ŵTxnew

I Is this sensible?

What is Ep(t|X,w,σ2) {tnew}?

Ep(t|X,w,σ2) {tnew} = Ep(t|X,w,σ2)

{
ŵTxnew

}
= wTxnew

I which is a good thing!
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Predictions

I What about var{tnew}?

var{tnew} = Ep(t|X,w,σ2)

{
t2new

}
− Ep(t|X,w,σ2) {tnew}2

= E
{

(ŵTxnew)2
}
− (wTxnew)2

= xTnewE
{

ŵŵT
}

xnew − xTnewwwTxnew

=
...

var{tnew} = σ2xTnew(XTX)−1xnew
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ŵŵT
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Prediction and variance

tnew = ŵTxnew

var{tnew} = σ2xTnew(XTX)−1xnew

I Recall the expression for the covariance of the parameter
estimate:

cov{ŵ} = σ2(XTX)−1

I Appears in the variance of the prediction:

var{tnew} = xTnewcov{ŵ}xnew

I If the variance in the parameters is high, so is the variance in
the predictions.
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Example
Data sampled from a 3rd order polynomial function:

t = w0 + w1x + w2x
2 + w3x

3 + ε
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Why does the predictive variance increase above and below the
correct order?
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Not complex enough model – more ‘noise’

In practice we don’t know σ2 so substitute σ̂2:

var{tnew} = σ̂2xTnew(XTX)−1xnew
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I Some true variability can
only be modelled noise.

I σ̂2 is significantly
over-estimated.

I Results in high var{tnew}.



Too complex model – parameters not well defined

Similarly, we substitute σ̂2 into expression for cov{ŵ}:

cov{ŵ} = σ̂2(XTX)−1
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Olympic prediction
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t = w0 + w1x + ε
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Can we use likelihood to choose models?

I We’ve already seen that training loss is no good for model
choice.

I Described cross-validation as an alternative.

I Can we use the likelihood L or log L?
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Data from 3rd order polynomial.
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I More complex models can always get closer to the data.
I Results in lower σ̂2 and higher likelihood.
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Summary

I Decided to model the noise.

I Recapped random variables.

I Introduced likelihood and maximised it to find ŵ and σ̂2.

I What did it buy us?

I We can now:
I Quantify the uncertainty in our parameters.
I Quantify the uncertainty in our predictions.
I This is very important in all applications....

I What next?
I Going Bayesian.
I Got to forget about single parameter values - parameters are

random variables too.
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Aside - from one model to many

I All of our efforts so far have been to find the ‘best’ model:
I The one that minimises the loss.
I The one that maximises the likelihood.

I Given the uncertainty, maybe we shouldn’t trust one on its
own?

I Consider the following random variable (RV):

p(q) = N (ŵ, cov{ŵ})

I Samples of this RV qs are models (assume σ̂2 is fixed)

I We can generate lots of good models...



I Sample lots of q from:

p(q) = N (ŵ, cov{ŵ})

I Each corresponds to a model.

I Compute a prediction from each one:

ts = qT
s xnew

I Look at the distribution of predictions:
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I Each corresponds to a model.

I Compute a prediction from each one:

ts = qT
s xnew

I Look at the distribution of predictions:

1880 1900 1920 1940 1960 1980 2000 2020
9

9.5

10

10.5

11

11.5

12

x

t

9 9.2 9.4 9.6 9.8 10
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

tnew

p
(t
n
ew

)



I Sample lots of q from:

p(q) = N (ŵ, cov{ŵ})
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Do we need to take samples at all?

I Take an expectation...

Ep(q) {tnew} =

∫
tnewN (ŵ, cov{ŵ}) dtnew

I We’ll see more of this in the next lecture....
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