Bayesian Regression

Morteza H. Chehreghani
morteza.chehreghani@chalmers.se

Chalmers Unniversity of Technology
April 5, 2019

Reference

The content and the slides are adapted from
S. Rogers and M. Girolami, A First Course in Machine Learning (FCML), 2nd edition, Chapman \& Hall/CRC 2016, ISBN: 9781498738484

Some data and a problem

Predict the winning time for 2012!

Some data and a problem

Fit a linear model (draw a line through the data)

Some data and a problem

Use the model (line) to predict the winning time in 2012.

Recipe for a linear model

More complex model: $t=w_{0}+w_{1} x+w_{2} x^{2}+\ldots+w_{D} x^{D}$

$$
\mathbf{x}_{n}=\left[\begin{array}{c}
1 \\
x_{n} \\
x_{n}^{2} \\
\vdots \\
x_{n}^{D}
\end{array}\right], \mathbf{X}=\left[\begin{array}{ccccc}
1 & x_{1}^{1} & x_{1}^{2} & \ldots & x_{1}^{D} \\
1 & x_{2}^{1} & x_{2}^{2} & \ldots & x_{2}^{D} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
1 & x_{N}^{1} & x_{N}^{2} & \ldots & x_{N}^{D}
\end{array}\right] \mathbf{t}=\left[\begin{array}{c}
t_{1} \\
t_{n} \\
\vdots \\
t_{N}
\end{array}\right]
$$

Recipe for a linear model

More complex model: $t=w_{0}+w_{1} x+w_{2} x^{2}+\ldots+w_{D} x^{D}$

$$
\begin{gathered}
\mathbf{x}_{n}=\left[\begin{array}{c}
1 \\
x_{n} \\
x_{n}^{2} \\
\vdots \\
x_{n}^{D}
\end{array}\right], \mathbf{X}=\left[\begin{array}{ccccc}
1 & x_{1}^{1} & x_{1}^{2} & \ldots & x_{1}^{D} \\
1 & x_{2}^{1} & x_{2}^{2} & \ldots & x_{2}^{D} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
1 & x_{N}^{1} & x_{N}^{2} & \ldots & x_{N}^{D}
\end{array}\right] \mathbf{t}=\left[\begin{array}{c}
t_{1} \\
t_{n} \\
\vdots \\
t_{N}
\end{array}\right] \\
\mathbf{w}=\left[\begin{array}{c}
w_{0} \\
w_{1} \\
\vdots \\
w_{D}
\end{array}\right], \quad \text { Model }: t_{n}=\mathbf{w}^{\top} \mathbf{x}_{n}, \quad \text { or } \mathbf{t}=\mathbf{X} \mathbf{w}
\end{gathered}
$$

Recipe for linear model

$$
\text { Model : } t_{n}=\mathbf{w}^{\top} \mathbf{x}_{n}, \quad \text { or } \quad \mathbf{t}=\mathbf{X} \mathbf{w}
$$

Usually, \mathbf{t} and $\mathbf{X w}$ are not exactly equal. So, we try to minimise the difference.

$$
\begin{gathered}
\mathcal{L}=\frac{1}{N}(\mathbf{t}-\mathbf{X} \mathbf{w})^{\top}(\mathbf{t}-\mathbf{X} \mathbf{w}) \\
\widehat{\mathbf{w}}=\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1} \mathbf{X}^{\top} \mathbf{t}
\end{gathered}
$$

Recipe for a linear model

Model

$$
t_{n}=\mathbf{w}^{\top} \mathbf{x}_{n}, \quad \text { or } \quad \mathbf{t}=\mathbf{X} \mathbf{w}
$$

Parameters

$$
\widehat{\mathbf{w}}=\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1} \mathbf{X}^{\top} \mathbf{t}
$$

Prediction

$$
\mathbf{x}_{\text {new }}=\left[\begin{array}{c}
1 \\
x_{\text {new }} \\
x_{\text {new }}^{2} \\
\vdots \\
x_{\text {new }}^{D}
\end{array}\right]
$$

then compute

$$
t_{\text {new }}=\widehat{\mathbf{w}}^{\top} \mathbf{x}_{\text {new }}
$$

Recipe for a probabilistic linear model

- In the probabilistic linear regression, we model the error, i.e.,

$$
\text { Model : } t_{n}=\mathbf{w}^{\top} \mathbf{x}_{n}+\epsilon_{n}, \quad \text { or } \quad \mathbf{t}=\mathbf{X} \mathbf{w}+\boldsymbol{\epsilon}
$$

In other words, we consider $p\left(t_{n} \mid \mathbf{w}, \mathbf{x}_{n}, \sigma^{2}\right)=\mathcal{N}\left(\mathbf{w}^{\top} \mathbf{x}_{n}, \sigma^{2}\right)$

- The full likelihood is

$$
p\left(\mathbf{t} \mid \mathbf{w}, \mathbf{X}, \sigma^{2}\right)=p\left(t_{1}, \ldots, t_{N} \mid \mathbf{w}, \sigma^{2}, \mathbf{x}_{1}, \ldots, \mathbf{x}_{N}\right)
$$

- Note that

$$
p\left(t_{1}, \ldots, t_{N} \mid \mathbf{w}, \sigma^{2}, \mathbf{x}_{1}, \ldots, \mathbf{x}_{N}\right)=\prod_{n=1}^{N} p\left(t_{n} \mid \mathbf{w}, \mathbf{x}_{n}, \sigma^{2}\right)
$$

- And $\quad p\left(\mathbf{t} \mid \mathbf{w}, \mathbf{X}, \sigma^{2}\right)=\mathcal{N}\left(\mathbf{X} \mathbf{w}, \sigma^{2} \mathbf{I}\right)$

I is the identity matrix of size $N \times N$. The covariance marix $\sigma^{2} \mathbf{I}$ indicates i.i.d..

Recipe for a probabilistic linear model

- The full likelihood is

$$
p\left(\mathbf{t} \mid \mathbf{w}, \mathbf{X}, \sigma^{2}\right)=p\left(t_{1}, \ldots, t_{N} \mid \mathbf{w}, \sigma^{2}, \mathbf{x}_{1}, \ldots, \mathbf{x}_{N}\right)
$$

- We maximise the log-likelihood to obtain the parameters \mathbf{w} and σ^{2}.
- Compute optimum $\widehat{\mathbf{w}}$ from:

$$
\widehat{\mathbf{w}}=\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1} \mathbf{X}^{\top} \mathbf{t}
$$

- Use this to compute optimum $\widehat{\sigma^{2}}$ from:

$$
\widehat{\sigma^{2}}=\frac{1}{N}(\mathbf{t}-\mathbf{X} \widehat{\mathbf{w}})^{\top}(\mathbf{t}-\mathbf{X} \widehat{\mathbf{w}})
$$

Recipe for a probabilistic linear model

Olympic 100 m data (again!)

$$
\widehat{\mathbf{w}}=\left[\begin{array}{c}
36.416 \\
-0.0133
\end{array}\right], \widehat{\sigma^{2}}=0.0503
$$

Recipe for a probabilistic linear model

Model

$$
p\left(\mathbf{t} \mid \mathbf{w}, \mathbf{X}, \sigma^{2}\right)=\mathcal{N}\left(\mathbf{X} \mathbf{w}, \sigma^{2} \mathbf{I}\right)
$$

Parameters

$$
\begin{gathered}
\widehat{\mathbf{w}}=\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1} \mathbf{X}^{\top} \mathbf{t} \\
\widehat{\sigma^{2}}=\frac{1}{N}(\mathbf{t}-\mathbf{X} \widehat{\mathbf{w}})^{\top}(\mathbf{t}-\mathbf{X} \widehat{\mathbf{w}})
\end{gathered}
$$

Prediction

$$
\begin{gathered}
t_{\text {new }}=\widehat{\mathbf{w}}^{\top} \mathbf{x}_{\text {new }} \\
\operatorname{var}\left\{t_{\text {new }}\right\}=\widehat{\sigma^{2}} \mathbf{x}_{\text {new }}^{\top}\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1} \mathbf{x}_{\text {new }}
\end{gathered}
$$

Hint: Always check the consistency of the dimesions (numpy.shape() in Python).

Olympic prediction

Predictive variance increases as we get further from the training data.

What is next?

- We have seen two ways of finding the 'best' parameter values:
- Those that minimise the loss L.
- Those that maximise the likelihood (probabilistic linear regression).
- If the probabilistic model is Gaussian, both are the same:

$$
\widehat{\mathbf{w}}=\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1} \mathbf{X}^{\top} \mathbf{t}
$$

- In the probabilistic linear regression, we also estimate σ^{2}.
- Is this the 'right' set of parameters?
- Is there a 'right' set of parameters?

Problems with a point estimate

- Might be more than one 'best' value.
- Might not be a single representative value.
- Different values might give very different predictions.
- Is there an alternative?

Averaging

- Prediction is some function of \mathbf{w}. Say $f(\mathbf{w})$.
- Choose A different values $-\mathbf{w}_{1}, \ldots, \mathbf{w}_{A}$.
- Compute $\sum_{a=1}^{A} q_{a} f\left(\mathbf{w}_{a}\right)$
- q_{a} is proportional to L (subject to $\sum_{a} q_{a}=1$)
- Note that each \mathbf{w}_{a} is a vector.
- Increasing A seems like a good idea....

Example

- Olympic 100 m data.
- Want to predict winning time at London 2012 - $t_{\text {new }}$.
- Choose 2 'good' values of \mathbf{w}
- \mathbf{w}_{1} predicts $t_{\text {new }}=9.5 \mathrm{~s}$
- \mathbf{w}_{2} predicts $t_{\text {new }}=9.2 \mathrm{~s}$
- According to likelihood, \mathbf{w}_{2} is twice as likely as \mathbf{w}_{1}.
- $q_{1}+q_{2}=1, q_{2}=2 q_{1}$.
- Therefore: $q_{1}=1 / 3, q_{2}=2 / 3$
- Average prediction is $(1 / 3) \times 9.5+(2 / 3) \times 9.2=9.3$

Averaging

- What if \mathbf{w} is a random variable with density $p(\mathbf{w} \mid$ stuff $)$?
- Imagine a weird die that chucks out values of \mathbf{w}.

Averaging

- What if \mathbf{w} is a random variable with density $p(\mathbf{w} \mid$ stuff $)$?
- Imagine a weird die that chucks out values of \mathbf{w}.
- We can use every value of w!
- We do this with the following expectation:

$$
\mathbf{E}_{p(\mathbf{w} \mid \text { stuff })}\{f(\mathbf{w})\}=\int f(\mathbf{w}) p(\mathbf{w} \mid \text { stuff }) d \mathbf{w}
$$

What is $f(\mathbf{w})$ is this course?

- An average of predictions from each possible \mathbf{w} weighted by how likely that \mathbf{w} value is.

Averaging

- What if \mathbf{w} is a random variable with density $p(\mathbf{w} \mid$ stuff $)$?
- Imagine a weird die that chucks out values of \mathbf{w}.
- We can use every value of \mathbf{w} !
- We do this with the following expectation:

$$
\mathbf{E}_{p(\mathbf{w} \mid \text { stuff })}\{f(\mathbf{w})\}=\int f(\mathbf{w}) p(\mathbf{w} \mid \text { stuff }) d \mathbf{w}
$$

What is $f(\mathbf{w})$ is this course?

- An average of predictions from each possible \mathbf{w} weighted by how likely that \mathbf{w} value is.
- What is 'stuff'?
- How do we compute $p(\mathbf{w} \mid$ stuff $)$?

Bayes rule

- 'Stuff' should include data: $\mathbf{X}, \mathbf{t}: p(\mathbf{w} \mid \mathbf{X}, \mathbf{t})$
- i.e. what we know about \mathbf{w} after observing some data.
- We've seen something like this before: $p\left(\mathbf{t} \mid \mathbf{w}, \mathbf{X}, \sigma^{2}\right)$ - the likelihood.
- For simplicity, we ignore σ^{2} for now (we can assume its value is known).

Bayes rule

- 'Stuff' should include data: X, $\mathbf{t}: ~ p(\mathbf{w} \mid \mathbf{X}, \mathbf{t})$
- i.e. what we know about \mathbf{w} after observing some data.
- We've seen something like this before: $p\left(\mathbf{t} \mid \mathbf{w}, \mathbf{X}, \sigma^{2}\right)$ - the likelihood.
- For simplicity, we ignore σ^{2} for now (we can assume its value is known).
- Can we use $p(\mathbf{t} \mid \mathbf{X}, \mathbf{w})$ to find $p(\mathbf{w} \mid \mathbf{X}, \mathbf{t})$?

Bayes rule

- 'Stuff' should include data: $\mathbf{X}, \mathbf{t}: p(\mathbf{w} \mid \mathbf{X}, \mathbf{t})$
- i.e. what we know about \mathbf{w} after observing some data.
- We've seen something like this before: $p\left(\mathbf{t} \mid \mathbf{w}, \mathbf{X}, \sigma^{2}\right)$ - the likelihood.
- For simplicity, we ignore σ^{2} for now (we can assume its value is known).
- Can we use $p(\mathbf{t} \mid \mathbf{X}, \mathbf{w})$ to find $p(\mathbf{w} \mid \mathbf{X}, \mathbf{t})$?
- Bayes rule:

$$
p(\mathbf{w} \mid \mathbf{X}, \mathbf{t})=\frac{p(\mathbf{t} \mid \mathbf{X}, \mathbf{w}) p(\mathbf{w})}{p(\mathbf{t} \mid \mathbf{X})}
$$

Bayes rule

- 'Stuff' should include data: $\mathbf{X}, \mathbf{t}: ~ p(\mathbf{w} \mid \mathbf{X}, \mathbf{t})$
- i.e. what we know about \mathbf{w} after observing some data.
- We've seen something like this before: $p\left(\mathbf{t} \mid \mathbf{w}, \mathbf{X}, \sigma^{2}\right)$ - the likelihood.
- For simplicity, we ignore σ^{2} for now (we can assume its value is known).
- Can we use $p(\mathbf{t} \mid \mathbf{X}, \mathbf{w})$ to find $p(\mathbf{w} \mid \mathbf{X}, \mathbf{t})$?
- Bayes rule:

$$
p(\mathbf{w} \mid \mathbf{X}, \mathbf{t})=\frac{p(\mathbf{t} \mid \mathbf{X}, \mathbf{w}) p(\mathbf{w})}{p(\mathbf{t} \mid \mathbf{X})}
$$

- Comes from:

$$
\begin{aligned}
p(\mathbf{w} \mid \mathbf{X}, \mathbf{t}) p(\mathbf{t} \mid \mathbf{X}) & =p(\mathbf{t} \mid \mathbf{w}, \mathbf{X}) p(\mathbf{w}) \\
p(\mathbf{w}, \mathbf{t} \mid \mathbf{X}) & =p(\mathbf{w}, \mathbf{t} \mid \mathbf{X})
\end{aligned}
$$

Bayes rule

- Bayes rule:

$$
p(\mathbf{w} \mid \mathbf{X}, \mathbf{t})=\frac{p(\mathbf{t} \mid \mathbf{X}, \mathbf{w}) p(\mathbf{w})}{p(\mathbf{t} \mid \mathbf{X})}
$$

Bayes rule

- Bayes rule:

$$
p(\mathbf{w} \mid \mathbf{X}, \mathbf{t})=\frac{p(\mathbf{t} \mid \mathbf{X}, \mathbf{w}) p(\mathbf{w})}{p(\mathbf{t} \mid \mathbf{X})}
$$

- Posterior density: $p(\mathbf{w} \mid \mathbf{X}, \mathbf{t})$
- This is what we're after.

Bayes rule

- Bayes rule:

$$
p(\mathbf{w} \mid \mathbf{X}, \mathbf{t})=\frac{p(\mathbf{t} \mid \mathbf{X}, \mathbf{w}) p(\mathbf{w})}{p(\mathbf{t} \mid \mathbf{X})}
$$

- Posterior density: $p(\mathbf{w} \mid \mathbf{X}, \mathbf{t})$
- This is what we're after.
- Likelihood : $p(\mathbf{t} \mid \mathbf{X}, \mathbf{w})$
- We've used this before.

Bayes rule

- Bayes rule:

$$
p(\mathbf{w} \mid \mathbf{X}, \mathbf{t})=\frac{p(\mathbf{t} \mid \mathbf{X}, \mathbf{w}) p(\mathbf{w})}{p(\mathbf{t} \mid \mathbf{X})}
$$

- Posterior density: $p(\mathbf{w} \mid \mathbf{X}, \mathbf{t})$
- This is what we're after.
- Likelihood : $p(\mathbf{t} \mid \mathbf{X}, \mathbf{w})$
- We've used this before.
- Prior density: $p(\mathbf{w})$
- This is new: do we know anything about the parameters before we see any data?

Bayes rule

- Bayes rule:

$$
p(\mathbf{w} \mid \mathbf{X}, \mathbf{t})=\frac{p(\mathbf{t} \mid \mathbf{X}, \mathbf{w}) p(\mathbf{w})}{p(\mathbf{t} \mid \mathbf{X})}
$$

- Posterior density: $p(\mathbf{w} \mid \mathbf{X}, \mathbf{t})$
- This is what we're after.
- Likelihood : $p(\mathbf{t} \mid \mathbf{X}, \mathbf{w})$
- We've used this before.
- Prior density: $p(\mathbf{w})$
- This is new: do we know anything about the parameters before we see any data?
- Marginal likelihood (or evidence or normalization): $p(\mathbf{t} \mid \mathbf{X})$
- This is new: \mathbf{w} isn't in here. It is a normalisation constant.

Ensures $\int p(\mathbf{w} \mid \mathbf{X}, \mathbf{t}) d \mathbf{w}=1$.

Computing the posterior

- Unfortunately, computing the posterior can be hard in general...
- ...because marginal likelihood $p(\mathbf{t} \mid \mathbf{X})$ is hard to compute:

$$
p(\mathbf{t} \mid \mathbf{X})=\int p(\mathbf{t} \mid \mathbf{w}, \mathbf{X}) p(\mathbf{w}) d \mathbf{w}
$$

Computing the posterior

- Unfortunately, computing the posterior can be hard in general...
- ...because marginal likelihood $p(\mathbf{t} \mid \mathbf{X})$ is hard to compute:

$$
p(\mathbf{t} \mid \mathbf{X})=\int p(\mathbf{t} \mid \mathbf{w}, \mathbf{X}) p(\mathbf{w}) d \mathbf{w}
$$

- In some cases we can do it (this lecture).

When can we compute the posterior?

Conjugacy (definition)
A prior $p(\mathbf{w})$ is said to be conjugate to a likelihood it results in a posterior of the same type of density as the prior.

- Example:
- Prior: Gaussian; Likelihood: Gaussian; Posterior: Gaussian
- Prior: Beta; Likelihood: Binomial; Posterior: Beta
- Many others, e.g. http://en.wikipedia.org/wiki/Conjugate_prior

Why is this important?

- Bayes rule:

$$
p(\mathbf{w} \mid \mathbf{X}, \mathbf{t})=\frac{p(\mathbf{t} \mid \mathbf{X}, \mathbf{w}) p(\mathbf{w})}{p(\mathbf{t} \mid \mathbf{X})}
$$

- If prior and likelihood are conjugate, we know the form of $p(\mathbf{w} \mid \mathbf{X}, \mathbf{t})$
- Therefore, we know the form of the normalising constant.
- Therefore, we don't need to compute $p(\mathbf{t} \mid \mathbf{X})$

Why is this important?

- Bayes rule:

$$
p(\mathbf{w} \mid \mathbf{X}, \mathbf{t})=\frac{p(\mathbf{t} \mid \mathbf{X}, \mathbf{w}) p(\mathbf{w})}{p(\mathbf{t} \mid \mathbf{X})}
$$

- If prior and likelihood are conjugate, we know the form of $p(\mathbf{w} \mid \mathbf{X}, \mathbf{t})$
- Therefore, we know the form of the normalising constant.
- Therefore, we don't need to compute $p(\mathbf{t} \mid \mathbf{X})$
- We just need to use some algebra to make $p(\mathbf{t} \mid \mathbf{X}, \mathbf{w}) p(\mathbf{w})$ look like the correct density, ignoring all terms without w.

Example - Olympic data

- Remember the (Gaussian) likelihood we used for maximum likelihood:

$$
p\left(t \mid \mathbf{x}_{n}, \mathbf{w}, \sigma^{2}\right)=\mathcal{N}\left(\mathbf{w}^{\top} \mathbf{x}_{n}, \sigma^{2}\right)
$$

Example - Olympic data

- Remember the (Gaussian) likelihood we used for maximum likelihood:

$$
p\left(t \mid \mathbf{x}_{n}, \mathbf{w}, \sigma^{2}\right)=\mathcal{N}\left(\mathbf{w}^{\top} \mathbf{x}_{n}, \sigma^{2}\right)
$$

- For the set of N observations (variables) $\{\mathbf{X}, \mathbf{t}\}$, we have

$$
p\left(\mathbf{t} \mid \mathbf{w}, \mathbf{X}, \sigma^{2}\right)=\mathcal{N}\left(\mathbf{X} \mathbf{w}, \sigma^{2} \mathbf{I}\right)
$$

Example - Olympic data

- We'll use the (Gaussian) likelihood we used for maximum likelihood:

$$
p\left(\mathbf{t} \mid \mathbf{w}, \mathbf{X}, \sigma^{2}\right)=\mathcal{N}\left(\mathbf{X} \mathbf{w}, \sigma^{2} \mathbf{I}\right)
$$

- The prior conjugate to the Gaussian is Gaussian. So:

$$
p(\mathbf{w})=\mathcal{N}(\mathbf{0}, \mathbf{S}), \mathbf{S}=\left[\begin{array}{cc}
100 & 0 \\
0 & 5
\end{array}\right]
$$

- Mean (0) and covariance (S) are design choices (prior knowledge).

Example - Olympic data

- We'll use the (Gaussian) likelihood we used for maximum likelihood:

$$
p\left(\mathbf{t} \mid \mathbf{w}, \mathbf{X}, \sigma^{2}\right)=\mathcal{N}\left(\mathbf{X} \mathbf{w}, \sigma^{2} \mathbf{I}\right)
$$

- The prior conjugate to the Gaussian is Gaussian. So:

$$
p(\mathbf{w})=\mathcal{N}(\mathbf{0}, \mathbf{S}), \mathbf{S}=\left[\begin{array}{cc}
100 & 0 \\
0 & 5
\end{array}\right]
$$

- Mean (0) and covariance (S) are design choices (prior knowledge).
- Posterior must be Gaussian with unknown parameters $\boldsymbol{\mu}, \boldsymbol{\Sigma}$:

$$
p\left(\mathbf{w} \mid \mathbf{X}, \mathbf{t}, \sigma^{2}\right)=\mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})
$$

Finding posterior parameters

- Ignoring normalising constant, the posterior is:

$$
\begin{aligned}
p\left(\mathbf{w} \mid \mathbf{X}, \mathbf{t}, \sigma^{2}\right) & \propto \exp \left\{-\frac{1}{2}(\mathbf{w}-\boldsymbol{\mu})^{\top} \boldsymbol{\Sigma}^{-1}(\mathbf{w}-\boldsymbol{\mu})\right\} \\
& =\exp \left\{-\frac{1}{2}\left(\mathbf{w}^{\top} \boldsymbol{\Sigma}^{-1} \mathbf{w}-2 \mathbf{w}^{\top} \boldsymbol{\Sigma}^{-1} \boldsymbol{\mu}+\boldsymbol{\mu}^{\top} \boldsymbol{\Sigma}^{-1} \boldsymbol{\mu}\right)\right\} \\
& \propto \exp \left\{-\frac{1}{2}\left(\mathbf{w}^{\top} \boldsymbol{\Sigma}^{-1} \mathbf{w}-2 \mathbf{w}^{\top} \boldsymbol{\Sigma}^{-1} \boldsymbol{\mu}\right)\right\}
\end{aligned}
$$

- We only care about the terms that are related to \mathbf{w}.

Finding posterior parameters

- Ignoring non w terms, the prior multiplied by the likelihood is:

$$
\begin{aligned}
& p\left(\mathbf{t} \mid \mathbf{w}, \mathbf{X}, \sigma^{2}\right) \cdot p(\mathbf{w}) \\
\propto & \exp \left\{-\frac{1}{2 \sigma^{2}}(\mathbf{t}-\mathbf{X} \mathbf{w})^{\top}(\mathbf{t}-\mathbf{X} \mathbf{w})\right\} \exp \left\{-\frac{1}{2} \mathbf{w}^{\top} \mathbf{S}^{-1} \mathbf{w}\right\} \\
\propto & \exp \left\{-\frac{1}{2}\left(\mathbf{w}^{\top}\left[\frac{1}{\sigma^{2}} \mathbf{X}^{\top} \mathbf{X}+\mathbf{S}^{-1}\right] \mathbf{w}-\frac{2}{\sigma^{2}} \mathbf{w}^{\top} \mathbf{X}^{\top} \mathbf{t}\right)\right\}
\end{aligned}
$$

- Posterior (from previous slide):

$$
\propto \exp \left\{-\frac{1}{2}\left(\mathbf{w}^{\top} \boldsymbol{\Sigma}^{-1} \mathbf{w}-2 \mathbf{w}^{\top} \boldsymbol{\Sigma}^{-1} \boldsymbol{\mu}\right)\right\}
$$

Finding posterior parameters

- Equate individual terms on each side.
- Covariance:

$$
\begin{aligned}
\mathbf{w}^{\top} \boldsymbol{\Sigma}^{-1} \mathbf{w} & =\mathbf{w}^{\top}\left[\frac{1}{\sigma^{2}} \mathbf{X}^{\top} \mathbf{X}+\mathbf{S}^{-1}\right] \mathbf{w} \\
\widehat{\boldsymbol{\Sigma}} & =\left(\frac{1}{\sigma^{2}} \mathbf{X}^{\top} \mathbf{X}+\mathbf{S}^{-1}\right)^{-1}
\end{aligned}
$$

- Mean:

$$
\begin{aligned}
2 \mathbf{w}^{\top} \boldsymbol{\Sigma}^{-1} \boldsymbol{\mu} & =\frac{2}{\sigma^{2}} \mathbf{w}^{\top} \mathbf{X}^{\top} \mathbf{t} \\
\widehat{\boldsymbol{\mu}} & =\frac{1}{\sigma^{2}} \widehat{\boldsymbol{\Sigma}} \mathbf{X}^{\top} \mathbf{t}
\end{aligned}
$$

Olympic example

- To make numbers better, rescape olympic year:
- $1896=1,1900=2, \ldots, 2008=27,2012=28$

Olympic example

- To make numbers better, rescape olympic year:
- $1896=1,1900=2, \ldots, 2008=27,2012=28$
- Prior density:

- Mean (0) and covariance (S).
- Quite a vague prior.

Olympic example

Posterior (left) (prior shown in grey, zoomed in) and functions corresponding to some w sampled from posterior (right).

Olympic example - predictions

- Our motivation for being Bayesian was to be able to average predictions (at the test data $\mathbf{x}_{\text {new }}$) over all \mathbf{w}

$$
\mathbf{E}_{p\left(\mathbf{w} \mid \mathbf{X}, \mathbf{t}, \sigma^{2}\right)}\{f(\mathbf{w})\}=\int f(\mathbf{w}) p\left(\mathbf{w} \mid \mathbf{t}, \mathbf{X}, \sigma^{2}\right) d \mathbf{w}
$$

- We have the full posterior distribution over all possible values of \mathbf{w}, it is also Gaussian and we computed the parameters.

Olympic example - predictions

- Our motivation for being Bayesian was to be able to average predictions (at the test data $\mathbf{x}_{\text {new }}$) over all w

$$
\mathbf{E}_{p\left(\mathbf{w} \mid \mathbf{X}, \mathbf{t}, \sigma^{2}\right)}\{f(\mathbf{w})\}=\int f(\mathbf{w}) p\left(\mathbf{w} \mid \mathbf{t}, \mathbf{X}, \sigma^{2}\right) d \mathbf{w}
$$

- We have the full posterior distribution over all possible values of \mathbf{w}, it is also Gaussian and we computed the parameters.
- We can even compute exactly, the predictive density to make probabilistic predictions:

$$
\begin{aligned}
p\left(t_{\text {new }} \mid \mathbf{X}, \mathbf{t}, \mathbf{x}_{\text {new }}, \sigma^{2}\right) & =\mathbf{E}_{p\left(\mathbf{w} \mid \mathbf{X}, \mathbf{t}, \sigma^{2}\right)}\left\{p\left(t_{\text {new }} \mid \mathbf{x}_{\text {new }}, \mathbf{w}, \sigma^{2}\right)\right\} \\
& =\int p\left(t_{\text {new }} \mid \mathbf{x}_{\text {new }}, \mathbf{w}, \sigma^{2}\right) p\left(\mathbf{w} \mid \mathbf{t}, \mathbf{X}, \sigma^{2}\right) d \mathbf{w}
\end{aligned}
$$

Olympic example - predictions

- We can even compute exactly, the predictive density to make probabilistic predictions:

$$
\begin{aligned}
p\left(t_{\text {new }} \mid \mathbf{X}, \mathbf{t}, \mathbf{x}_{\text {new }}, \sigma^{2}\right) & =\mathbf{E}_{p\left(\mathbf{w} \mid \mathbf{X}, \mathbf{t}, \sigma^{2}\right)}\left\{p\left(t_{\text {new }} \mid \mathbf{x}_{\text {new }}, \mathbf{w}, \sigma^{2}\right)\right\} \\
& =\int p\left(t_{\text {new }} \mid \mathbf{x}_{\text {new }}, \mathbf{w}, \sigma^{2}\right) p\left(\mathbf{w} \mid \mathbf{t}, \mathbf{X}, \sigma^{2}\right) d \mathbf{w}
\end{aligned}
$$

- $p\left(t_{\text {new }} \mid \mathbf{x}_{\text {new }}, \mathbf{w}, \sigma^{2}\right)$ is defined by our model as the product of $\mathbf{x}_{\text {new }}$ and \mathbf{w} with some additive Gaussian noise.

$$
p\left(t_{\text {new }} \mid \mathbf{x}_{\text {new }}, \mathbf{w}, \sigma^{2}\right)=\mathcal{N}\left(\mathbf{x}_{\text {new }}^{\top} \mathbf{w}, \sigma^{2}\right)
$$

- Because this expression and the posterior are both Gaussian, the result of expectation is another Gaussian.

$$
p\left(t_{\text {new }} \mid \mathbf{X}, \mathbf{t}, \mathbf{x}_{\text {new }}, \sigma^{2}\right)=\mathcal{N}\left(\mathbf{x}_{\text {new }}^{\top} \widehat{\boldsymbol{\mu}}, \sigma^{2}+\mathbf{x}_{\text {new }}^{\top} \widehat{\boldsymbol{\Sigma}} \mathbf{x}_{\text {new }}\right)
$$

Olympic example - predictions

- Therefore, the predictive density is

$$
p\left(t_{\text {new }} \mid \mathbf{X}, \mathbf{t}, \mathbf{x}_{\text {new }}, \sigma^{2}\right)=\mathcal{N}\left(\mathbf{x}_{\text {new }}^{\top} \widehat{\boldsymbol{\mu}}, \sigma^{2}+\mathbf{x}_{\text {new }}^{\top} \widehat{\boldsymbol{\Sigma}} \mathbf{x}_{\text {new }}\right)
$$

where,

$$
\widehat{\boldsymbol{\Sigma}}=\left(\frac{1}{\sigma^{2}} \mathbf{X}^{\top} \mathbf{X}+\mathbf{S}^{-1}\right)^{-1}
$$

and

$$
\widehat{\boldsymbol{\mu}}=\frac{1}{\sigma^{2}} \widehat{\boldsymbol{\Sigma}} \mathbf{X}^{\top} \mathbf{t}
$$

Olympic example - predictions

Predictive density at 2012 Olympics. Note that σ^{2} was fixed at 0.05 .

$$
p\left(t_{\text {new }} \mid \mathbf{X}, \mathbf{t}, \mathbf{x}_{\text {new }}, \sigma^{2}\right)=\mathcal{N}(9.5951,0.0572)
$$

Computing posterior: recipe

- (Assuming prior conjugate to likelihood)
- Write down prior times likelihood (ignoring any constant terms, i.e., the term that are irrelevant to w)
- Write down posterior (ignoring any constant terms)
- Re-arrange them so the look like one another
- Equate terms on both sides to read off parameter values.

Choosing a prior

- How should we choose the prior?
- Prior effect will diminish as more data arrive.
- When we don't have much data, prior is very important.

Choosing a prior

- How should we choose the prior?
- Prior effect will diminish as more data arrive.
- When we don't have much data, prior is very important.
- Some influencing factors:
- Data type: real, integer, string, etc.

Choosing a prior

- How should we choose the prior?
- Prior effect will diminish as more data arrive.
- When we don't have much data, prior is very important.
- Some influencing factors:
- Data type: real, integer, string, etc.
- Expert knowledge: 'the coin is fair', 'the model should be simple'

Choosing a prior

- How should we choose the prior?
- Prior effect will diminish as more data arrive.
- When we don't have much data, prior is very important.
- Some influencing factors:
- Data type: real, integer, string, etc.
- Expert knowledge: 'the coin is fair', 'the model should be simple'
- Computational considerations (not as important as it used to be!)

Choosing a prior

- How should we choose the prior?
- Prior effect will diminish as more data arrive.
- When we don't have much data, prior is very important.
- Some influencing factors:
- Data type: real, integer, string, etc.
- Expert knowledge: 'the coin is fair', 'the model should be simple'
- Computational considerations (not as important as it used to be!)
- If we know nothing, can use a broad prior - e.g. uniform density.

Summary

- Moved away from a single parameter value.
- Saw how predictions could be made by averaging over all possible parameter values - Bayesian.
- Saw how Bayes rule allows us to get a density for w conditioned on the data (and other stuff).
- Computing the posterior is hard except in some cases....
-we can do it when things are conjugate.

Recipe for a Bayesian linear model

- In the Bayesian linear regression, we compute a distribution over \mathbf{w} instead of estimating it by $\widehat{\mathbf{w}}=\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1} \mathbf{X}^{\top} \mathbf{t}$.
- The model is

$$
p\left(\mathbf{w} \mid \mathbf{X}, \mathbf{t}, \sigma^{2}\right)=\mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma}) .
$$

- We use the Gaussian prior $p(\mathbf{w})$ and the likelihood $p\left(\mathbf{t} \mid \mathbf{w}, \mathbf{X}, \sigma^{2}\right)=\mathcal{N}\left(\mathbf{X} \mathbf{w}, \sigma^{2} \mathbf{I}\right)$ to compute the model parameters $\boldsymbol{\mu}$ and $\boldsymbol{\Sigma}$.

$$
\widehat{\boldsymbol{\Sigma}}=\left(\frac{1}{\sigma^{2}} \mathbf{X}^{\top} \mathbf{X}+\mathbf{S}^{-1}\right)^{-1}
$$

and

$$
\widehat{\boldsymbol{\mu}}=\frac{1}{\sigma^{2}} \widehat{\boldsymbol{\Sigma}} \mathbf{X}^{\top} \mathbf{t}
$$

Recipe for a Bayesian linear model

- In the Bayesian linear regression, we compute a distribution over \mathbf{w} instead of estimating it by $\widehat{\mathbf{w}}=\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1} \mathbf{X}^{\top} \mathbf{t}$.
- The model is

$$
p\left(\mathbf{w} \mid \mathbf{X}, \mathbf{t}, \sigma^{2}\right)=\mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma}) .
$$

- Prediction (probabilistic predictions)

$$
p\left(t_{\text {new }} \mid \mathbf{X}, \mathbf{t}, \mathbf{x}_{\text {new }}, \sigma^{2}\right)=\mathcal{N}\left(\mathbf{x}_{\text {new }}^{\top} \widehat{\boldsymbol{\mu}}, \sigma^{2}+\mathbf{x}_{\text {new }}^{\top} \widehat{\boldsymbol{\Sigma}} \mathbf{x}_{\text {new }}\right)
$$

where,

$$
\widehat{\boldsymbol{\Sigma}}=\left(\frac{1}{\sigma^{2}} \mathbf{X}^{\top} \mathbf{X}+\mathbf{S}^{-1}\right)^{-1}
$$

and

$$
\widehat{\boldsymbol{\mu}}=\frac{1}{\sigma^{2}} \widehat{\boldsymbol{\Sigma}} \mathbf{X}^{\top} \mathbf{t}
$$

