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Some data and a problem

Predict the winning time for 2012!
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Some data and a problem
Fit a linear model (draw a line through the data)

12

11.5F

-
-
T

Time (seconds)
S

10f

1880 1900 1920 1940 1960 1980 2000 2020
Year



Some data and a problem
Use the model (line) to predict the winning time in 2012.
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Recipe for a linear model

More complex model: t = wg 4+ wix + wox? + . ..
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Recipe for a linear model

More complex model: t = wg + wix + wox? + ... + wpxP
Fq
X 1 xi x? xP t
n 1,2 D
2 1 x5 x5 ... X tn
Xp=| % [, X=| = S (t=1] .
: 12 D '
D 1 x5 xy X ty
L “n
wo
w1

-
, Model : t,=w'x,, or t=Xw

WD



Recipe for linear model

Model : t, = wa,,, or t=Xw

Usually, t and Xw are not exactly equal. So, we try to minimise

the difference. 1
L= N(t — Xw)T(t — Xw)

w=(X"X)"1xTt



Recipe for a linear model

Model
t, = wa,,, or t=Xw
Parameters
w=(XTX)"1XTt
Prediction _ )
1
Xnew
2
Xnew — Xnew
D
L Xnew .

then compute

T
thew = W Xnew



Recipe for a probabilistic linear model
» In the probabilistic linear regression, we model the error, i.e.,
Model : t, = wa,, +€, or t=Xw-+e

In other words, we consider p(t,|w,x,,02) = N(w'x,,c?)

» The full likelihood is

p(tjw, X, 02) = p(t1,..., tn|w, 02, x1, ..., Xp)
> Note that
N
p(tla SRR tN|Wa 027X17 s XN) = H p(tn|waxn> 02)
n=1

> And  p(tlw, X, 0?) = N(Xw, o?I)
| is the identity matrix of size N x N. The covariance marix

o2l indicates i.i.d..



Recipe for a probabilistic linear model

» The full likelihood is
p(tjw, X, 02) = p(t1,..., tn|w, 02, X1, ..., Xn)

> We maximise the log-likelihood to obtain the parameters w
and o2.

» Compute optimum w from:
w=(X"X)"1xTt
» Use this to compute optimum o2 from:

1 N N
N(t — Xw)T(t — Xw)

02 =



Recipe for a probabilistic linear model

Olympic 100 m data (again!)
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Recipe for a probabilistic linear model

Model
p(tjw, X, 0?) = N(Xw, 5°I)
Parameters
w = (XTX) Xt
—~ 1 N N
02 = N(t — Xw)T(t — Xw)
Prediction

T
thew = W Xnew

XTX) ™ Xnew

var{thew} = 0 Xnew(

Hint: Always check the consistency of the dimesions
(numpy . shape () in Python).



Olympic prediction

45

35

)

P(tnew)

15

0.5

var{tnew} = 0.0080
tnew = 9.5414

2016

tnew = 9.5947

2012

Predictive variance increases as we get further from the training

9.2 9.4

9:6 9.8
tnew

data.

10



What is next?

> We have seen two ways of finding the ‘best’ parameter values:

» Those that minimise the loss L.

» Those that maximise the likelihood (probabilistic linear
regression).
» |f the probabilistic model is Gaussian, both are the same:

w=(XTX)"!XTt
» In the probabilistic linear regression, we also estimate 2.

» Is this the ‘right’ set of parameters?

P Is there a ‘right’ set of parameters?



Problems with a point estimate

L

W
> Might be more than one ‘best’ value.
> Might not be a single representative value.
» Different values might give very different predictions.

» Is there an alternative?



Averaging
L

W
W1 Wy WA

Prediction is some function of w. Say f(w).
Choose A different values — w1y, ..., wx.
Compute Z:‘Zl gaf(wy)

qa is proportional to L (subject to >, q, = 1)
Note that each w, is a vector.

vVvvyVvVvYyypy

Increasing A seems like a good idea....



Example

» Olympic 100 m data.

> Want to predict winning time at London 2012 — tew.
Choose 2 ‘good’ values of w

> w; predicts thew = 9.5 s
> w, predicts thew = 9.2 s

v

P According to likelihood, wy is twice as likely as wj.

> i tq=1 ¢ =2q.
» Therefore: g1 =1/3, ¢p =2/3

» Average prediction is (1/3) x 9.5+ (2/3) x 9.2 =19.3



Averaging

» What if w is a random variable with density p(w|stuff)?
» Imagine a weird die that chucks out values of w.



Averaging

» What if w is a random variable with density p(w|stuff)?
» Imagine a weird die that chucks out values of w.

» We can use every value of w!
» We do this with the following expectation:

Eptwsun {FW)} = [ Fwp(uwiscuft) dw

What is f(w) is this course?
» An average of predictions from each possible w weighted by
how likely that w value is.



Averaging

» What if w is a random variable with density p(w|stuff)?
» Imagine a weird die that chucks out values of w.

» We can use every value of w!
» We do this with the following expectation:

Eptwsun {FW)} = [ Fwp(uwiscuft) dw

What is f(w) is this course?
» An average of predictions from each possible w weighted by
how likely that w value is.

» What is ‘stuff’?
» How do we compute p(w|stuff)?



Bayes rule

» ‘Stuff’ should include data: X,t: p(w|X,t)
> i.e. what we know about w after observing some data.

> We've seen something like this before: p(t|lw, X, o?) — the
likelihood.
> For simplicity, we ignore o2 for now (we can assume its value is
known).
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Bayes rule

» ‘Stuff’ should include data: X,t: p(w|X,t)
> i.e. what we know about w after observing some data.

> We've seen something like this before: p(t|lw, X, o?) — the
likelihood.

> For simplicity, we ignore o2 for now (we can assume its value is
known).

» Can we use p(t|X,w) to find p(w|X,t)?
> Bayes rule:
p(t]X, w)p(w)
p(w|X,t) = ——F2——+=
WIX8) =X
» Comes from:

P(WIX, t)p(tX) = p(tlw, X)p(w)
pw,tX) = p(w,t|X)



Bayes rule

> Bayes rule:

~ p(tX, w)p(w)
PIWIX.t) = = X)



Bayes rule

> Bayes rule:
p(tX, w)p(w)

PIWIX.t) = = X)

> Posterior density: p(w|X,t)
» This is what we're after.



Bayes rule

> Bayes rule:
p(tX, w)p(w)

PIWIX.t) = = X)

> Posterior density: p(w|X,t)
» This is what we're after.

» Likelihood : p(t|X,w)
> We've used this before.



Bayes rule

> Bayes rule: (X w)p(w)
p(t|X,w)p(w
PIWIX.t) = = X)
> Posterior density: p(w|X,t)
» This is what we're after.
» Likelihood : p(t|X,w)
» We've used this before.
» Prior density: p(w)

» This is new: do we know anything about the parameters before
we see any data?



Bayes rule

> Bayes rule: (X w)p(w)
p(t|X,w)p(w
PIWIX.t) = = X)
> Posterior density: p(w|X,t)
» This is what we're after.
» Likelihood : p(t|X,w)
» We've used this before.
» Prior density: p(w)

» This is new: do we know anything about the parameters before
we see any data?

» Marginal likelihood (or evidence or normalization):
p(t|X)
» This is new: w isn't in here. It is a normalisation constant.
Ensures [ p(w|X,t) dw = 1.



Computing the posterior

» Unfortunately, computing the posterior can be hard in
general...

» ...because marginal likelihood p(t|X) is hard to compute:

p(tX) = / p(tlw, X)p(w) dw



Computing the posterior

» Unfortunately, computing the posterior can be hard in
general...

» ...because marginal likelihood p(t|X) is hard to compute:

p(tX) = / p(tlw, X)p(w) dw

» In some cases we can do it (this lecture).



When can we compute the posterior?

Conjugacy (definition)

A prior p(w) is said to be conjugate to a likelihood it results in a
posterior of the same type of density as the prior.

> Example:
» Prior: Gaussian; Likelihood: Gaussian; Posterior: Gaussian
» Prior: Beta; Likelihood: Binomial; Posterior: Beta
» Many others, e.g.
http://en.wikipedia.org/wiki/Conjugate_prior


http://en.wikipedia.org/wiki/Conjugate_prior

Why is this important?

P> Bayes rule:
p(t|X, w)p(w)
p(t[X)
» If prior and likelihood are conjugate, we know the form of
p(w|X, t)

» Therefore, we know the form of the normalising constant.

p(w|X,t) =

» Therefore, we don’t need to compute p(t|X)



Why is this important?

P> Bayes rule:
p(t|X, w)p(w)
p(t[X)
» If prior and likelihood are conjugate, we know the form of
p(w|X, t)

» Therefore, we know the form of the normalising constant.

p(w|X,t) =

v

Therefore, we don’t need to compute p(t|X)

» We just need to use some algebra to make p(t|X,w)p(w)
look like the correct density, ignoring all terms without w.



Example - Olympic data

» Remember the (Gaussian) likelihood we used for maximum
likelihood:
p(t|xn, W, 0%) = N (w'x,,0?)



Example - Olympic data

» Remember the (Gaussian) likelihood we used for maximum
likelihood:
p(t|xn, W, 0%) = N (w'x,,0?)

» For the set of N observations (variables) {X,t}, we have

p(thw, X, 0%) = N'(Xw, 0?1)



Example - Olympic data

» We'll use the (Gaussian) likelihood we used for maximum
likelihood:
p(tjw, X, 0%) = N(Xw, o2I)

» The prior conjugate to the Gaussian is Gaussian. So:

pw) = (0.5, s = | ° ¢ |

0 5

» Mean (0) and covariance (S) are design choices (prior
knowledge).



Example - Olympic data

» We'll use the (Gaussian) likelihood we used for maximum
likelihood:
p(tjw, X, 0%) = N(Xw, o2I)

» The prior conjugate to the Gaussian is Gaussian. So:

p(w) = N(0,S), S = [ 180 g]

» Mean (0) and covariance (S) are design choices (prior
knowledge).

» Posterior must be Gaussian with unknown parameters p, X:

p(w|X,t,0%) = N(p, X)



Finding posterior parameters

» Ignoring normalising constant, the posterior is:
pwlX,.0%) o exp{ =S ) TE A - )
= exp {—;(WTZ_IW —ow Xty 4+ MTZ_lu)}
X exp {—;(WTZ_IW - 2WTZ_1u)}

> We only care about the terms that are related to w.



Finding posterior parameters

» Ignoring non w terms, the prior multiplied by the likelihood is:
p(t|W, X, 0-2) ’ p(W)
1 1
o< exp {—(t - Xw)T(t - Xw)} exp {—2WTS_1W}

202
1 1 2
x expd—=(w' [ SXTX+SHw—Sw'XTt
2 a? a?
» Posterior (from previous slide):

1
X exp {—2(WT):1W - 2wT}:1u)}



Finding posterior parameters

» Equate individual terms on each side.

» Covariance:
1
wrlw = w' [2XTX + 51] w
o

. 1 -1
> = <2xTx+s—1>
g

» Mean:
2
2wty = —2wTXTt
o
~ 1 vT

g



Olympic example

» To make numbers better, rescape olympic year:
> 1896 = 1,1900 = 2,...,2008 = 27,2012 = 28



Olympic example

» To make numbers better, rescape olympic year:
> 1896 = 1,1900 = 2, ...,2008 = 27,2012 = 28

» Prior density:
6

4

w1
o

©

%o -10 0 10 20
wo

» Mean (0) and covariance (S).

> Quite a vague prior.



Olympic example

-0.5

Posterior (left) (prior shown in grey, zoomed in) and functions
corresponding to some w sampled from posterior (right).



Olympic example — predictions

» Qur motivation for being Bayesian was to be able to average
predictions (at the test data Xpew) over all w

p(w|X,t,02) {f } / W‘t X, o ) dw

» We have the full posterior distribution over all possible values
of w, it is also Gaussian and we computed the parameters.



Olympic example — predictions

» Qur motivation for being Bayesian was to be able to average
predictions (at the test data Xpew) over all w

p(w|X,t,02) {f } / W‘t X, o ) dw

» We have the full posterior distribution over all possible values
of w, it is also Gaussian and we computed the parameters.

> We can even compute exactly, the predictive density to make
probabilistic predictions:

p(tneW’X7 t7 Xnew 02) = Ep(w|X,t,U2) {p(tneW’Xnewv w, 02)}

= /p(tnew‘xneW7Wa02)p(w‘tvx702) dw



Olympic example — predictions

> We can even compute exactly, the predictive density to make
probabilistic predictions:

P(tnew|X, t, Xnew; 0'2) = Ep(w|X,t,o2) {p(tnew|xneWa w, 02)}

= /P(tnew|xnewawa0'2)p(w|tax’o'2) dw

> p(thew|Xnew, W, 02) is defined by our model as the product of
Xnew and w with some additive Gaussian noise.

P( tnew‘xneW7 w, 02) = N(X,TeWW, 02)

» Because this expression and the posterior are both Gaussian,
the result of expectation is another Gaussian.

p(tnew’xa t, Xnew 02) = N( newp’v J + X anew)



Olympic example — predictions

» Therefore, the predictive density is

p(tnew’xv t7 XneWa 02) = N(X;I]—ewﬁ7 0-2 + xl—ewzxnew)

where,

and



Olympic example — predictions

2
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85 1

=os
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tnew
Predictive density at 2012 Olympics. Note that o was fixed at
0.05.

p(tnew‘x7 t7 xnew, 0-2) - N(95951, 00572)



Computing posterior: recipe

» (Assuming prior conjugate to likelihood)

» Write down prior times likelihood (ignoring any constant
terms, i.e., the term that are irrelevant to w)

» Write down posterior (ignoring any constant terms)
P> Re-arrange them so the look like one another

» Equate terms on both sides to read off parameter values.



Choosing a prior

» How should we choose the prior?

» Prior effect will diminish as more data arrive.
» When we don't have much data, prior is very important.
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Choosing a prior

» How should we choose the prior?

>
>

Prior effect will diminish as more data arrive.
When we don't have much data, prior is very important.

» Some influencing factors:

>
>

>

Data type: real, integer, string, etc.

Expert knowledge: 'the coin is fair’, 'the model should be
simple’

Computational considerations (not as important as it used to
be!)

If we know nothing, can use a broad prior — e.g. uniform
density.



Summary

> Moved away from a single parameter value.

» Saw how predictions could be made by averaging over all
possible parameter values — Bayesian.

» Saw how Bayes rule allows us to get a density for w
conditioned on the data (and other stuff).

» Computing the posterior is hard except in some cases....

v

....we can do it when things are conjugate.



Recipe for a Bayesian linear model

» In the Bayesian linear regression, we compute a distribution
over w instead of estimating it by w = (XTX)~!XTt.
» The model is
p(w|X, t,0%) = (1, E).
» We use the Gaussian prior p(w) and the likelihood
p(tlw, X, 02) = N'(Xw, o2l) to compute the model
parameters p and X.

and



Recipe for a Bayesian linear model

» In the Bayesian linear regression, we compute a distribution
over w instead of estimating it by w = (XTX) !XTt
» The model is
p(W|X, t, 02) = N(“‘v z)

» Prediction (probabilistic predictions)

p(tnew!X, t, Xnew, 02) = N(X;\rewﬁv 02 + x;rewixnew)
where,
1 -1
> = <2xTx + sl>
o
and 1
fh=—IX't
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