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Some data and a problem

Predict the winning time for 2012!
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Some data and a problem

Fit a linear model (draw a line through the data)
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Some data and a problem

Use the model (line) to predict the winning time in 2012.
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Recipe for a linear model

More complex model: t = w0 + w1x + w2x
2 + . . .+ wDx

D
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 , Model : tn = wTxn, or t = Xw
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Recipe for linear model

Model : tn = wTxn, or t = Xw

Usually, t and Xw are not exactly equal. So, we try to minimise
the difference.

L =
1

N
(t− Xw)T(t− Xw)

ŵ = (XTX)−1XTt



Recipe for a linear model

Model
tn = wTxn, or t = Xw

Parameters
ŵ = (XTX)−1XTt

Prediction

xnew =


1

xnew

x2
new
...

xDnew


then compute

tnew = ŵTxnew



Recipe for a probabilistic linear model

I In the probabilistic linear regression, we model the error, i.e.,

Model : tn = wTxn + εn, or t = Xw + ε

In other words, we consider p(tn|w, xn, σ2) = N (wTxn, σ2)

I The full likelihood is

p(t|w,X, σ2) = p(t1, . . . , tN |w, σ2, x1, . . . , xN)

I Note that

p(t1, . . . , tN |w, σ2, x1, . . . , xN) =
N∏

n=1

p(tn|w, xn, σ2)

I And p(t|w,X, σ2) = N (Xw, σ2I)
I is the identity matrix of size N × N. The covariance marix
σ2I indicates i.i.d..



Recipe for a probabilistic linear model

I The full likelihood is

p(t|w,X, σ2) = p(t1, . . . , tN |w, σ2, x1, . . . , xN)

I We maximise the log-likelihood to obtain the parameters w
and σ2.

I Compute optimum ŵ from:

ŵ = (XTX)−1XTt

I Use this to compute optimum σ̂2 from:

σ̂2 =
1

N
(t− Xŵ)T(t− Xŵ)



Recipe for a probabilistic linear model

Olympic 100 m data (again!)
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ŵ =

[
36.416
−0.0133

]
, σ̂2 = 0.0503



Recipe for a probabilistic linear model

Model
p(t|w,X, σ2) = N (Xw, σ2I)

Parameters
ŵ = (XTX)−1XTt

σ̂2 =
1

N
(t− Xŵ)T(t− Xŵ)

Prediction
tnew = ŵTxnew

var{tnew} = σ̂2xT
new(XTX)−1xnew

Hint: Always check the consistency of the dimesions
(numpy.shape() in Python).



Olympic prediction
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Predictive variance increases as we get further from the training
data.



What is next?

I We have seen two ways of finding the ‘best’ parameter values:

I Those that minimise the loss L.
I Those that maximise the likelihood (probabilistic linear

regression).
I If the probabilistic model is Gaussian, both are the same:

ŵ = (XTX)−1XTt

I In the probabilistic linear regression, we also estimate σ2.

I Is this the ‘right’ set of parameters?

I Is there a ‘right’ set of parameters?



Problems with a point estimate

w

L

I Might be more than one ‘best’ value.

I Might not be a single representative value.

I Different values might give very different predictions.

I Is there an alternative?



Averaging

w

L

w1 w2 wA. . .

I Prediction is some function of w. Say f (w).

I Choose A different values – w1, . . . ,wA.

I Compute
∑A

a=1 qaf (wa)

I qa is proportional to L (subject to
∑

a qa = 1)

I Note that each wa is a vector.

I Increasing A seems like a good idea....



Example

I Olympic 100 m data.

I Want to predict winning time at London 2012 – tnew.
I Choose 2 ‘good’ values of w

I w1 predicts tnew = 9.5 s
I w2 predicts tnew = 9.2 s

I According to likelihood, w2 is twice as likely as w1.
I q1 + q2 = 1, q2 = 2q1.
I Therefore: q1 = 1/3, q2 = 2/3

I Average prediction is (1/3)× 9.5 + (2/3)× 9.2 = 9.3



Averaging

I What if w is a random variable with density p(w|stuff)?
I Imagine a weird die that chucks out values of w.

I We can use every value of w!
I We do this with the following expectation:

Ep(w|stuff) {f (w)} =

∫
f (w)p(w|stuff) dw

What is f (w) is this course?
I An average of predictions from each possible w weighted by

how likely that w value is.

I What is ‘stuff’?

I How do we compute p(w|stuff)?
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Bayes rule

I ‘Stuff’ should include data: X, t: p(w|X, t)
I i.e. what we know about w after observing some data.

I We’ve seen something like this before: p(t|w,X, σ2) – the
likelihood.
I For simplicity, we ignore σ2 for now (we can assume its value is

known).

I Can we use p(t|X,w) to find p(w|X, t)?

I Bayes rule:

p(w|X, t) =
p(t|X,w)p(w)

p(t|X)

I Comes from:

p(w|X, t)p(t|X) = p(t|w,X)p(w)

p(w, t|X) = p(w, t|X)
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Bayes rule

I Bayes rule:

p(w|X, t) =
p(t|X,w)p(w)

p(t|X)

I Posterior density: p(w|X, t)
I This is what we’re after.

I Likelihood : p(t|X,w)
I We’ve used this before.

I Prior density: p(w)
I This is new: do we know anything about the parameters before

we see any data?

I Marginal likelihood (or evidence or normalization):
p(t|X)
I This is new: w isn’t in here. It is a normalisation constant.

Ensures
∫
p(w|X, t) dw = 1.
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Computing the posterior

I Unfortunately, computing the posterior can be hard in
general...

I ...because marginal likelihood p(t|X) is hard to compute:

p(t|X) =

∫
p(t|w,X)p(w) dw

I In some cases we can do it (this lecture).



Computing the posterior

I Unfortunately, computing the posterior can be hard in
general...

I ...because marginal likelihood p(t|X) is hard to compute:

p(t|X) =

∫
p(t|w,X)p(w) dw

I In some cases we can do it (this lecture).



When can we compute the posterior?

Conjugacy (definition)

A prior p(w) is said to be conjugate to a likelihood it results in a
posterior of the same type of density as the prior.

I Example:
I Prior: Gaussian; Likelihood: Gaussian; Posterior: Gaussian
I Prior: Beta; Likelihood: Binomial; Posterior: Beta
I Many others, e.g.

http://en.wikipedia.org/wiki/Conjugate_prior

http://en.wikipedia.org/wiki/Conjugate_prior


Why is this important?

I Bayes rule:

p(w|X, t) =
p(t|X,w)p(w)

p(t|X)

I If prior and likelihood are conjugate, we know the form of
p(w|X, t)

I Therefore, we know the form of the normalising constant.

I Therefore, we don’t need to compute p(t|X)

I We just need to use some algebra to make p(t|X,w)p(w)
look like the correct density, ignoring all terms without w.
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Example - Olympic data

I Remember the (Gaussian) likelihood we used for maximum
likelihood:

p(t|xn,w, σ2) = N (wTxn, σ
2)

I For the set of N observations (variables) {X, t}, we have

p(t|w,X, σ2) = N (Xw, σ2I)
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Example - Olympic data

I We’ll use the (Gaussian) likelihood we used for maximum
likelihood:

p(t|w,X, σ2) = N (Xw, σ2I)

I The prior conjugate to the Gaussian is Gaussian. So:

p(w) = N (0,S), S =

[
100 0

0 5

]
I Mean (0) and covariance (S) are design choices (prior

knowledge).

I Posterior must be Gaussian with unknown parameters µ,Σ:

p(w|X, t, σ2) = N (µ,Σ)
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Finding posterior parameters

I Ignoring normalising constant, the posterior is:

p(w|X, t, σ2) ∝ exp

{
−1

2
(w − µ)TΣ−1(w − µ)

}
= exp

{
−1

2
(wTΣ−1w − 2wTΣ−1µ + µTΣ−1µ)

}
∝ exp

{
−1

2
(wTΣ−1w − 2wTΣ−1µ)

}
I We only care about the terms that are related to w.



Finding posterior parameters

I Ignoring non w terms, the prior multiplied by the likelihood is:

p(t|w,X, σ2) · p(w)

∝ exp

{
− 1

2σ2
(t− Xw)T(t− Xw)

}
exp

{
−1

2
wTS−1w

}
∝ exp

{
−1

2

(
wT

[
1

σ2
XTX + S−1

]
w − 2

σ2
wTXTt

)}
I Posterior (from previous slide):

∝ exp

{
−1

2
(wTΣ−1w − 2wTΣ−1µ)

}



Finding posterior parameters

I Equate individual terms on each side.

I Covariance:

wTΣ−1w = wT

[
1

σ2
XTX + S−1

]
w

Σ̂ =

(
1

σ2
XTX + S−1

)−1

I Mean:

2wTΣ−1µ =
2

σ2
wTXTt

µ̂ =
1

σ2
Σ̂XTt



Olympic example

I To make numbers better, rescape olympic year:
I 1896 = 1, 1900 = 2, . . . , 2008 = 27, 2012 = 28

I Prior density:

w0
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6

I Mean (0) and covariance (S).

I Quite a vague prior.
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Olympic example
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Posterior (left) (prior shown in grey, zoomed in) and functions
corresponding to some w sampled from posterior (right).



Olympic example – predictions

I Our motivation for being Bayesian was to be able to average
predictions (at the test data xnew) over all w

Ep(w|X,t,σ2) {f (w)} =

∫
f (w)p(w|t,X, σ2) dw

I We have the full posterior distribution over all possible values
of w, it is also Gaussian and we computed the parameters.

I We can even compute exactly, the predictive density to make
probabilistic predictions:

p(tnew|X, t, xnew, σ
2) = Ep(w|X,t,σ2)

{
p(tnew|xnew,w, σ

2)
}

=

∫
p(tnew|xnew,w, σ

2)p(w|t,X, σ2) dw
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Olympic example – predictions

I We can even compute exactly, the predictive density to make
probabilistic predictions:

p(tnew|X, t, xnew, σ
2) = Ep(w|X,t,σ2)

{
p(tnew|xnew,w, σ

2)
}

=

∫
p(tnew|xnew,w, σ

2)p(w|t,X, σ2) dw

I p(tnew|xnew,w, σ2) is defined by our model as the product of
xnew and w with some additive Gaussian noise.

p(tnew|xnew,w, σ
2) = N (xT

neww, σ2)

I Because this expression and the posterior are both Gaussian,
the result of expectation is another Gaussian.

p(tnew|X, t, xnew, σ
2) = N (xT

newµ̂, σ
2 + xT

newΣ̂xnew)



Olympic example – predictions

I Therefore, the predictive density is

p(tnew|X, t, xnew, σ
2) = N (xT

newµ̂, σ
2 + xT

newΣ̂xnew)

where,

Σ̂ =

(
1

σ2
XTX + S−1

)−1

and

µ̂ =
1

σ2
Σ̂XTt.



Olympic example – predictions
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Predictive density at 2012 Olympics. Note that σ2 was fixed at
0.05.

p(tnew|X, t, xnew, σ
2) = N (9.5951, 0.0572)



Computing posterior: recipe

I (Assuming prior conjugate to likelihood)

I Write down prior times likelihood (ignoring any constant
terms, i.e., the term that are irrelevant to w)

I Write down posterior (ignoring any constant terms)

I Re-arrange them so the look like one another

I Equate terms on both sides to read off parameter values.



Choosing a prior

I How should we choose the prior?
I Prior effect will diminish as more data arrive.
I When we don’t have much data, prior is very important.

I Some influencing factors:
I Data type: real, integer, string, etc.

I Expert knowledge: ’the coin is fair’, ’the model should be
simple’

I Computational considerations (not as important as it used to
be!)

I If we know nothing, can use a broad prior – e.g. uniform
density.
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Summary

I Moved away from a single parameter value.

I Saw how predictions could be made by averaging over all
possible parameter values – Bayesian.

I Saw how Bayes rule allows us to get a density for w
conditioned on the data (and other stuff).

I Computing the posterior is hard except in some cases....

I ....we can do it when things are conjugate.



Recipe for a Bayesian linear model

I In the Bayesian linear regression, we compute a distribution
over w instead of estimating it by ŵ = (XTX)−1XTt.

I The model is
p(w|X, t, σ2) = N (µ,Σ).

I We use the Gaussian prior p(w) and the likelihood
p(t|w,X, σ2) = N (Xw, σ2I) to compute the model
parameters µ and Σ.

Σ̂ =

(
1

σ2
XTX + S−1

)−1

and

µ̂ =
1

σ2
Σ̂XTt.



Recipe for a Bayesian linear model

I In the Bayesian linear regression, we compute a distribution
over w instead of estimating it by ŵ = (XTX)−1XTt.

I The model is
p(w|X, t, σ2) = N (µ,Σ).

I Prediction (probabilistic predictions)

p(tnew|X, t, xnew, σ
2) = N (xT

newµ̂, σ
2 + xT

newΣ̂xnew)

where,

Σ̂ =

(
1

σ2
XTX + S−1

)−1

and

µ̂ =
1

σ2
Σ̂XTt.
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