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Data Representation

P> Data objects e.g. email texts or images are represented by
fixed dimension vectors, each dimension is called a feature.

» Traditionally (and still) the features were hand—crafted by
domain experts (linguists, image researchers).

» Recently with Deep Learning, one tries to learn the features
(next week!).



Classification
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> A set of N objects with attributes (usually vector) x,.
» Each object has an associated response (or label) t,.
» Binary classification: t, = {0,1} or t, = {—1,1},

» (depends on algorithm).

» Multi-class classification: t, = {1,2,...,K}.



Classification

» Input is training data N pairs (xp, tp),n=1---N.

» Our algorithm should use those to produce a function f that
we can apply to a new data point, a test point Xpe, to classify
it.

» Binary classification: t, ={0,1} or t, = {—1,1},

> (depends on algorithm).
» Multi-class classification: t, = {1,2,...,K}.



Classification syllabus

» 4 classification algorithms.
» Of which:
P 2 are probabilistic.
> Bayes classifier.
» Logistic regression.
» 2 are non-probabilistic.
P K-nearest neighbours.
» Support Vector Machines.

» There are many others!



Probabilistic v non-probabilistic classifiers

Classifier is trained on x1,...,xy and t1,..., ty and then used to
classify Xpew-

» Probabilistic classifiers produce a probability of class
membership P(thew = k|Xnew; X, t)
> e.g. binary classification: P(thew = 1|Xnew, X, t) and
P(thew = O|Xnew, X, t).

» Non-probabilistic classifiers produce a hard assignment
> e.g. thew =1 o0r thew = 0.

» Which to choose depends on application....



Probabilistic v non-probabilistic classifiers

» Probabilities provide us with more information —
P(thew = 1) = 0.6 is more useful than thew = 1.

» Tells us how sure the algorithm is.

» Particularly important where cost of misclassification is high
and imbalanced.

» e.g. Diagnosis: telling a diseased person they are healthy is
much worse than telling a healthy person they are diseased.

» Extra information (probability) often comes at a cost.

» For large datasets, might have to go with non-probabilistic.



Bayes classifier

» Our first probabilistic classifier is based on Bayes rule:
P(tnew - k’x7tvxnew)

_ P(Xnew|tnew = k,X,t)P( ne )

>_j P(Xnew | thew :J'yxat)P(tnew J)

> We need to define a likelihood and a prior and we're done!



Bayes

classifier — likelihood

p(xnew‘ thew = k: X7 t)

How likely is xpew if it is in class k? (not necessarily a
probability...)

We are free to define this class-conditional distribution as we
like.

Will depend on type of data.
e.g.
» Data are D-dimensional vectors of real values — Gaussian
likelihood.
» Data are number of heads in N coin tosses — Binomial
likelihood.

In both cases, training data with t = k used to determine
parameters of likelihood for class k (e.g. Gaussian mean and
covariance).



Bayes classifier — prior

P(thew = k)

P> Xnew NOt present.

» Used to specify prior probabilities for different classes.
> eg.
» There are far fewer instances of class 0 than class 1:
P(thew = 1) > P(thew = 0).
» No prior preference: P(thew = 0) = P(thew = 1).
» Class 0 is very rare: P(thew = 0) < P(thew = 1).



Naive-Bayes

> Naive-Bayes makes the following additional likelihood
assumption:

» The components of X, are independent for a particular class:

D

p(xnew|tnew = k,X,t) = H p(X(an’tnew = k, X,t)
d=1

» Where D is the number of dimensions and x}™ is the value of
the dth one.
» Often used when D is high:

» Fitting D uni-variate distributions is easier than fitting one
D-dimensional one.



Bayes classifier, example 1
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» Each object has two attributes: x = [x1, x2] .
» K = 3 classes.

» We'll use Gaussian class-conditional distributions (with
Naive-Bayes assumption).

» P(thew = k) = 1/K — uniform prior.



Step 1: fitting the class-conditional densities

p(x|t =k, X,t) = HN(Mkdvo-id)
d=1
1
— 2 2
Hkd = Ny Z Xnd Okd = Ny Z (Xnd — 1ka)

n:tp=k n:tp=k



Step 2: Evaluate densities at test point

P(xnew|tnew = k,X,t) = HN(:UJkd’Jid)
d=1



Compute predictions
» Remember that we assumed P(thew = k) = 1/K.

nwtnw:k,x7t th:k
P(tnew:k|xneW7X7t) P(Xe | i )p( < )

B ZJ p(xnew|tnew :jaxat)P(tnew :_/)
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Contours of P(tmew = 1|Xnew, X, t)



Compute predictions
» Remember that we assumed P(thew = k) = 1/K.
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Compute predictions
» Remember that we assumed P(thew = k) = 1/K.

p(xnew‘tnew = kaxat)P(tnew = k)
P t, == k X 7X7t = [ ]
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Contours of P(tmew = 3|Xnew, X, t)



Bayes classifier, example 2

» Data are number of heads in 20 tosses (repeated 50 times for
each) from one of two coins:

» Coinl(t,=0): x,=4,7, 7,7, 4,...
»> Coin 2 (t, =1): x, = 18, 16, 18, 14, 17,...

» Use binomial class conditional densities:
P(xn|rk) = < 20 > Pl — r)20—xe
Xn

» Where ry is the probability that coin k lands heads on any
particular toss.

P> Problem — predict the coin, thew given a new count, Xnew.
» (Again assume P(tnew = k) = 1/K)



Fit the class conditionals...
» Fitting is just finding ry:

1
r = 20Nk Zan

n:th=

> ro=0.287, r, = 0.706.
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Compute predictions

_ P(Xnewthew = k; X, t) P(thew = k)
Zj p(Xnew|tnew :jaxyt)P(tnew :_/)

P(thew = k|Xnew, X, t)
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Bayes classifier — summary

Decision rule based on Bayes rule.

Choose and fit class conditional densities.

>
>
» Decide on prior.
» Compute predictive probabilities.
> Naive-Bayes:
» Assume that the dimensions of x are independent within a
particular class.
» Our Gaussian used the Naive Bayes assumption (could have
written p(x|t = k,...) as product of two independent
Gaussians).
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