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Introduction

» Supervised learning
» Regression

> Minimised loss (least squares)
P> Maximised likelihood
» Bayesian approach

> Classification
» Unsupervised learning

» Clustering
» Projection



Classification
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» A set of N objects with attributes (usually vector) x,.
» Each object has an associated response (or label) t,.
» Binary classification: t, = {0,1} or t, = {—1,1},

» (depends on algorithm).

» Multi-class classification: t, = {1,2,...,K}.



Classification syllabus

» 4 classification algorithms.
» Of which:
P 2 are probabilistic.
> Bayes classifier
» Logistic regression.
» 2 are non-probabilistic.
P K-nearest neighbours
» Support Vector Machines.

» There are many others!



Probabilistic vs non-probabilistic classifiers

Classifier is trained on x1,...,xy and t1,..., ty and then used to
classify Xpew-

» Probabilistic classifiers produce a probability of class
membership P(thew = k|Xnew; X, t)
> e.g. binary classification: P(thew = 1|Xnew, X, t) and
P(thew = O|Xnew, X, t).

» Which to choose depends on application....
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» Probabilistic classifiers produce a probability of class
membership P(thew = k|Xnew; X, t)
> e.g. binary classification: P(thew = 1|Xnew, X, t) and
P(thew = O|Xnew, X, t).

» Non-probabilistic classifiers produce a hard assignment
> e.g. thew =1 o0r thew = 0.

» Which to choose depends on application....
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Probabilistic vs non-probabilistic classifiers

» Probabilities provide us with more information —
P(thew = 1) = 0.6 is more useful than thew = 1.

» Tells us how sure the algorithm is.

» Particularly important where cost of misclassification is high
and imbalanced.

» e.g. Diagnosis: telling a diseased person they are healthy is
much worse than telling a healthy person they are diseased.

» Extra information (probability) often comes at a cost.

» For large datasets, might have to go with non-probabilistic.



Algorithm 1: K-Nearest Neighbours

» Non-probabilistic.
» Can do binary or multi-class.

» No ‘training’ phase.



Algorithm 1: K-Nearest Neighbours

» Non-probabilistic.

» Can do binary or multi-class.
» No ‘training’ phase.

> How it works:

» Choose K

» For a test object Xpew:

» Find the K closest points from the training set.
» Find majority class of these K neighbours.

» (Assign randomly in case of a tie)



KNN

Training data from 3 classes.



KNN

Test point.



KNN

Find K = 6 nearest neighbours.



KNN
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Class one has most votes — classify xpew as belonging to class 1.
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Second example — class 2 has most votes.



KNN — real example
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» Binary data.




KNN — real example

5

» 1-Nearest Neighbour.
» Line shows decision boundary.

» Too complex — should the islands exist?



KNN — real example
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P> 2-Nearest Neighbour.
» What's going on?



KNN — real example
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P> 2-Nearest Neighbour.

» What's going on?

» Lots of ties — random guessing.



KNN — real example

» 5-Nearest Neighbour.
» Much smoother.



KNN — real example
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» 19-Nearest Neighbour.
» Very smooth.



KNN — real example 2
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» Binary data.




KNN — real example 2
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» Non-smooth — too complex again?



KNN — real example 2
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» Random effects again...



KNN — real example 2
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» Getting smoother.



KNN — real example 2

K =19
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» Smoother still.



Problems with KNN

» Class imbalance

> As K increases, small classes will disappear!

» Imagine we had only 5 training objects for class 1 and 100 for
class 2.

» For K > 11, class 2 will always win!



Problems with KNN

» Class imbalance

> As K increases, small classes will disappear!

» Imagine we had only 5 training objects for class 1 and 100 for
class 2.

» For K > 11, class 2 will always win!

» How do we choose K?

» Right value of K will depend on data.
» Cross-validation!



Cross-validation for classification

E.g. to find K in KNN:

Exactly the same as we have seen before.

Split the data up — use some to train, some to validation.
Need a measure of ‘goodness’.

Use number of mis-classifications.....

vVvvyVvVvyypy

....and use K that minimises it!



Remember...

Training  Validation
set set

. PP
P G

Average number of misclassifications over the C folds.



Example — 5 classes
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> 5 classes.

» Smallest has 20 instances, biggest 120.



Example — 5 classes
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» Curve shows average misclassification error for 10-fold CV.

» Minimum at approximately K = 30.



Example — 5 classes

o o o o
w N 01 O

Average CV error

o
(8]

o
o

50 100 150 200
K

» As K increases, classes ‘disappear’

» Causes the ‘steps’ in error.



KNN — summary

Non-probabilistic.
Fast.

>
>
» Only one parameter to tune (K).
» Important to tune it well....

>

...can use CV.



KNN — summary

Non-probabilistic.

Fast.

Only one parameter to tune (K).
Important to tune it well....

...can use CV.
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There is a probabilistic version.
» Not covered in this course.
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