Nearest Neighbor Classification

Morteza H. Chehreghani
morteza.chehreghani@chalmers.se

Chalmers University of Technology
April 11, 2019

Reference

The content and the slides are adapted from
S. Rogers and M. Girolami, A First Course in Machine Learning (FCML), 2nd edition, Chapman \& Hall/CRC 2016, ISBN: 9781498738484

Introduction

- Supervised learning
- Regression
- Minimised loss (least squares)
- Maximised likelihood
- Bayesian approach
- Classification
- Unsupervised learning
- Clustering
- Projection

Classification

- A set of N objects with attributes (usually vector) \mathbf{x}_{n}.
- Each object has an associated response (or label) t_{n}.
- Binary classification: $t_{n}=\{0,1\}$ or $t_{n}=\{-1,1\}$,
- (depends on algorithm).
- Multi-class classification: $t_{n}=\{1,2, \ldots, K\}$.

Classification syllabus

- 4 classification algorithms.
- Of which:
- 2 are probabilistic.
- Bayes classifier
- Logistic regression.
- 2 are non-probabilistic.
- K-nearest neighbours
- Support Vector Machines.
- There are many others!

Probabilistic vs non-probabilistic classifiers

Classifier is trained on $\mathbf{x}_{1}, \ldots, \mathbf{x}_{N}$ and t_{1}, \ldots, t_{N} and then used to classify $\mathbf{x}_{\text {new }}$.

- Probabilistic classifiers produce a probability of class membership $P\left(t_{\text {new }}=k \mid \mathbf{x}_{\text {new }}, \mathbf{X}, \mathbf{t}\right)$
- e.g. binary classification: $P\left(t_{\text {new }}=1 \mid \mathbf{x}_{\text {new }}, \mathbf{X}, \mathbf{t}\right)$ and $P\left(t_{\text {new }}=0 \mid \mathbf{x}_{\text {new }}, \mathbf{X}, \mathbf{t}\right)$.
- Which to choose depends on application....

Probabilistic vs non-probabilistic classifiers

Classifier is trained on $\mathbf{x}_{1}, \ldots, \mathbf{x}_{N}$ and t_{1}, \ldots, t_{N} and then used to classify $\mathbf{x}_{\text {new }}$.

- Probabilistic classifiers produce a probability of class membership $P\left(t_{\text {new }}=k \mid \mathbf{x}_{\text {new }}, \mathbf{X}, \mathbf{t}\right)$
- e.g. binary classification: $P\left(t_{\text {new }}=1 \mid \mathbf{x}_{\text {new }}, \mathbf{X}, \mathbf{t}\right)$ and $P\left(t_{\text {new }}=0 \mid \mathbf{x}_{\text {new }}, \mathbf{X}, \mathbf{t}\right)$.
- Non-probabilistic classifiers produce a hard assignment
- e.g. $t_{\text {new }}=1$ or $t_{\text {new }}=0$.
- Which to choose depends on application....

Probabilistic vs non-probabilistic classifiers

- Probabilities provide us with more information $P\left(t_{\text {new }}=1\right)=0.6$ is more useful than $t_{\text {new }}=1$.
- Tells us how sure the algorithm is.

Probabilistic vs non-probabilistic classifiers

- Probabilities provide us with more information $P\left(t_{\text {new }}=1\right)=0.6$ is more useful than $t_{\text {new }}=1$.
- Tells us how sure the algorithm is.
- Particularly important where cost of misclassification is high and imbalanced.
- e.g. Diagnosis: telling a diseased person they are healthy is much worse than telling a healthy person they are diseased.

Probabilistic vs non-probabilistic classifiers

- Probabilities provide us with more information $P\left(t_{\text {new }}=1\right)=0.6$ is more useful than $t_{\text {new }}=1$.
- Tells us how sure the algorithm is.
- Particularly important where cost of misclassification is high and imbalanced.
- e.g. Diagnosis: telling a diseased person they are healthy is much worse than telling a healthy person they are diseased.
- Extra information (probability) often comes at a cost.
- For large datasets, might have to go with non-probabilistic.

Algorithm 1: K-Nearest Neighbours

- Non-probabilistic.
- Can do binary or multi-class.
- No 'training' phase.

Algorithm 1: K-Nearest Neighbours

- Non-probabilistic.
- Can do binary or multi-class.
- No 'training' phase.
- How it works:
- Choose K
- For a test object $\mathbf{x}_{\text {new }}$:
- Find the K closest points from the training set.
- Find majority class of these K neighbours.
- (Assign randomly in case of a tie)

Training data from 3 classes.

KNN

Test point.

Find $K=6$ nearest neighbours.

2 from class 3

Class one has most votes - classify $\mathbf{x}_{\text {new }}$ as belonging to class 1 .

Second example - class 2 has most votes.

KNN - real example

- Binary data.

KNN - real example

- 1-Nearest Neighbour.
- Line shows decision boundary.
- Too complex - should the islands exist?

KNN - real example

- 2-Nearest Neighbour.
- What's going on?

KNN - real example

- 2-Nearest Neighbour.
- What's going on?
- Lots of ties - random guessing.

KNN - real example

- 5-Nearest Neighbour.
- Much smoother.

KNN - real example

- 19-Nearest Neighbour.
- Very smooth.

KNN - real example 2

- Binary data.

KNN - real example 2

- Non-smooth - too complex again?

KNN - real example 2

- Random effects again...

KNN - real example 2

- Getting smoother.

KNN - real example 2

- Smoother still.

Problems with KNN

- Class imbalance
- As K increases, small classes will disappear!
- Imagine we had only 5 training objects for class 1 and 100 for class 2.
- For $K \geq 11$, class 2 will always win!

Problems with KNN

- Class imbalance
- As K increases, small classes will disappear!
- Imagine we had only 5 training objects for class 1 and 100 for class 2.
- For $K \geq 11$, class 2 will always win!
- How do we choose K?
- Right value of K will depend on data.
- Cross-validation!

Cross-validation for classification

- E.g. to find K in KNN:
- Exactly the same as we have seen before.
- Split the data up - use some to train, some to validation.
- Need a measure of 'goodness'.
- Use number of mis-classifications.....
-and use K that minimises it!

Remember...

Average number of misclassifications over the C folds.

Example - 5 classes

- 5 classes.
- Smallest has 20 instances, biggest 120.

Example - 5 classes

- Curve shows average misclassification error for 10-fold CV.
- Minimum at approximately $K=30$.

Example - 5 classes

- As K increases, classes 'disappear'
- Causes the 'steps' in error.

KNN - summary

- Non-probabilistic.
- Fast.
- Only one parameter to tune (K).
- Important to tune it well....
- ...can use CV.

KNN - summary

- Non-probabilistic.
- Fast.
- Only one parameter to tune (K).
- Important to tune it well....
- ...can use CV.
- There is a probabilistic version.
- Not covered in this course.

