Support Vector Machines and Kernel methods

Morteza H. Chehreghani
morteza.chehreghani@chalmers.se
Department of Computer Science and Engineering Chalmers University

April 16, 2019

Reference

The content and the slides are adapted from
S. Rogers and M. Girolami, A First Course in Machine Learning (FCML), 2nd edition, Chapman \& Hall/CRC 2016, ISBN: 9781498738484

Classification syllabus

- 4 classification algorithms.
- Of which:
- 2 are probabilistic.
- Bayes classifier.
- Logistic regression.
- 2 non-probabilistic.
- K-nearest neighbours.
- Support Vector Machines (SVM).
- There are many others!

Topics ...

- Linear SVM
- Soft-Margin SVM
- Kernels - Kernel SVM
- Classifier Performance

Topics ...

- Linear SVM
- Soft-Margin SVM
- Kernels - Kernel SVM
- Classifier Performance

The margin

- We have seen several algorithms where we find the parameters that optimise something:
- Minimise the loss.
- Maximise the likelihood.
- Maximise the posterior (MAP).

The margin

- We have seen several algorithms where we find the parameters that optimise something:
- Minimise the loss.
- Maximise the likelihood.
- Maximise the posterior (MAP).
- The Support Vector Machine (SVM) is no different:
- It finds the decision boundary that maximises the margin.

Some data

- We'll 'think' in 2-dimensions.

SVM is a binary classifier. N data points, each with attributes $\mathbf{x}=\left[x_{1}, x_{2}\right]^{\top}$ and target $t= \pm 1$

Some data

- We'll 'think' in 2-dimensions.

SVM is a binary classifier.
N data points, each with attributes $\mathbf{x}=\left[x_{1}, x_{2}\right]^{\top}$ and target $t= \pm 1$

- A linear decision boundary can be represented as a straight line:

$$
\mathbf{w}^{\top} \mathbf{x}+b=0
$$

Some data

- We'll 'think' in 2-dimensions.

SVM is a binary classifier.
N data points, each with attributes $\mathbf{x}=\left[x_{1}, x_{2}\right]^{\top}$ and target $t= \pm 1$

- A linear decision boundary can be represented as a straight line:

$$
\mathbf{w}^{\top} \mathbf{x}+b=0
$$

- Our task is to find \mathbf{w} and b

Some data

- We'll 'think' in 2-dimensions.

SVM is a binary classifier.
N data points, each with attributes $\mathbf{x}=\left[x_{1}, x_{2}\right]^{\top}$ and target $t= \pm 1$

- A linear decision boundary can be represented as a straight line:

$$
\mathbf{w}^{\top} \mathbf{x}+b=0
$$

- Our task is to find \mathbf{w} and b
- Once we have these, classification is easy:

$$
\begin{array}{lll}
\mathbf{w}^{\top} \mathbf{x}_{\text {new }}+b>0 & : & t_{\text {new }}=1 \\
\mathbf{w}^{\top} \mathbf{x}_{\text {new }}+b<0 & : & t_{\text {new }}=-1
\end{array}
$$

- i.e. $t_{\text {new }}=\operatorname{sign}\left(\mathbf{w}^{\top} \mathbf{x}_{\text {new }}+b\right)$

The margin

- How do we choose \mathbf{w} and b ?
- Need a quantity to optimise!

The margin

- How do we choose \mathbf{w} and b ?
- Need a quantity to optimise!
- Use the margin, γ
- Maximise it!

The margin

- How do we choose \mathbf{w} and b ?
- Need a quantity to optimise!
- Use the margin, γ
- Maximise it!

Perpendicular distance from the decision boundary to the closest points on each side.

Why maximise the margin?

- Maximum margin decision boundary (left) seems to better reflect the data characteristics than other boundary (right).

Why maximise the margin?

- Maximum margin decision boundary (left) seems to better reflect the data characteristics than other boundary (right).
- Note how margin is much smaller on right and closest points have changed.
- There is going to be one 'best' boundary (w.r.t margin)
- Statistical theory justifying the choice.

Computing the margin

$$
2 \gamma=\frac{1}{\|\mathbf{w}\|} \mathbf{w}^{\top}\left(\mathbf{x}_{1}-\mathbf{x}_{2}\right)
$$

Computing the margin

$$
2 \gamma=\frac{1}{\|\mathbf{w}\|} \mathbf{w}^{\top}\left(\mathbf{x}_{1}-\mathbf{x}_{2}\right)
$$

Fix the scale such that:

$$
\begin{aligned}
& \mathbf{w}^{\top} \mathbf{x}_{1}+b=1 \\
& \mathbf{w}^{\top} \mathbf{x}_{2}+b=-1
\end{aligned}
$$

Computing the margin

$$
2 \gamma=\frac{1}{\|\mathbf{w}\|} \mathbf{w}^{\top}\left(\mathbf{x}_{1}-\mathbf{x}_{2}\right)
$$

Fix the scale such that:

$$
\begin{aligned}
& \mathbf{w}^{\top} \mathbf{x}_{1}+b=1 \\
& \mathbf{w}^{\top} \mathbf{x}_{2}+b=-1
\end{aligned}
$$

Therefore:

$$
\begin{gathered}
\left(\mathbf{w}^{\top} \mathbf{x}_{1}+b\right)-\left(\mathbf{w}^{\top} \mathbf{x}_{2}+b\right)=2 \\
\mathbf{w}^{\top}\left(\mathbf{x}_{1}-\mathbf{x}_{2}\right)=2 \\
\gamma=\frac{1}{\|\mathbf{w}\|}
\end{gathered}
$$

Maximising the margin

- We want to maximise $\gamma=\frac{1}{\|\mathbf{w}\|}$

Maximising the margin

- We want to maximise $\gamma=\frac{1}{\|\mathbf{w}\|}$
- Equivalent to minimising $\|\mathbf{w}\|$

Maximising the margin

- We want to maximise $\gamma=\frac{1}{\|\mathbf{w}\|}$
- Equivalent to minimising $\|\mathbf{w}\|$
- Equivalent to minimising $\frac{1}{2}\|\mathbf{w}\|^{2}=\frac{1}{2} \mathbf{w}^{\top} \mathbf{w}$

Maximising the margin

- We want to maximise $\gamma=\frac{1}{\|\mathbf{w}\|}$
- Equivalent to minimising $\|\mathbf{w}\|$
- Equivalent to minimising $\frac{1}{2}\|\mathbf{w}\|^{2}=\frac{1}{2} \mathbf{w}^{\top} \mathbf{w}$
- There are some constraints:
- For \mathbf{x}_{n} with $t_{n}=1: \mathbf{w}^{\top} \mathbf{x}_{n}+b \geq 1$
- For \mathbf{x}_{n} with $t_{n}=-1: \mathbf{w}^{\top} \mathbf{x}_{n}+b \leq-1$

Maximising the margin

- We want to maximise $\gamma=\frac{1}{\|\mathbf{w}\|}$
- Equivalent to minimising $\|\mathbf{w}\|$
- Equivalent to minimising $\frac{1}{2}\|\mathbf{w}\|^{2}=\frac{1}{2} \mathbf{w}^{\top} \mathbf{w}$
- There are some constraints:
- For \mathbf{x}_{n} with $t_{n}=1: \mathbf{w}^{\top} \mathbf{x}_{n}+b \geq 1$
- For \mathbf{x}_{n} with $t_{n}=-1: \mathbf{w}^{\top} \mathbf{x}_{n}+b \leq-1$
- Which can be expressed more neatly as:

$$
t_{n}\left(\mathbf{w}^{\top} \mathbf{x}_{n}+b\right) \geq 1
$$

- (This is why we use $t_{n}= \pm 1$ and not $t_{n}=\{0,1\}$.)

Maximising the margin

- We have the following optimisation problem:

$$
\begin{array}{r}
\underset{\mathbf{w}}{\operatorname{argmin}} \frac{1}{2} \mathbf{w}^{\top} \mathbf{w} \\
\text { Subject to: } t_{n}\left(\mathbf{w}^{\top} \mathbf{x}_{n}+b\right) \geq 1
\end{array}
$$

Maximising the margin

- We have the following optimisation problem:

Subject to: $t_{n}\left(\mathbf{w}^{\top} \mathbf{x}_{n}+b\right) \geq 1$

- Can put the constraints into the minimisation using Lagrange multipliers:

$$
\begin{array}{r}
\underset{\mathbf{w}}{\operatorname{argmin}} \frac{1}{2} \mathbf{w}^{\top} \mathbf{w}-\sum_{n=1}^{N} \alpha_{n}\left(t_{n}\left(\mathbf{w}^{\top} \mathbf{x}_{n}+b\right)-1\right) \\
\text { Subject to: } \alpha_{n} \geq 0
\end{array}
$$

What now?

- Let's think about what happens at the solution (we'll see why...)
- We know that $\frac{\partial}{\partial \mathbf{w}}=0$ and $\frac{\partial}{\partial b}=0$.

What now?

- Let's think about what happens at the solution (we'll see why...)
- We know that $\frac{\partial}{\partial \mathbf{w}}=0$ and $\frac{\partial}{\partial b}=0$.

$$
\begin{aligned}
\frac{\partial}{\partial \mathbf{w}} & =\mathbf{w}-\sum_{n} \alpha_{n} t_{n} \mathbf{x}_{n}=0 \\
\frac{\partial}{\partial b} & =-\sum_{n} \alpha_{n} t_{n}=0
\end{aligned}
$$

- From which we can infer that:

$$
\begin{aligned}
\mathbf{w} & =\sum_{n} \alpha_{n} t_{n} \mathbf{x}_{n} \\
\sum_{n} \alpha_{n} t_{n} & =0
\end{aligned}
$$

What now?

- Let's think about what happens at the solution (we'll see why...)
- We know that $\frac{\partial}{\partial \mathbf{w}}=0$ and $\frac{\partial}{\partial b}=0$.

$$
\begin{aligned}
\frac{\partial}{\partial \mathbf{w}} & =\mathbf{w}-\sum_{n} \alpha_{n} t_{n} \mathbf{x}_{n}=0 \\
\frac{\partial}{\partial b} & =-\sum_{n} \alpha_{n} t_{n}=0
\end{aligned}
$$

- From which we can infer that:

$$
\begin{aligned}
\mathbf{w} & =\sum_{n} \alpha_{n} t_{n} \mathbf{x}_{n} \\
\sum_{n} \alpha_{n} t_{n} & =0
\end{aligned}
$$

- Substitute these back into our optimisation problem:

$$
\begin{gathered}
\quad \frac{1}{2} \mathbf{w}^{\top} \mathbf{w}-\sum_{n} \alpha_{n}\left(t_{n}\left(\mathbf{w}^{\top} \mathbf{x}_{n}+b\right)-1\right) \\
\vdots \\
\vdots \\
\sum_{n} \alpha_{n}-\frac{1}{2} \sum_{n, m} \alpha_{n} \alpha_{m} t_{n} t_{m} \mathbf{x}_{n}^{\top} \mathbf{x}_{m}
\end{gathered}
$$

$$
\begin{gathered}
\\
\frac{1}{2} \mathbf{w}^{\top} \mathbf{w}-\sum_{n} \alpha_{n}\left(t_{n}\left(\mathbf{w}^{\top} \mathbf{x}_{n}+b\right)-1\right) \\
\vdots \\
\vdots \\
\vdots
\end{gathered} \sum_{n} \alpha_{n}-\frac{1}{2} \sum_{n, m} \alpha_{n} \alpha_{m} t_{n} t_{m} \mathbf{x}_{n}^{\top} \mathbf{x}_{m}
$$

- Instead of minimising the previous expression, we can maximise this one (for reasons we won't go into).
- Subject to:

$$
\begin{aligned}
\alpha_{n} & \geq 0 \\
\sum_{n} \alpha_{n} t_{n} & =0
\end{aligned}
$$

$$
\begin{gathered}
\frac{1}{2} \mathbf{w}^{\top} \mathbf{w}-\sum_{n} \alpha_{n}\left(t_{n}\left(\mathbf{w}^{\top} \mathbf{x}_{n}+b\right)-1\right) \\
\vdots \\
\vdots \\
\sum_{n} \alpha_{n}-\frac{1}{2} \sum_{n, m} \alpha_{n} \alpha_{m} t_{n} t_{m} \mathbf{x}_{n}^{\top} \mathbf{x}_{m}
\end{gathered}
$$

- Instead of minimising the previous expression, we can maximise this one (for reasons we won't go into).
- Subject to:

$$
\begin{aligned}
\alpha_{n} & \geq 0 \\
\sum_{n} \alpha_{n} t_{n} & =0
\end{aligned}
$$

- Decision function was $\operatorname{sign}\left(\mathbf{w}^{\top} \mathbf{x}_{\text {new }}+b\right)$ and is now:

$$
t_{\text {new }}=\operatorname{sign}\left(\sum_{n=1}^{N} \alpha_{n} t_{n} \mathbf{x}_{n}^{\top} \mathbf{x}_{\text {new }}+b\right)
$$

So?

$$
\begin{aligned}
\underset{\alpha}{\operatorname{argmax}} & \sum_{n=1}^{N} \alpha_{n}-\frac{1}{2} \sum_{n . m=1}^{N} \alpha_{n} \alpha_{m} t_{n} t_{m} \mathbf{x}_{n}^{\top} \mathbf{x}_{m} \\
\text { subject to } & \sum_{n=1}^{N} \alpha_{n} t_{n}=0, \quad \alpha_{n} \geq 0
\end{aligned}
$$

- This is a standard optimisation problem (quadratic programming)
- Has a single, global solution. This is very useful!
- Many algorithms around to solve it.
- e.g. quadprog in Matlab...

So?

$$
\begin{aligned}
\underset{\alpha}{\operatorname{argmax}} & \sum_{n=1}^{N} \alpha_{n}-\frac{1}{2} \sum_{n . m=1}^{N} \alpha_{n} \alpha_{m} t_{n} t_{m} \mathbf{x}_{n}^{\top} \mathbf{x}_{m} \\
\text { subject to } & \sum_{n=1}^{N} \alpha_{n} t_{n}=0, \quad \alpha_{n} \geq 0
\end{aligned}
$$

- This is a standard optimisation problem (quadratic programming)
- Has a single, global solution. This is very useful!
- Many algorithms around to solve it.
- e.g. quadprog in Matlab...
- Once we have α_{n} :

$$
t_{\text {new }}=\operatorname{sign}\left(\sum_{n=1}^{N} \alpha_{n} t_{n} \mathbf{x}_{n}^{\top} \mathbf{x}_{\text {new }}+b\right)
$$

Primal and Dual

Primal

$$
\underset{\mathbf{w}}{\operatorname{argmin}} \frac{1}{2} \mathbf{w}^{\top} \mathbf{w}
$$

Subject to: $t_{n}\left(\mathbf{w}^{\top} \mathbf{x}_{n}+b\right) \geq 1$
Dual

$$
\begin{aligned}
\underset{\alpha}{\operatorname{argmax}} & \sum_{n=1}^{N} \alpha_{n}-\frac{1}{2} \sum_{n . m=1}^{N} \alpha_{n} \alpha_{m} t_{n} t_{m} \mathbf{x}_{n}^{\top} \mathbf{x}_{m} \\
\text { subject to } & \sum_{n=1}^{N} \alpha_{n} t_{n}=0, \quad \alpha_{n} \geq 0
\end{aligned}
$$

- This is a standard optimisation problem (quadratic programming)
- Has a single, global solution. This is very useful!

Optimal boundary

- Optimisation gives us $\alpha_{1}, \ldots, \alpha_{N}$
- Compute $\mathbf{w}=\sum_{n} \alpha_{n} t_{n} \mathbf{x}_{n}$
- Compute $b=t_{n}-\mathbf{w}^{\top} \mathbf{x}_{n}$ (for one of the closest points)
- Recall that we defined $\mathbf{w}^{\top} \mathbf{x}_{n}+b= \pm 1=t_{n}$ for closest points.
- Plot $\mathbf{w}^{\top} \mathbf{x}+b=0$

Support Vectors

- At the optimum, only 3 non-zero α values (squares).

- $t_{\text {new }}=\operatorname{sign}\left(\sum_{n} \alpha_{n} t_{n} \mathbf{x}_{n}^{\top} \mathbf{x}_{\text {new }}+b\right)$
- Predictions only depend on these data-points!

Support Vectors

- At the optimum, only 3 non-zero α values (squares).

- $t_{\text {new }}=\operatorname{sign}\left(\sum_{n} \alpha_{n} t_{n} \mathbf{x}_{n}^{\top} \mathbf{x}_{\text {new }}+b\right)$
- Predictions only depend on these data-points!
- We knew that - margin is only a function of closest points.

Support Vectors

- At the optimum, only 3 non-zero α values (squares).

- $t_{\text {new }}=\operatorname{sign}\left(\sum_{n} \alpha_{n} t_{n} \mathbf{x}_{n}^{\top} \mathbf{x}_{\text {new }}+b\right)$
- Predictions only depend on these data-points!
- We knew that - margin is only a function of closest points.
- These are called Support Vectors

Support Vectors

- At the optimum, only 3 non-zero α values (squares).

- $t_{\text {new }}=\operatorname{sign}\left(\sum_{n} \alpha_{n} t_{n} \mathbf{x}_{n}^{\top} \mathbf{x}_{\text {new }}+b\right)$
- Predictions only depend on these data-points!
- We knew that - margin is only a function of closest points.
- These are called Support Vectors
- Normally a small proportion of the data:
- Solution is sparse.

Is sparseness good?

- Not always:

Is sparseness good?

- Not always:

- Why does this happen?

$$
t_{n}\left(\mathbf{w}^{\top} \mathbf{x}_{n}+b\right) \geq 1
$$

- All points must be on correct side of boundary.
- This is a hard margin

Topics ...

- Linear SVM
- Soft-Margin SVM
- Kernels - Kernel SVM
- Classifier Performance

Soft margin

- We can relax the constraints:

$$
t_{n}\left(\mathbf{w}^{\top} \mathbf{x}_{n}+b\right) \geq 1-\xi_{n}, \xi_{n} \geq 0
$$

Soft margin

- We can relax the constraints:

$$
t_{n}\left(\mathbf{w}^{\top} \mathbf{x}_{n}+b\right) \geq 1-\xi_{n}, \xi_{n} \geq 0
$$

- Our optimisation becomes:

$$
\begin{array}{r}
\underset{\mathbf{w}}{\operatorname{argmin}} \frac{1}{2} \mathbf{w}^{\top} \mathbf{w}+C \sum_{n=1}^{N} \xi_{n} \\
\text { subject to } t_{n}\left(\mathbf{w}^{\top} \mathbf{x}_{n}+b\right) \geq 1-\xi_{n}
\end{array}
$$

Soft margin

- We can relax the constraints:

$$
t_{n}\left(\mathbf{w}^{\top} \mathbf{x}_{n}+b\right) \geq 1-\xi_{n}, \xi_{n} \geq 0
$$

- Our optimisation becomes:

$$
\begin{array}{r}
\underset{\mathbf{w}}{\operatorname{argmin}} \frac{1}{2} \mathbf{w}^{\top} \mathbf{w}+C \sum_{n=1}^{N} \xi_{n} \\
\text { subject to } \quad t_{n}\left(\mathbf{w}^{\top} \mathbf{x}_{n}+b\right) \geq 1-\xi_{n}
\end{array}
$$

- And when we add Lagrange etc:

$$
\begin{aligned}
& \underset{\alpha}{\operatorname{argmax}} \sum_{n=1}^{N} \alpha_{n}-\frac{1}{2} \sum_{n \cdot m=1}^{N} \alpha_{n} \alpha_{m} t_{n} t_{m} \mathbf{x}_{n}^{\top} \mathbf{x}_{m} \\
& \text { subject to } \sum_{n=1}^{N} \alpha_{n} t_{n}=0, \quad 0 \leq \alpha_{n} \leq C
\end{aligned}
$$

Soft margin

- We can relax the constraints:

$$
t_{n}\left(\mathbf{w}^{\top} \mathbf{x}_{n}+b\right) \geq 1-\xi_{n}, \xi_{n} \geq 0
$$

- Our optimisation becomes:

$$
\begin{array}{r}
\underset{\mathbf{w}}{\operatorname{argmin}} \frac{1}{2} \mathbf{w}^{\top} \mathbf{w}+C \sum_{n=1}^{N} \xi_{n} \\
\text { subject to } \quad t_{n}\left(\mathbf{w}^{\top} \mathbf{x}_{n}+b\right) \geq 1-\xi_{n}
\end{array}
$$

- And when we add Lagrange etc:

$$
\begin{aligned}
& \underset{\alpha}{\operatorname{argmax}} \sum_{n=1}^{N} \alpha_{n}-\frac{1}{2} \sum_{n \cdot m=1}^{N} \alpha_{n} \alpha_{m} t_{n} t_{m} \mathbf{x}_{n}^{\top} \mathbf{x}_{m} \\
& \text { subject to } \sum_{n=1}^{N} \alpha_{n} t_{n}=0, \quad 0 \leq \alpha_{n} \leq C
\end{aligned}
$$

- The only change is an upper-bound on α_{n} !

Soft margins

- Here's our problematic data again:

- α_{n} for the 'bad' square is 3.5 .

Soft margins

- Here's our problematic data again:

- α_{n} for the 'bad' square is 3.5 .
- So, if we set $C<3.5$, we should see this point having less influence and the boundary moving to somewhere more sensible...

Soft margins

- Try $C=1$

- We have an extra support vector.
- And a better decision boundary.

Soft margins

- The choice of C is very important.
- Too high and we over-fit to noise.
- Too low and we underfit
- ...and lose any sparsity.

Soft margins

- The choice of C is very important.
- Too high and we over-fit to noise.
- Too low and we underfit
- ...and lose any sparsity.
- Choose it using cross-validation.

SVMs - some observations

- In our example, we started with 3 parameters:

$$
\mathbf{w}=\left[w_{1}, w_{2}\right]^{\top}, \quad b
$$

- In general: D+1.

SVMs - some observations

- In our example, we started with 3 parameters:

$$
\mathbf{w}=\left[w_{1}, w_{2}\right]^{\top}, \quad b
$$

- In general: $\mathrm{D}+1$.
- We now have $N: \alpha_{1}, \ldots, \alpha_{N}$

SVMs - some observations

- In our example, we started with 3 parameters:

$$
\mathbf{w}=\left[w_{1}, w_{2}\right]^{\top}, \quad b
$$

- In general: $\mathrm{D}+1$.
- We now have $\mathrm{N}: \alpha_{1}, \ldots, \alpha_{N}$
- Sounds harder?
- Depends on data dimensionality:
- Typical Microarray dataset:
- $D \sim 3000, N \sim 30$.
- In some cases $N \ll D$

Topics ...

- Linear SVM
- Soft-Margin SVM
- Kernels - Kernel SVM
- Classifier Performance

Inner products

- Here's the optimisation problem:

$$
\underset{\alpha}{\operatorname{argmax}} \sum_{n} \alpha_{n}-\frac{1}{2} \sum_{n, m} \alpha_{n} \alpha_{m} t_{n} t_{m} \mathbf{x}_{n}^{\top} \mathbf{x}_{m}
$$

- Here's the decision function:

$$
t_{\text {new }}=\operatorname{sign}\left(\sum_{n} \alpha_{n} t_{n} \mathbf{x}_{n}^{\top} \mathbf{x}_{\text {new }}+b\right)
$$

Inner products

- Here's the optimisation problem:

$$
\underset{\alpha}{\operatorname{argmax}} \sum_{n} \alpha_{n}-\frac{1}{2} \sum_{n, m} \alpha_{n} \alpha_{m} t_{n} t_{m} \mathbf{x}_{n}^{\top} \mathbf{x}_{m}
$$

- Here's the decision function:

$$
t_{\text {new }}=\operatorname{sign}\left(\sum_{n} \alpha_{n} t_{n} \mathbf{x}_{n}^{\top} \mathbf{x}_{\text {new }}+b\right)
$$

- Data ($\mathbf{x}_{n}, \mathbf{x}_{m}, \mathbf{x}_{\text {new }}$, etc) only appears as inner (dot) products:

$$
\mathbf{x}_{n}^{\top} \mathbf{x}_{m}, \mathbf{x}_{n}^{\top} \mathbf{x}_{\text {new }}, \text { etc }
$$

Projections

- Our SVM can find linear decision boundaries.
- What if the data requires something nonlinear?

Projections

- Our SVM can find linear decision boundaries.
- What if the data requires something nonlinear?

- We can transform the data e.g.:

$$
\phi\left(\mathbf{x}_{n}\right)=x_{n 1}^{2}+x_{n 2}^{2}
$$

- So that it can be separated with a straight line.
- And use $\phi\left(\mathbf{x}_{n}\right)$ instead of \mathbf{x}_{n} in our optimisation.

Projections

- Our optimisation is now:

$$
\underset{\alpha}{\operatorname{argmax}} \sum_{n} \alpha_{n}-\frac{1}{2} \sum_{n, m} \alpha_{n} \alpha_{m} t_{n} t_{m} \phi\left(\mathbf{x}_{n}\right)^{\top} \phi\left(\mathbf{x}_{m}\right)
$$

- And predictions:

$$
t_{\text {new }}=\operatorname{sign}\left(\sum_{n} \alpha_{n} t_{n} \phi\left(\mathbf{x}_{n}\right)^{\top} \phi\left(\mathbf{x}_{\text {new }}\right)+b\right)
$$

Projections

- Our optimisation is now:

$$
\underset{\alpha}{\operatorname{argmax}} \sum_{n} \alpha_{n}-\frac{1}{2} \sum_{n, m} \alpha_{n} \alpha_{m} t_{n} t_{m} \phi\left(\mathbf{x}_{n}\right)^{\top} \phi\left(\mathbf{x}_{m}\right)
$$

- And predictions:

$$
t_{\text {new }}=\operatorname{sign}\left(\sum_{n} \alpha_{n} t_{n} \phi\left(\mathbf{x}_{n}\right)^{\top} \phi\left(\mathbf{x}_{\text {new }}\right)+b\right)
$$

- In this case:

$$
\phi\left(\mathbf{x}_{n}^{\top}\right) \phi\left(\mathbf{x}_{m}\right)=\left(x_{n 1}^{2}+x_{n 2}^{2}\right)\left(x_{m 1}^{2}+x_{m 2}^{2}\right)=k\left(\mathbf{x}_{n}, \mathbf{x}_{m}\right)
$$

Projections

- Our optimisation is now:

$$
\underset{\alpha}{\operatorname{argmax}} \sum_{n} \alpha_{n}-\frac{1}{2} \sum_{n, m} \alpha_{n} \alpha_{m} t_{n} t_{m} \phi\left(\mathbf{x}_{n}\right)^{\top} \phi\left(\mathbf{x}_{m}\right)
$$

- And predictions:

$$
t_{\text {new }}=\operatorname{sign}\left(\sum_{n} \alpha_{n} t_{n} \phi\left(\mathbf{x}_{n}\right)^{\top} \phi\left(\mathbf{x}_{\text {new }}\right)+b\right)
$$

- In this case:

$$
\phi\left(\mathbf{x}_{n}^{\top}\right) \phi\left(\mathbf{x}_{m}\right)=\left(x_{n 1}^{2}+x_{n 2}^{2}\right)\left(x_{m 1}^{2}+x_{m 2}^{2}\right)=k\left(\mathbf{x}_{n}, \mathbf{x}_{m}\right)
$$

- We can think of the dot product in the projected space as a function of the original data.

Projections

- We needn't directly think of projections at all.
- Can just think of functions $k\left(\mathbf{x}_{n}, \mathbf{x}_{m}\right)$ that are dot products in some space.

Projections

- We needn't directly think of projections at all.
- Can just think of functions $k\left(\mathbf{x}_{n}, \mathbf{x}_{m}\right)$ that are dot products in some space.
- Called kernel functions.
- Don't ever need to actually project the data - just use the kernel function to compute what the dot product would be if we did project.

Projections

- We needn't directly think of projections at all.
- Can just think of functions $k\left(\mathbf{x}_{n}, \mathbf{x}_{m}\right)$ that are dot products in some space.
- Called kernel functions.
- Don't ever need to actually project the data - just use the kernel function to compute what the dot product would be if we did project.
- Optimisation task:

$$
\underset{\alpha}{\operatorname{argmax}} \sum_{n} \alpha_{n}-\frac{1}{2} \sum_{n, m} \alpha_{n} \alpha_{m} t_{n} t_{m} k\left(\mathbf{x}_{n}, \mathbf{x}_{m}\right)
$$

Projections

- We needn't directly think of projections at all.
- Can just think of functions $k\left(\mathbf{x}_{n}, \mathbf{x}_{m}\right)$ that are dot products in some space.
- Called kernel functions.
- Don't ever need to actually project the data - just use the kernel function to compute what the dot product would be if we did project.
- Optimisation task:

$$
\underset{\alpha}{\operatorname{argmax}} \sum_{n} \alpha_{n}-\frac{1}{2} \sum_{n, m} \alpha_{n} \alpha_{m} t_{n} t_{m} k\left(\mathbf{x}_{n}, \mathbf{x}_{m}\right)
$$

- Predictions:

$$
t_{\mathrm{new}}=\operatorname{sign}\left(\sum_{n} \alpha_{n} t_{n} k\left(\mathbf{x}_{n}, \mathbf{x}_{\mathrm{new}}\right)+b\right)
$$

Kernels

- Plenty of off-the-shelf kernels that we can use:

Kernels

- Plenty of off-the-shelf kernels that we can use:
- Linear:

$$
k\left(\mathbf{x}_{n}, \mathbf{x}_{m}\right)=\mathbf{x}_{n}^{\top} \mathbf{x}_{m}
$$

Kernels

- Plenty of off-the-shelf kernels that we can use:
- Linear:

$$
k\left(\mathbf{x}_{n}, \mathbf{x}_{m}\right)=\mathbf{x}_{n}^{\top} \mathbf{x}_{m}
$$

- Gaussian:

$$
k\left(\mathbf{x}_{n}, \mathbf{x}_{m}\right)=\exp \left\{-\beta\left(\mathbf{x}_{n}-\mathbf{x}_{m}\right)^{\top}\left(\mathbf{x}_{n}-\mathbf{x}_{m}\right)\right\}
$$

Kernels

- Plenty of off-the-shelf kernels that we can use:
- Linear:

$$
k\left(\mathbf{x}_{n}, \mathbf{x}_{m}\right)=\mathbf{x}_{n}^{\top} \mathbf{x}_{m}
$$

- Gaussian:

$$
k\left(\mathbf{x}_{n}, \mathbf{x}_{m}\right)=\exp \left\{-\beta\left(\mathbf{x}_{n}-\mathbf{x}_{m}\right)^{\top}\left(\mathbf{x}_{n}-\mathbf{x}_{m}\right)\right\}
$$

- Polynomial:

$$
k\left(\mathbf{x}_{n}, \mathbf{x}_{m}\right)=\left(1+\mathbf{x}_{n}^{\top} \mathbf{x}_{m}\right)^{\beta}
$$

Kernels

- Plenty of off-the-shelf kernels that we can use:
- Linear:

$$
k\left(\mathbf{x}_{n}, \mathbf{x}_{m}\right)=\mathbf{x}_{n}^{\top} \mathbf{x}_{m}
$$

- Gaussian:

$$
k\left(\mathbf{x}_{n}, \mathbf{x}_{m}\right)=\exp \left\{-\beta\left(\mathbf{x}_{n}-\mathbf{x}_{m}\right)^{\top}\left(\mathbf{x}_{n}-\mathbf{x}_{m}\right)\right\}
$$

- Polynomial:

$$
k\left(\mathbf{x}_{n}, \mathbf{x}_{m}\right)=\left(1+\mathbf{x}_{n}^{\top} \mathbf{x}_{m}\right)^{\beta}
$$

- These all correspond to $\phi\left(\mathbf{x}_{n}\right)^{\top} \phi\left(\mathbf{x}_{m}\right)$ for some transformation $\phi\left(\mathbf{x}_{n}\right)$.
- Don't know what the projections $\phi\left(\mathbf{x}_{n}\right)$ are - don't need to know!

Kernels

- Our algorithm is still only finding linear boundaries....

Kernels

- Our algorithm is still only finding linear boundaries....
- ...but we're finding linear boundaries in some other space.

Kernels

- Our algorithm is still only finding linear boundaries....
- ...but we're finding linear boundaries in some other space.
- The optimisation is just as simple, regardless of the kernel choice.
- Still a quadratic program.
- Still a single, global optimum.

Kernels

- Our algorithm is still only finding linear boundaries....
- ...but we're finding linear boundaries in some other space.
- The optimisation is just as simple, regardless of the kernel choice.
- Still a quadratic program.
- Still a single, global optimum.
- We can find very complex decision boundaries with a linear algorithm!

A technical point

- Our decision boundary was defined as $\mathbf{w}^{\top} \mathbf{x}+b=0$.
- Now, w is defined as:

$$
\mathbf{w}=\sum_{n=1}^{N} \alpha_{n} t_{n} \phi\left(\mathbf{x}_{n}\right)
$$

- We don't know $\phi\left(\mathbf{x}_{n}\right)$.

A technical point

- Our decision boundary was defined as $\mathbf{w}^{\top} \mathbf{x}+b=0$.
- Now, w is defined as:

$$
\mathbf{w}=\sum_{n=1}^{N} \alpha_{n} t_{n} \phi\left(\mathbf{x}_{n}\right)
$$

- We don't know $\phi\left(\mathbf{x}_{n}\right)$.
- We only know $\phi\left(\mathbf{x}_{n}\right)^{\top} \phi\left(\mathbf{x}_{m}\right)=k\left(\mathbf{x}_{n}, \mathbf{x}_{m}\right)$
- So, we can't compute w or the boundary!

A technical point

- Our decision boundary was defined as $\mathbf{w}^{\top} \mathbf{x}+b=0$.
- Now, w is defined as:

$$
\mathbf{w}=\sum_{n=1}^{N} \alpha_{n} t_{n} \phi\left(\mathbf{x}_{n}\right)
$$

- We don't know $\phi\left(\mathbf{x}_{n}\right)$.
- We only know $\phi\left(\mathbf{x}_{n}\right)^{\top} \phi\left(\mathbf{x}_{m}\right)=k\left(\mathbf{x}_{n}, \mathbf{x}_{m}\right)$
- So, we can't compute w or the boundary!
- But we can evaluate the predictions on a grid of $\mathbf{x}_{\text {new }}$ and use Matlab to draw a contour:

$$
\sum_{n=1}^{N} \alpha_{n} t_{n} k\left(\mathbf{x}_{n}, \mathbf{x}_{n e w}\right)+b
$$

Aside: kernelising other algorithms

- Many algorithms can be kernelised.
- Any that can be written with data only appearing as inner products.
- Simple algorithms can be used to solve very complex problems!
- Class exercise:
- KNN requires the distance between $\mathbf{x}_{\text {new }}$ and each \mathbf{x}_{n} :

$$
\left(\mathbf{x}_{\text {new }}-\mathbf{x}_{n}\right)^{\top}\left(\mathbf{x}_{\text {new }}-\mathbf{x}_{n}\right)
$$

- Can we kernelise it?

Example - nonlinear data

- We'll use a Gaussian kernel:

$$
k\left(\mathbf{x}_{n}, \mathbf{x}_{m}\right)=\exp \left\{-\beta\left(\mathbf{x}_{n}-\mathbf{x}_{m}\right)^{\top}\left(\mathbf{x}_{n}-\mathbf{x}_{m}\right)\right\}
$$

- And vary $\beta(C=10)$.

Examples

- $\beta=1$.

$$
k\left(\mathbf{x}_{n}, \mathbf{x}_{m}\right)=\exp \left\{-\beta\left(\mathbf{x}_{n}-\mathbf{x}_{m}\right)^{\top}\left(\mathbf{x}_{n}-\mathbf{x}_{m}\right)\right\}
$$

Examples

$$
k\left(\mathbf{x}_{n}, \mathbf{x}_{m}\right)=\exp \left\{-\beta\left(\mathbf{x}_{n}-\mathbf{x}_{m}\right)^{\top}\left(\mathbf{x}_{n}-\mathbf{x}_{m}\right)\right\}
$$

Examples

$$
k\left(\mathbf{x}_{n}, \mathbf{x}_{m}\right)=\exp \left\{-\beta\left(\mathbf{x}_{n}-\mathbf{x}_{m}\right)^{\top}\left(\mathbf{x}_{n}-\mathbf{x}_{m}\right)\right\}
$$

The Gaussian kernel

- β controls the complexity of the decision boundaries.

The Gaussian kernel

- β controls the complexity of the decision boundaries.
- $\beta=0.01$ was too simple:
- Not flexible enough to surround just the square class.

The Gaussian kernel

- β controls the complexity of the decision boundaries.
- $\beta=0.01$ was too simple:
- Not flexible enough to surround just the square class.
- $\beta=50$ was too complex:
- Memorises the data.

The Gaussian kernel

- β controls the complexity of the decision boundaries.
- $\beta=0.01$ was too simple:
- Not flexible enough to surround just the square class.
- $\beta=50$ was too complex:
- Memorises the data.
- $\beta=1$ was about right.

The Gaussian kernel

- β controls the complexity of the decision boundaries.
- $\beta=0.01$ was too simple:
- Not flexible enough to surround just the square class.
- $\beta=50$ was too complex:
- Memorises the data.
- $\beta=1$ was about right.
- Neither $\beta=50$ or $\beta=0.01$ will generalise well.
- Both are also non-sparse (lots of support vectors).

Choosing kernel function, parameters and C

- Kernel function and parameter choice is data dependent.
- Easy to overfit.

Choosing kernel function, parameters and C

- Kernel function and parameter choice is data dependent.
- Easy to overfit.
- Need to set C too
- C and β are linked
- C too high - overfitting.
- C too low - underfitting.

Choosing kernel function, parameters and C

- Kernel function and parameter choice is data dependent.
- Easy to overfit.
- Need to set C too
- C and β are linked
- C too high - overfitting.
- C too low - underfitting.
- Cross-validation!

Choosing kernel function, parameters and C

- Kernel function and parameter choice is data dependent.
- Easy to overfit.
- Need to set C too
- C and β are linked
- C too high - overfitting.
- C too low - underfitting.
- Cross-validation!
- Search over β and C
- SVM scales with N^{3} (naive implementation)
- For large N, cross-validation over many C and β values is infeasible.

Summary - SVMs

- Described a classifier that is optimised by maximising the margin.
- Did some re-arranging to turn it into a quadratic programming problem.
- Saw that data only appear as inner products.
- Introduced the idea of kernels.
- Can fit a linear boundary in some other space without explicitly projecting.
- Loosened the SVM constraints to allow points on the wrong side of boundary.
- Other algorithms can be kernelised...we'll see a clustering one in the future.

Topics ...

- Linear SVM
- Soft-Margin SVM
- Kernels - Kernel SVM
- Classifier Performance

Performance evaluation

- We've seen 4 classification algorithms.
- How do we choose?
- Which algorithm?
- Which parameters?
- Need performance indicators.

Performance evaluation

- We've seen 4 classification algorithms.
- How do we choose?
- Which algorithm?
- Which parameters?
- Need performance indicators.
- We'll cover:
- 0/1 loss.
- ROC analysis (sensitivity and specificity)
- Confusion matrices

$0 / 1$ loss

- 0/1 loss: proportion of times classifier is wrong.
- Consider a set of predictions t_{1}, \ldots, t_{N} and a set of true labels $t_{1}^{*}, \ldots, t_{N}^{*}$.
- Mean loss is defined as:

$$
\frac{1}{N} \sum_{n=1}^{N} \delta\left(t_{n} \neq t_{n}^{*}\right)
$$

- $(\delta(a)$ is 1 if a is true and 0 otherwise)

$0 / 1$ loss

- 0/1 loss: proportion of times classifier is wrong.
- Consider a set of predictions t_{1}, \ldots, t_{N} and a set of true labels $t_{1}^{*}, \ldots, t_{N}^{*}$.
- Mean loss is defined as:

$$
\frac{1}{N} \sum_{n=1}^{N} \delta\left(t_{n} \neq t_{n}^{*}\right)
$$

- $(\delta(a)$ is 1 if a is true and 0 otherwise)
- Advantages:
- Can do binary or multiclass classification.
- Simple to compute.
- Single value.

$0 / 1$ loss

Disadvantage: Doesn't take into account class imbalance:

$0 / 1$ loss

Disadvantage: Doesn't take into account class imbalance:

- We're building a classifier to detect a rare disease.
- Assume only 1% of population is diseased.

$0 / 1$ loss

Disadvantage: Doesn't take into account class imbalance:

- We're building a classifier to detect a rare disease.
- Assume only 1% of population is diseased.
- Diseased: $t=1$
- Healthy: $t=0$

$0 / 1$ loss

Disadvantage: Doesn't take into account class imbalance:

- We're building a classifier to detect a rare disease.
- Assume only 1% of population is diseased.
- Diseased: $t=1$
- Healthy: $t=0$
- What if we always predict healthy? $(t=0)$

$0 / 1$ loss

Disadvantage: Doesn't take into account class imbalance:

- We're building a classifier to detect a rare disease.
- Assume only 1% of population is diseased.
- Diseased: $t=1$
- Healthy: $t=0$
- What if we always predict healthy? $(t=0)$
- Accuracy 99\%
- But classifier is rubbish!

Sensitivity and specificity

- We'll stick with our disease example.
- Need to define 4 quantities. The numbers of:

Sensitivity and specificity

- We'll stick with our disease example.
- Need to define 4 quantities. The numbers of:
- True positives (TP) - the number of objects with $t_{n}^{*}=1$ that are classified as $t_{n}=1$ (diseased people diagnosed as diseased).

Sensitivity and specificity

- We'll stick with our disease example.
- Need to define 4 quantities. The numbers of:
- True positives (TP) - the number of objects with $t_{n}^{*}=1$ that are classified as $t_{n}=1$ (diseased people diagnosed as diseased).
- True negatives (TN) - the number of objects with $t_{n}^{*}=0$ that are classified as $t_{n}=0$ (healthy people diagnosed as healthy).

Sensitivity and specificity

- We'll stick with our disease example.
- Need to define 4 quantities. The numbers of:
- True positives (TP) - the number of objects with $t_{n}^{*}=1$ that are classified as $t_{n}=1$ (diseased people diagnosed as diseased).
- True negatives (TN) - the number of objects with $t_{n}^{*}=0$ that are classified as $t_{n}=0$ (healthy people diagnosed as healthy).
- False positives (FP) - the number of objects with $t_{n}^{*}=0$ that are classified as $t_{n}=1$ (healthy people diagnosed as diseased).

Sensitivity and specificity

- We'll stick with our disease example.
- Need to define 4 quantities. The numbers of:
- True positives (TP) - the number of objects with $t_{n}^{*}=1$ that are classified as $t_{n}=1$ (diseased people diagnosed as diseased).
- True negatives (TN) - the number of objects with $t_{n}^{*}=0$ that are classified as $t_{n}=0$ (healthy people diagnosed as healthy).
- False positives (FP) - the number of objects with $t_{n}^{*}=0$ that are classified as $t_{n}=1$ (healthy people diagnosed as diseased).
- False negatives (FN) - the number of objects with $t_{n}^{*}=1$ that are classified as $t_{n}=0$ (diseased people diagnosed as healthy).

Sensitivity

$$
S_{e}=\frac{T P}{T P+F N}
$$

- The proportion of diseased people that we classify as diseased.
- The higher the better.
- In our example, $S_{e}=0$.

Specificity

$$
S_{p}=\frac{T N}{T N+F P}
$$

- The proportion of healthy people that we classify as healthy.
- The higher the better.
- In our example, $S_{p}=1$.

Optimising sensitivity and specificity

- We would like both to be as high as possible.
- Often increasing one will decrease the other.

Optimising sensitivity and specificity

- We would like both to be as high as possible.
- Often increasing one will decrease the other.
- Balance will depend on application:
- e.g. diagnosis:
- We can probably tolerate a decrease in specificity (healthy people diagnosed as diseased)....
- ...if it gives us an increase in sensitivity (getting diseased people right).

ROC analysis

- Many classification algorithms involve setting a threshold.
- e.g. SVM:

$$
t_{\text {new }}=\operatorname{sign}\left(\sum_{n=1}^{N} t_{n} \alpha_{n} k\left(\mathbf{x}_{n}, \mathbf{x}_{\mathrm{new}}\right)+b\right)
$$

- Implies a threshold of zero (sign function)

ROC analysis

- Many classification algorithms involve setting a threshold.
- e.g. SVM:

$$
t_{\mathrm{new}}=\operatorname{sign}\left(\sum_{n=1}^{N} t_{n} \alpha_{n} k\left(\mathbf{x}_{n}, \mathbf{x}_{\mathrm{new}}\right)+b\right)
$$

- Implies a threshold of zero (sign function)
- However, we could use any threshold we like....
- The Receiver Operating Characteristic (ROC) curve shows how S_{e} and $1-S_{p}$ vary as the threshold changes.

ROC curve

- SVM for nonlinear data with $\beta=50$.
- Each point is a threshold value.
- Bottom left - everything classified as 0 (-1 in SVM)
- Top right - everything classified as 1.
- Goal: get the curve to the top left corner - perfect classification $\left(S_{e}=1, S_{p}=1\right)$.

ROC curve

- SVM for nonlinear data with $\beta=0.01$.
- Better than $\beta=50$
- Closer to top left corner.

ROC curve

- SVM for nonlinear data with $\beta=1$.
- Better still.

AUC

- We can quantify performance by computing the Area Under the ROC Curve (AUC)
- The higher this value, the better.
- $\beta=50: \mathrm{AUC}=0.8348$
- $\beta=0.01:$ AUC $=0.9551$
- $\beta=1: \mathrm{AUC}=0.9936$

AUC

- We can quantify performance by computing the Area Under the ROC Curve (AUC)
- The higher this value, the better.
- $\beta=50: \mathrm{AUC}=0.8348$
- $\beta=0.01:$ AUC $=0.9551$
- $\beta=1: \mathrm{AUC}=0.9936$
- AUC is generally a safer measure than $0 / 1$ loss.

Confusion matrices

The quantities we used to compute S_{e} and S_{p} can be neatly summarised in a table:

	True class		
	1	0	
Predicted class	1	TP	FP
	0	FN	TN

- This is known as a confusion matrix
- It is particularly useful for multi-class classification.
- Tells us where the mistakes are being made.
- Note that normalising columns gives us S_{e} and S_{p}

Confusion matrices - example

- 20 newsgroups data.
- Thousands of documents from 20 classes (newsgroups)
- Use a Naive Bayes classifier (≈ 50000 dimensions (words)!)
- Details in book Chapter.
- ≈ 7000 independent test documents.
- Summarise results in 20×20 confusion matrix:

True class

		...	10	11	12	13	14	15	16	18	18	19	20
$\begin{aligned} & \text { n } \\ & \frac{0}{U} \\ & 0 \\ & \pm \\ & \vdots \\ & \vdots \\ & 0 \\ & 0 \end{aligned}$	1	\ldots	4	2	0	2	10	4	7	1	12	7	47
	2	...	0	0	4	18	7	8	2	0	1	1	3
	3	\ldots	0	0	1	0	1	0	1	0	0	0	0
	4		1	0	1	28	3	0	0	0	0	0	0
	.												
	16	\ldots	3	2	2	5	17	4	376	3	7	2	68
	17	. .	1	0	9	0	3	1	3	325	3	95	19
	18		2	1	0	2	6	2	1	2	325	4	5
	19	...	8	4	8	0	10	21	1	16	19	185	7
	20		0	0	1	0	1	1	2	4	0	1	92

	True class												
			10	11	12	13	14	15	16	18	18	19	20
	1	\ldots	4	2	0	2	10	4	7	1	12	7	47
	2	\ldots	0	0	4	18	7	8	2	0	1	1	3
\%	3	\ldots	0	0	1	0	1	0	1	0	0	0	0
T	4		1	0	1	28	3	0	0	0	0	0	0
$$:						
0	16	\ldots	3	2	2	5	17	4	376	3	7	2	68
0	17	\ldots	1	0	9	0	3	1	3	325	3	95	19
	18		2	1	0	2	6	2	1	2	325	4	5
	19		8	4	8	0	10	21	1	16	19	185	7
	20		0	0	1	0	1	1	2	4	0	1	92

- Algorithm is getting 'confused' between classes 20 and 16, and 19 and 17.
- 17: talk.politics.guns
- 19: talk.politics.misc

	.		True class										
			10	11	12	13	14	15	16	18	18	19	20
	1	...	4	2	0	2	10	4	7	1	12	7	47
	2	\ldots	0	0	4	18	7	8	2	0	1	1	3
n	3	. .	0	0	1	0	1	0	1	0	0	0	0
\bigcirc	4		1	0	1	28	3	0	0	0	0	0	0
$$:						
D	16	\ldots	3	2	2	5	17	4	376	3	7	2	68
\bigcirc	17	. .	1	0	9	0	3	1	3	325	3	95	19
	18	\ldots	2	1	0	2	6	2	1	2	325	4	5
	19		8	4	8	0	10	21	1	16	19	185	7
	20		0	0	1	0	1	1	2	4	0	1	92

- Algorithm is getting 'confused' between classes 20 and 16, and 19 and 17.
- 17: talk.politics.guns
- 19: talk.politics.misc
- 16: talk.religion.misc
- 20: soc.religion.christian

	.		True class										
			10	11	12	13	14	15	16	18	18	19	20
	1	...	4	2	0	2	10	4	7	1	12	7	47
	2	\ldots	0	0	4	18	7	8	2	0	1	1	3
n	3	. .	0	0	1	0	1	0	1	0	0	0	0
\bigcirc	4		1	0	1	28	3	0	0	0	0	0	0
$$:						
D	16	\ldots	3	2	2	5	17	4	376	3	7	2	68
\bigcirc	17	. .	1	0	9	0	3	1	3	325	3	95	19
	18	\ldots	2	1	0	2	6	2	1	2	325	4	5
	19		8	4	8	0	10	21	1	16	19	185	7
	20		0	0	1	0	1	1	2	4	0	1	92

- Algorithm is getting 'confused' between classes 20 and 16, and 19 and 17.
- 17: talk.politics.guns
- 19: talk.politics.misc
- 16: talk.religion.misc
- 20: soc.religion.christian
- Maybe these should be just one class?
- Maybe we need more data in these classes?

	True class												
		\ldots	10	11	12	13	14	15	16	18	18	19	20
	1	\ldots	4	2	0	2	10	4	7	1	12	7	47
	2	\ldots	0	0	4	18	7	8	2	0	1	1	3
n	3	\ldots	0	0	1	0	1	0	1	0	0	0	0
-	4		1	0	1	28	3	0	0	0	0	0	0
$$:						
\mathbb{O}	16		3	2	2	5	17	4	376	3	7	2	68
-	17	. . .	1	0	9	0	3	1	3	325	3	95	19
	18		2	1	0	2	6	2	1	2	325	4	5
	19		8	4	8	0	10	21	1	16	19	185	7
	20		0	0	1	0	1	1	2	4	0	1	92

- Algorithm is getting 'confused' between classes 20 and 16, and 19 and 17.
- 17: talk.politics.guns
- 19: talk.politics.misc
- 16: talk.religion.misc
- 20: soc.religion.christian
- Maybe these should be just one class?
- Maybe we need more data in these classes?
- Confusion matrix helps us direct our efforts to improving the classifier.

Summary

- SVM: a kernel classifier.
- Linear classifier - (possibly) nonlinear data transformation.

Summary

- SVM: a kernel classifier.
- Linear classifier - (possibly) nonlinear data transformation.
- Introduced two different performance measures:
- 0/1 loss
- ROC/AUC

Summary

- SVM: a kernel classifier.
- Linear classifier - (possibly) nonlinear data transformation.
- Introduced two different performance measures:
- $0 / 1$ loss
- ROC/AUC
- Introduced confusion matrices - a way of assessing the performance of a multi-class classifier.

