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Classification syllabus

I 4 classification algorithms.
I Of which:

I 2 are probabilistic.
I Bayes classifier.
I Logistic regression.

I 2 non-probabilistic.
I K-nearest neighbours.
I Support Vector Machines (SVM).

I There are many others!
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The margin

I We have seen several algorithms where we find the parameters
that optimise something:
I Minimise the loss.
I Maximise the likelihood.
I Maximise the posterior (MAP).

I The Support Vector Machine (SVM) is no different:

I It finds the decision boundary that maximises the margin.
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Some data
I We’ll ‘think’ in 2-dimensions.
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SVM is a binary classifier.
N data points, each with
attributes x = [x1, x2]T and
target t = ±1

I A linear decision boundary can be represented as a straight
line:

wTx + b = 0

I Our task is to find w and b
I Once we have these, classification is easy:

wTxnew + b > 0 : tnew = 1

wTxnew + b < 0 : tnew = −1

I i.e. tnew = sign(wTxnew + b)
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I Need a quantity to optimise!

I Use the margin, γ

I Maximise it!

γ

Perpendicular distance from the decision boundary to the closest
points on each side.
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Why maximise the margin?
γ

γ

I Maximum margin decision boundary (left) seems to better
reflect the data characteristics than other boundary (right).

I Note how margin is much smaller on right and closest points
have changed.

I There is going to be one ‘best’ boundary (w.r.t margin)

I Statistical theory justifying the choice.
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Computing the margin

2γ =
1

||w||w
T(x1 − x2)

Fix the scale such that:

wTx1 + b = 1

wTx2 + b = −1

Therefore:

(wTx1 + b)− (wTx2 + b) = 2

wT(x1 − x2) = 2

γ =
1

||w||

x1

x2

x1 − x2

2γ
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Maximising the margin

I We want to maximise γ = 1
||w||

I Equivalent to minimising ||w||
I Equivalent to minimising 1

2 ||w||2 = 1
2wTw

I There are some constraints:
I For xn with tn = 1: wTxn + b ≥ 1
I For xn with tn = −1: wTxn + b ≤ −1

I Which can be expressed more neatly as:

tn(wTxn + b) ≥ 1

I (This is why we use tn = ±1 and not tn = {0, 1}.)
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Maximising the margin

I We have the following optimisation problem:

argmin
w

1

2
wTw

Subject to: tn(wTxn + b) ≥ 1

I Can put the constraints into the minimisation using Lagrange
multipliers:

argmin
w

1

2
wTw −

N∑
n=1

αn(tn(wTxn + b)− 1)

Subject to: αn ≥ 0
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What now?

I Let’s think about what happens at the solution (we’ll see
why...)

I We know that ∂
∂w = 0 and ∂

∂b = 0.

∂

∂w
= w −

∑
n

αntnxn = 0

∂

∂b
= −

∑
n

αntn = 0

I From which we can infer that:

w =
∑
n

αntnxn∑
n

αntn = 0

I Substitute these back into our optimisation problem:
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=
∑
n

αn −
1

2

∑
n,m

αnαmtntmxTn xm

I Instead of minimising the previous expression, we can
maximise this one (for reasons we won’t go into).

I Subject to:

αn ≥ 0∑
n

αntn = 0

I Decision function was sign(wTxnew + b) and is now:

tnew = sign

(
N∑

n=1

αntnxTn xnew + b

)
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I This is a standard optimisation problem (quadratic
programming)

I Has a single, global solution. This is very useful!

I Many algorithms around to solve it.

I e.g. quadprog in Matlab...
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Optimal boundary
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I Optimisation gives us α1, . . . , αN

I Compute w =
∑

n αntnxn
I Compute b = tn −wTxn (for one of the closest points)

I Recall that we defined wTxn + b = ±1 = tn for closest points.

I Plot wTx + b = 0



Support Vectors

I At the optimum, only 3 non-zero α values (squares).

−2 0 2 4
−2

0

2

4

6

x1

x
2

I tnew = sign
(∑

n αntnxTn xnew + b
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I Predictions only depend on these data-points!

I We knew that – margin is only a function of closest points.

I These are called Support Vectors
I Normally a small proportion of the data:

I Solution is sparse.



Support Vectors

I At the optimum, only 3 non-zero α values (squares).

−2 0 2 4
−2

0

2

4

6

x1

x
2

I tnew = sign
(∑

n αntnxTn xnew + b
)

I Predictions only depend on these data-points!

I We knew that – margin is only a function of closest points.

I These are called Support Vectors
I Normally a small proportion of the data:

I Solution is sparse.



Support Vectors

I At the optimum, only 3 non-zero α values (squares).

−2 0 2 4
−2

0

2

4

6

x1

x
2

I tnew = sign
(∑

n αntnxTn xnew + b
)

I Predictions only depend on these data-points!

I We knew that – margin is only a function of closest points.

I These are called Support Vectors

I Normally a small proportion of the data:
I Solution is sparse.



Support Vectors

I At the optimum, only 3 non-zero α values (squares).

−2 0 2 4
−2

0

2

4

6

x1

x
2

I tnew = sign
(∑

n αntnxTn xnew + b
)

I Predictions only depend on these data-points!

I We knew that – margin is only a function of closest points.

I These are called Support Vectors
I Normally a small proportion of the data:

I Solution is sparse.



Is sparseness good?

I Not always:

−2 0 2 4 6

−2

0

2

4

6

x1

x
2

I Why does this happen?

tn(wTxn + b) ≥ 1

I All points must be on correct side of boundary.

I This is a hard margin
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Soft margin
I We can relax the constraints:

tn(wTxn + b) ≥ 1− ξn, ξn ≥ 0

I Our optimisation becomes:

argmin
w
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2
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ξn

subject to tn(wTxn + b) ≥ 1− ξn
I And when we add Lagrange etc:

argmax
α

N∑
n=1

αn −
1

2

N∑
n.m=1

αnαmtntmxTn xm

subject to
N∑

n=1

αntn = 0, 0 ≤ αn ≤ C

I The only change is an upper-bound on αn!
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Soft margins

I Here’s our problematic data again:
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I αn for the ‘bad’ square is 3.5.

I So, if we set C < 3.5, we should see this point having less
influence and the boundary moving to somewhere more
sensible...
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Soft margins
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−2 0 2 4 6

−2

0

2

4

6

x1

x
2

I We have an extra support vector.

I And a better decision boundary.



Soft margins

I The choice of C is very important.

I Too high and we over-fit to noise.
I Too low and we underfit

I ...and lose any sparsity.

I Choose it using cross-validation.



Soft margins

I The choice of C is very important.

I Too high and we over-fit to noise.
I Too low and we underfit

I ...and lose any sparsity.

I Choose it using cross-validation.



SVMs – some observations

I In our example, we started with 3 parameters:

w = [w1,w2]T, b

I In general: D+1.

I We now have N: α1, . . . , αN

I Sounds harder?
I Depends on data dimensionality:

I Typical Microarray dataset:
I D ∼ 3000,N ∼ 30.
I In some cases N � D
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Inner products

I Here’s the optimisation problem:

argmax
α

∑
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αn −
1

2

∑
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αnαmtntmxTn xm

I Here’s the decision function:

tnew = sign

(∑
n

αntnxTn xnew + b

)

I Data (xn, xm, xnew, etc) only appears as inner (dot) products:

xTn xm, xTn xnew, etc
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Projections

I Our SVM can find linear decision boundaries.

I What if the data requires something nonlinear?
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I We can transform the data e.g.:

φ(xn) = x2n1 + x2n2

I So that it can be separated with a straight line.

I And use φ(xn) instead of xn in our optimisation.
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Projections

I Our optimisation is now:

argmax
α

∑
n

αn −
1

2

∑
n,m

αnαmtntmφ(xn)Tφ(xm)

I And predictions:

tnew = sign

(∑
n

αntnφ(xn)Tφ(xnew) + b

)

I In this case:

φ(xTn )φ(xm) = (x2n1 + x2n2)(x2m1 + x2m2) = k(xn, xm)

I We can think of the dot product in the projected space as a
function of the original data.
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Projections

I We needn’t directly think of projections at all.

I Can just think of functions k(xn, xm) that are dot products in
some space.

I Called kernel functions.

I Don’t ever need to actually project the data – just use the
kernel function to compute what the dot product would be if
we did project.

I Optimisation task:

argmax
α

∑
n

αn −
1

2

∑
n,m

αnαmtntmk(xn, xm)

I Predictions:

tnew = sign

(∑
n

αntnk(xn, xnew) + b

)
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I Don’t ever need to actually project the data – just use the
kernel function to compute what the dot product would be if
we did project.
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Kernels

I Plenty of off-the-shelf kernels that we can use:

I Linear:
k(xn, xm) = xTn xm

I Gaussian:

k(xn, xm) = exp
{
−β(xn − xm)T(xn − xm)

}
I Polynomial:

k(xn, xm) = (1 + xTn xm)β

I These all correspond to φ(xn)Tφ(xm) for some transformation
φ(xn).

I Don’t know what the projections φ(xn) are – don’t need to
know!
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Kernels

I Our algorithm is still only finding linear boundaries....

I ...but we’re finding linear boundaries in some other space.
I The optimisation is just as simple, regardless of the kernel

choice.
I Still a quadratic program.
I Still a single, global optimum.

I We can find very complex decision boundaries with a linear
algorithm!
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A technical point

I Our decision boundary was defined as wTx + b = 0.

I Now, w is defined as:

w =
N∑

n=1

αntnφ(xn)

I We don’t know φ(xn).

I We only know φ(xn)Tφ(xm) = k(xn, xm)

I So, we can’t compute w or the boundary!

I But we can evaluate the predictions on a grid of xnew and use
Matlab to draw a contour:

N∑
n=1

αntnk(xn, xnew) + b
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Aside: kernelising other algorithms

I Many algorithms can be kernelised.
I Any that can be written with data only appearing as inner

products.

I Simple algorithms can be used to solve very complex
problems!

I Class exercise:
I KNN requires the distance between xnew and each xn:

(xnew − xn)T(xnew − xn)

I Can we kernelise it?



Example – nonlinear data
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I We’ll use a Gaussian kernel:

k(xn, xm) = exp
{
−β(xn − xm)T(xn − xm)

}
I And vary β (C = 10).
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I β = 1.

k(xn, xm) = exp
{
−β(xn − xm)T(xn − xm)

}
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I β = 0.01.

k(xn, xm) = exp
{
−β(xn − xm)T(xn − xm)

}
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I β = 50.

k(xn, xm) = exp
{
−β(xn − xm)T(xn − xm)

}



The Gaussian kernel

I β controls the complexity of the decision boundaries.

I β = 0.01 was too simple:
I Not flexible enough to surround just the square class.

I β = 50 was too complex:
I Memorises the data.

I β = 1 was about right.

I Neither β = 50 or β = 0.01 will generalise well.

I Both are also non-sparse (lots of support vectors).
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Choosing kernel function, parameters and C

I Kernel function and parameter choice is data dependent.

I Easy to overfit.

I Need to set C too
I C and β are linked

I C too high – overfitting.
I C too low – underfitting.

I Cross-validation!
I Search over β and C

I SVM scales with N3 (naive implementation)
I For large N, cross-validation over many C and β values is

infeasible.
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Summary - SVMs

I Described a classifier that is optimised by maximising the
margin.

I Did some re-arranging to turn it into a quadratic
programming problem.

I Saw that data only appear as inner products.

I Introduced the idea of kernels.

I Can fit a linear boundary in some other space without
explicitly projecting.

I Loosened the SVM constraints to allow points on the wrong
side of boundary.

I Other algorithms can be kernelised...we’ll see a clustering one
in the future.



Topics ...

I Linear SVM

I Soft-Margin SVM

I Kernels - Kernel SVM

I Classifier Performance



Performance evaluation

I We’ve seen 4 classification algorithms.
I How do we choose?

I Which algorithm?
I Which parameters?

I Need performance indicators.

I We’ll cover:
I 0/1 loss.
I ROC analysis (sensitivity and specificity)
I Confusion matrices
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0/1 loss

I 0/1 loss: proportion of times classifier is wrong.

I Consider a set of predictions t1, . . . , tN and a set of true labels
t∗1 , . . . , t

∗
N .

I Mean loss is defined as:

1

N

N∑
n=1

δ(tn 6= t∗n)

I (δ(a) is 1 if a is true and 0 otherwise)

I Advantages:
I Can do binary or multiclass classification.
I Simple to compute.
I Single value.
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0/1 loss

Disadvantage: Doesn’t take into account class imbalance:

I We’re building a classifier to detect a rare disease.

I Assume only 1% of population is diseased.

I Diseased: t = 1

I Healthy: t = 0

I What if we always predict healthy? (t = 0)

I Accuracy 99%

I But classifier is rubbish!
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Sensitivity and specificity

I We’ll stick with our disease example.

I Need to define 4 quantities. The numbers of:

I True positives (TP) – the number of objects with t∗n = 1 that
are classified as tn = 1 (diseased people diagnosed as
diseased).

I True negatives (TN) – the number of objects with t∗n = 0 that
are classified as tn = 0 (healthy people diagnosed as healthy).

I False positives (FP) – the number of objects with t∗n = 0 that
are classified as tn = 1 (healthy people diagnosed as diseased).

I False negatives (FN) – the number of objects with t∗n = 1 that
are classified as tn = 0 (diseased people diagnosed as healthy).
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Sensitivity

Se =
TP

TP + FN

I The proportion of diseased people that we classify as diseased.

I The higher the better.

I In our example, Se = 0.



Specificity

Sp =
TN

TN + FP

I The proportion of healthy people that we classify as healthy.

I The higher the better.

I In our example, Sp = 1.



Optimising sensitivity and specificity

I We would like both to be as high as possible.

I Often increasing one will decrease the other.

I Balance will depend on application:
I e.g. diagnosis:

I We can probably tolerate a decrease in specificity (healthy
people diagnosed as diseased)....

I ...if it gives us an increase in sensitivity (getting diseased
people right).
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ROC analysis

I Many classification algorithms involve setting a threshold.

I e.g. SVM:

tnew = sign

(
N∑

n=1

tnαnk(xn, xnew) + b

)

I Implies a threshold of zero (sign function)

I However, we could use any threshold we like....

I The Receiver Operating Characteristic (ROC) curve shows
how Se and 1− Sp vary as the threshold changes.
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ROC curve
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I SVM for nonlinear data with β = 50.
I Each point is a threshold value.

I Bottom left – everything classified as 0 (-1 in SVM)
I Top right – everything classified as 1.

I Goal: get the curve to the top left corner – perfect
classification (Se = 1, Sp = 1).
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I SVM for nonlinear data with β = 0.01.
I Better than β = 50

I Closer to top left corner.
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I SVM for nonlinear data with β = 1.

I Better still.



AUC

I We can quantify performance by computing the Area Under
the ROC Curve (AUC)

I The higher this value, the better.

I β = 50: AUC=0.8348
I β = 0.01: AUC= 0.9551
I β = 1: AUC=0.9936

I AUC is generally a safer measure than 0/1 loss.
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Confusion matrices

The quantities we used to compute Se and Sp can be neatly
summarised in a table:

True class
1 0

Predicted class
1 TP FP
0 FN TN

I This is known as a confusion matrix

I It is particularly useful for multi-class classification.

I Tells us where the mistakes are being made.

I Note that normalising columns gives us Se and Sp



Confusion matrices – example

I 20 newsgroups data.

I Thousands of documents from 20 classes (newsgroups)
I Use a Naive Bayes classifier (≈ 50000 dimensions (words)!)

I Details in book Chapter.

I ≈ 7000 independent test documents.

I Summarise results in 20× 20 confusion matrix:



True class
. . . 10 11 12 13 14 15 16 18 18 19 20

P
re
d
ic
te
d
cl
a
ss

1 . . . 4 2 0 2 10 4 7 1 12 7 47
2 . . . 0 0 4 18 7 8 2 0 1 1 3
3 . . . 0 0 1 0 1 0 1 0 0 0 0
4 . . . 1 0 1 28 3 0 0 0 0 0 0

.

.

.
16 . . . 3 2 2 5 17 4 376 3 7 2 68
17 . . . 1 0 9 0 3 1 3 325 3 95 19
18 . . . 2 1 0 2 6 2 1 2 325 4 5
19 . . . 8 4 8 0 10 21 1 16 19 185 7
20 . . . 0 0 1 0 1 1 2 4 0 1 92

I Algorithm is getting ‘confused’ between classes 20 and 16,
and 19 and 17.

I 17: talk.politics.guns
I 19: talk.politics.misc
I 16: talk.religion.misc
I 20: soc.religion.christian

I Maybe these should be just one class?

I Maybe we need more data in these classes?

I Confusion matrix helps us direct our efforts to improving the
classifier.
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17 . . . 1 0 9 0 3 1 3 325 3 95 19
18 . . . 2 1 0 2 6 2 1 2 325 4 5
19 . . . 8 4 8 0 10 21 1 16 19 185 7
20 . . . 0 0 1 0 1 1 2 4 0 1 92

I Algorithm is getting ‘confused’ between classes 20 and 16,
and 19 and 17.
I 17: talk.politics.guns
I 19: talk.politics.misc
I 16: talk.religion.misc
I 20: soc.religion.christian

I Maybe these should be just one class?

I Maybe we need more data in these classes?

I Confusion matrix helps us direct our efforts to improving the
classifier.



Summary

I SVM: a kernel classifier.

I Linear classifier – (possibly) nonlinear data transformation.

I Introduced two different performance measures:
I 0/1 loss
I ROC/AUC

I Introduced confusion matrices – a way of assessing the
performance of a multi-class classifier.
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