Logistic regression

Morteza H. Chehreghani
morteza.chehreghani@chalmers.se

Chalmers University of Technology
May 6, 2019

Reference

The content and the slides are adapted from
S. Rogers and M. Girolami, A First Course in Machine Learning (FCML), 2nd edition, Chapman \& Hall/CRC 2016, ISBN: 9781498738484

Classification syllabus

- 4 classification algorithms.
- Of which:
- 2 are probabilistic.
- Bayes classifier.
- Logistic regression.
- 2 are non-probabilistic.
- K-nearest neighbours.
- Support Vector Machines.
- There are many others!

Some data

Logistic regression

- In the Bayes classifier, we built a model of each class and then used Bayes rule:

$$
P\left(t_{\text {new }}=k \mid \mathbf{x}_{\text {new }}, \mathbf{X}, \mathbf{t}\right)=\frac{p\left(\mathbf{x}_{\text {new }} \mid t_{\text {new }}=k, \mathbf{X}, \mathbf{t}\right) P\left(t_{\text {new }}=k\right)}{\sum_{j} p\left(\mathbf{x}_{\text {new }} \mid t_{\text {new }}=j, \mathbf{X}, \mathbf{t}\right) P\left(t_{\text {new }}=j\right)}
$$

Logistic regression

- In the Bayes classifier, we built a model of each class and then used Bayes rule:

$$
P\left(t_{\text {new }}=k \mid \mathbf{x}_{\text {new }}, \mathbf{X}, \mathbf{t}\right)=\frac{p\left(\mathbf{x}_{\text {new }} \mid t_{\text {new }}=k, \mathbf{X}, \mathbf{t}\right) P\left(t_{\text {new }}=k\right)}{\sum_{j} p\left(\mathbf{x}_{\text {new }} \mid t_{\text {new }}=j, \mathbf{X}, \mathbf{t}\right) P\left(t_{\text {new }}=j\right)}
$$

- Alternative is to directly model $P\left(t_{\text {new }}=k \mid \mathbf{x}_{\text {new }}, \mathbf{X}, \mathbf{t}\right)=f\left(\mathbf{x}_{\text {new }} ; \mathbf{w}\right)$ with some parameters \mathbf{w}.

Logistic regression

- In the Bayes classifier, we built a model of each class and then used Bayes rule:

$$
P\left(t_{\text {new }}=k \mid \mathbf{x}_{\text {new }}, \mathbf{X}, \mathbf{t}\right)=\frac{p\left(\mathbf{x}_{\text {new }} \mid t_{\text {new }}=k, \mathbf{X}, \mathbf{t}\right) P\left(t_{\text {new }}=k\right)}{\sum_{j} p\left(\mathbf{x}_{\text {new }} \mid t_{\text {new }}=j, \mathbf{X}, \mathbf{t}\right) P\left(t_{\text {new }}=j\right)}
$$

- Alternative is to directly model $P\left(t_{\text {new }}=k \mid \mathbf{x}_{\text {new }}, \mathbf{X}, \mathbf{t}\right)=f\left(\mathbf{x}_{\text {new }} ; \mathbf{w}\right)$ with some parameters \mathbf{w}.
- We've seen $f\left(\mathbf{x}_{\text {new }} ; \mathbf{w}\right)=\mathbf{w}^{\top} \mathbf{x}_{\text {new }}$ before - can we use it here?
- No - output is unbounded and so can't be a probability.

Logistic regression

- In the Bayes classifier, we built a model of each class and then used Bayes rule:

$$
P\left(t_{\text {new }}=k \mid \mathbf{x}_{\text {new }}, \mathbf{X}, \mathbf{t}\right)=\frac{p\left(\mathbf{x}_{\text {new }} \mid t_{\text {new }}=k, \mathbf{X}, \mathbf{t}\right) P\left(t_{\text {new }}=k\right)}{\sum_{j} p\left(\mathbf{x}_{\text {new }} \mid t_{\text {new }}=j, \mathbf{X}, \mathbf{t}\right) P\left(t_{\text {new }}=j\right)}
$$

- Alternative is to directly model $P\left(t_{\text {new }}=k \mid \mathbf{x}_{\text {new }}, \mathbf{X}, \mathbf{t}\right)=f\left(\mathbf{x}_{\text {new }} ; \mathbf{w}\right)$ with some parameters \mathbf{w}.
- We've seen $f\left(\mathbf{x}_{\text {new }} ; \mathbf{w}\right)=\mathbf{w}^{\top} \mathbf{x}_{\text {new }}$ before - can we use it here?
- No - output is unbounded and so can't be a probability.
- But, can use $P\left(t_{\text {new }}=k \mid \mathbf{x}_{\text {new }}, \mathbf{w}\right)=h\left(f\left(\mathbf{x}_{\text {new }} ; \mathbf{w}\right)\right)$ where $h(\cdot)$ squashes $f\left(\mathbf{x}_{\text {new }} ; \mathbf{w}\right)$ to lie between 0 and 1 - a probability.
- For logistic regression (binary), we use the sigmoid function:

$$
P\left(t_{\text {new }}=1 \mid \mathbf{x}_{\text {new }}, \mathbf{w}\right)=h\left(\mathbf{w}^{\top} \mathbf{x}_{\text {new }}\right)=\frac{1}{1+\exp \left(-\mathbf{w}^{\top} \mathbf{x}_{\text {new }}\right)}
$$

- For logistic regression (binary), we use the sigmoid function:

$$
\begin{array}{r}
P(T=1 \mid \mathbf{x}, \mathbf{w})=h\left(\mathbf{w}^{\top} \mathbf{x}\right)=\frac{1}{1+\exp \left(-\mathbf{w}^{\top} \mathbf{x}\right)} \\
P(T=0 \mid \mathbf{x}, \mathbf{w})=1-h\left(\mathbf{w}^{\top} \mathbf{x}\right)=\frac{\exp \left(-\mathbf{w}^{\top} \mathbf{x}\right)}{1+\exp \left(-\mathbf{w}^{\top} \mathbf{x}\right)}
\end{array}
$$

Perceptron

Likelihood

$$
\begin{aligned}
p(\mathbf{t} \mid \mathbf{X}, \mathbf{w}) & =\prod_{n=1}^{N} p\left(t_{n} \mid \mathbf{x}_{n}, \mathbf{w}\right) \\
& =\prod_{t_{n}=1} p\left(t_{n} \mid \mathbf{x}_{n}, \mathbf{w}\right) \prod_{t_{n}=0} p\left(t_{n} \mid \mathbf{x}_{n}, \mathbf{w}\right) \\
& =\prod_{t_{n}=1} h\left(\mathbf{w}^{\top} \mathbf{x}_{n}\right) \prod_{t_{n}=0}\left(1-h\left(\mathbf{w}^{\top} \mathbf{x}_{n}\right)\right)
\end{aligned}
$$

Cross Entropy

The negative log-likelihood is written by

$$
\begin{aligned}
\mathbf{J}(\mathbf{w}) & =-\sum_{t_{n}=1} \log h\left(\mathbf{w}^{\top} \mathbf{x}_{n}\right)-\sum_{t_{n}=0} \log \left(1-h\left(\mathbf{w}^{\top} \mathbf{x}_{n}\right)\right) \\
& =-\sum_{n=1}^{N} t_{n} \log h\left(\mathbf{w}^{\top} \mathbf{x}_{n}\right)+\left(1-t_{n}\right) \log \left(1-h\left(\mathbf{w}^{\top} \mathbf{x}_{n}\right)\right)
\end{aligned}
$$

Minimization of Cross Entropy

We minimize Cross Entropy to infer the model parameters w_{j}.

$$
\frac{\partial \mathbf{J}}{\partial w_{j}}=-\sum_{n=1}^{N}\left[t_{n}-h\left(\mathbf{w}^{T} \mathbf{x}_{n}\right)\right] \mathbf{x}_{n, j}
$$

We may use Gradient Descent for this purpose:

$$
w_{j} \leftarrow w_{j}-\eta \frac{\partial \mathbf{J}}{\partial w_{j}}
$$

Multiclass Classification

Data in K classes

$$
\left(\mathbf{x}_{1}, t_{1}\right), \cdots\left(\mathbf{x}_{N}, t_{N}\right)
$$

where each $t_{n} \in\{1 \cdots K\}$

One hot representation

Each label $t_{n} \in\{1 \cdots K\}$ can be represented as a $0 / 1 K$-vector, with

$$
t_{n, k}=\left\{\begin{array}{l}
1, \text { if } t_{n}=k \\
0, \text { otherwise }
\end{array}\right.
$$

Softmax Regression

$$
P(T=k \mid \mathbf{x}, \mathbf{w})=\frac{\exp \left(-\mathbf{w}^{k} \mathbf{x}\right)}{\sum_{\ell=1}^{K} \exp \left(-\mathbf{w}^{\ell} \mathbf{x}\right)}
$$

That is, we have K parameter vectors $\mathbf{w}^{1}, \cdots, \mathbf{w}^{K}$ with \mathbf{w}^{k} used to compute the probability $P\left(t_{n, k}=1\right)$.

Cross Entropy: Multiple Classes

The Cross-Entropy loss is written by

$$
\mathbf{J}=-\sum_{n=1}^{N} \sum_{k=1}^{K} t_{n, k} \log \frac{\exp \left(-\mathbf{w}^{k} \mathbf{x}_{n}\right)}{\sum_{\ell=1}^{K} \exp \left(-\mathbf{w}^{\ell} \mathbf{x}_{n}\right)}
$$

Gradient

The gradient can be used in Gradient-Descent optimization, or for other purposes.

$$
\frac{\partial \mathbf{J}}{\partial w_{j}^{k}}=-\sum_{n=1}^{N}\left[t_{n, k}-\frac{\exp \left(-\mathbf{w}^{k} \mathbf{x}_{n}\right)}{\sum_{\ell=1}^{K} \exp \left(-\mathbf{w}^{\ell} \mathbf{x}_{n}\right)}\right] \mathbf{x}_{n, j}
$$

Bayesian logistic regression

- Recall the Bayesian ideas from few lectures ago....
- In theory, if we place a prior on \mathbf{w} and define a likelihood we can obtain a posterior:

$$
p(\mathbf{w} \mid \mathbf{X}, \mathbf{t})=\frac{p(\mathbf{t} \mid \mathbf{X}, \mathbf{w}) p(\mathbf{w})}{p(\mathbf{t} \mid \mathbf{X})}
$$

Bayesian logistic regression

- Recall the Bayesian ideas from few lectures ago....
- In theory, if we place a prior on \mathbf{w} and define a likelihood we can obtain a posterior:

$$
p(\mathbf{w} \mid \mathbf{X}, \mathbf{t})=\frac{p(\mathbf{t} \mid \mathbf{X}, \mathbf{w}) p(\mathbf{w})}{p(\mathbf{t} \mid \mathbf{X})}
$$

- And we can make predictions by taking expectations (averaging over w):

$$
P\left(t_{\text {new }}=1 \mid \mathbf{x}_{\text {new }}, \mathbf{X}, \mathbf{t}\right)=\mathbf{E}_{p(\mathbf{w} \mid \mathbf{X}, \mathbf{t})}\left\{P\left(t_{\text {new }}=1 \mid \mathbf{x}_{\text {new }}, \mathbf{w}\right)\right\}
$$

- Sounds good so far....

Defining a prior

- Choose a Gaussian prior:

$$
p(\mathbf{w})=\prod_{d=1}^{D} \mathcal{N}\left(0, \sigma^{2}\right)
$$

- For simplicity, here we assume w_{0} is zero.
- The prior has the parameter σ^{2}.
- Prior choice is always important from a data analysis point of view.
- Previously, it was also important 'for the maths'.
- This isn't the case today - could choose any prior - no prior makes the maths easier!

Defining a likelihood

- First assume independence:

$$
p(\mathbf{t} \mid \mathbf{X}, \mathbf{w})=\prod_{n=1}^{N} p\left(t_{n} \mid \mathbf{x}_{n}, \mathbf{w}\right)
$$

Defining a likelihood

- First assume independence:

$$
p(\mathbf{t} \mid \mathbf{X}, \mathbf{w})=\prod_{n=1}^{N} p\left(t_{n} \mid \mathbf{x}_{n}, \mathbf{w}\right)
$$

- We have already defined this - it's our squashing function! If $t_{n}=1$:

$$
P\left(t_{n}=1 \mid \mathbf{x}_{n}, \mathbf{w}\right)=\frac{1}{1+\exp \left(-\mathbf{w}^{\top} \mathbf{x}_{n}\right)}
$$

- and if $t_{n}=0$:

$$
P\left(t_{n}=0 \mid \mathbf{x}_{n}, \mathbf{w}\right)=1-P\left(t_{n}=1 \mid \mathbf{x}, \mathbf{w}\right)
$$

Posterior

$$
p\left(\mathbf{w} \mid \mathbf{X}, \mathbf{t}, \sigma^{2}\right)=\frac{p(\mathbf{t} \mid \mathbf{X}, \mathbf{w}) p\left(\mathbf{w} \mid \sigma^{2}\right)}{p\left(\mathbf{t} \mid \mathbf{X}, \sigma^{2}\right)}
$$

- Now things start going wrong.
- We can't compute $p\left(\mathbf{w} \mid \mathbf{X}, \mathbf{t}, \sigma^{2}\right)$ analytically.
- Prior is not conjugate to likelihood. No prior is!
- This means we don't know the form of $p\left(\mathbf{w} \mid \mathbf{X}, \mathbf{t}, \sigma^{2}\right)$
- And we can't compute the marginal likelihood:

$$
p\left(\mathbf{t} \mid \mathbf{X}, \sigma^{2}\right)=\int p\left(\mathbf{t} \mid \mathbf{X}, \mathbf{w}, \sigma^{2}\right) p\left(\mathbf{w} \mid \sigma^{2}\right) d \mathbf{w}
$$

What can we compute?

$$
p\left(\mathbf{w} \mid \mathbf{X}, \mathbf{t}, \sigma^{2}\right)=\frac{p(\mathbf{t} \mid \mathbf{X}, \mathbf{w}) p\left(\mathbf{w} \mid \sigma^{2}\right)}{p\left(\mathbf{t} \mid \mathbf{X}, \sigma^{2}\right)}
$$

- We may not be able to compute $p\left(\mathbf{w} \mid \mathbf{X}, \mathbf{t}, \sigma^{2}\right)$
- Define $g\left(\mathbf{w} ; \mathbf{X}, \mathbf{t}, \sigma^{2}\right)=p(\mathbf{t} \mid \mathbf{X}, \mathbf{w}) p\left(\mathbf{w} \mid \sigma^{2}\right)$

What can we compute?

$$
p\left(\mathbf{w} \mid \mathbf{X}, \mathbf{t}, \sigma^{2}\right)=\frac{p(\mathbf{t} \mid \mathbf{X}, \mathbf{w}) p\left(\mathbf{w} \mid \sigma^{2}\right)}{p\left(\mathbf{t} \mid \mathbf{X}, \sigma^{2}\right)}
$$

- We may not be able to compute $p\left(\mathbf{w} \mid \mathbf{X}, \mathbf{t}, \sigma^{2}\right)$
- Define $g\left(\mathbf{w} ; \mathbf{X}, \mathbf{t}, \sigma^{2}\right)=p(\mathbf{t} \mid \mathbf{X}, \mathbf{w}) p\left(\mathbf{w} \mid \sigma^{2}\right)$
- Armed with this, we have three options:
- Find the most likely value of \mathbf{w} - a point estimate.

What can we compute?

$$
p\left(\mathbf{w} \mid \mathbf{X}, \mathbf{t}, \sigma^{2}\right)=\frac{p(\mathbf{t} \mid \mathbf{X}, \mathbf{w}) p\left(\mathbf{w} \mid \sigma^{2}\right)}{p\left(\mathbf{t} \mid \mathbf{X}, \sigma^{2}\right)}
$$

- We may not be able to compute $p\left(\mathbf{w} \mid \mathbf{X}, \mathbf{t}, \sigma^{2}\right)$
- Define $g\left(\mathbf{w} ; \mathbf{X}, \mathbf{t}, \sigma^{2}\right)=p(\mathbf{t} \mid \mathbf{X}, \mathbf{w}) p\left(\mathbf{w} \mid \sigma^{2}\right)$
- Armed with this, we have three options:
- Find the most likely value of \mathbf{w} - a point estimate.
- Approximate $p\left(\mathbf{w} \mid \mathbf{X}, \mathbf{t}, \sigma^{2}\right)$ with something easier.

What can we compute?

$$
p\left(\mathbf{w} \mid \mathbf{X}, \mathbf{t}, \sigma^{2}\right)=\frac{p(\mathbf{t} \mid \mathbf{X}, \mathbf{w}) p\left(\mathbf{w} \mid \sigma^{2}\right)}{p\left(\mathbf{t} \mid \mathbf{X}, \sigma^{2}\right)}
$$

- We may not be able to compute $p\left(\mathbf{w} \mid \mathbf{X}, \mathbf{t}, \sigma^{2}\right)$
- Define $g\left(\mathbf{w} ; \mathbf{X}, \mathbf{t}, \sigma^{2}\right)=p(\mathbf{t} \mid \mathbf{X}, \mathbf{w}) p\left(\mathbf{w} \mid \sigma^{2}\right)$
- Armed with this, we have three options:
- Find the most likely value of \mathbf{w} - a point estimate.
- Approximate $p\left(\mathbf{w} \mid \mathbf{X}, \mathbf{t}, \sigma^{2}\right)$ with something easier.
- Sample from $p\left(\mathbf{w} \mid \mathbf{X}, \mathbf{t}, \sigma^{2}\right)$.

What can we compute?

$$
p\left(\mathbf{w} \mid \mathbf{X}, \mathbf{t}, \sigma^{2}\right)=\frac{p(\mathbf{t} \mid \mathbf{X}, \mathbf{w}) p\left(\mathbf{w} \mid \sigma^{2}\right)}{p\left(\mathbf{t} \mid \mathbf{X}, \sigma^{2}\right)}
$$

- We may not be able to compute $p\left(\mathbf{w} \mid \mathbf{X}, \mathbf{t}, \sigma^{2}\right)$
- Define $g\left(\mathbf{w} ; \mathbf{X}, \mathbf{t}, \sigma^{2}\right)=p(\mathbf{t} \mid \mathbf{X}, \mathbf{w}) p\left(\mathbf{w} \mid \sigma^{2}\right)$
- Armed with this, we have three options:
- Find the most likely value of \mathbf{w} - a point estimate.
- Approximate $p\left(\mathbf{w} \mid \mathbf{X}, \mathbf{t}, \sigma^{2}\right)$ with something easier.
- Sample from $p\left(\mathbf{w} \mid \mathbf{X}, \mathbf{t}, \sigma^{2}\right)$.
- We'll cover examples of each of these in turn....
- These examples aren't the only ways of approximating/sampling.
- They are also general techniques not unique to logistic regression.

MAP estimate

- Out first method is to find the value of \mathbf{w} that maximises $p\left(\mathbf{w} \mid \mathbf{X}, \mathbf{t}, \sigma^{2}\right)($ call it $\widehat{\mathbf{w}})$.
$-g\left(\mathbf{w} ; \mathbf{X}, \mathbf{t}, \sigma^{2}\right) \propto p\left(\mathbf{w} \mid \mathbf{X}, \mathbf{t}, \sigma^{2}\right)$
- $\widehat{\mathbf{w}}$ therefore also maximises $g\left(\mathbf{w} ; \mathbf{X}, \mathbf{t}, \sigma^{2}\right)$.
- Very similar to maximum likelihood but additional effect of prior.
- Known as MAP (maximum a posteriori) solution.

MAP estimate

- Out first method is to find the value of \mathbf{w} that maximises $p\left(\mathbf{w} \mid \mathbf{X}, \mathbf{t}, \sigma^{2}\right)($ call it $\widehat{\mathbf{w}})$.
- $g\left(\mathbf{w} ; \mathbf{X}, \mathbf{t}, \sigma^{2}\right) \propto p\left(\mathbf{w} \mid \mathbf{X}, \mathbf{t}, \sigma^{2}\right)$
- $\widehat{\mathbf{w}}$ therefore also maximises $g\left(\mathbf{w} ; \mathbf{X}, \mathbf{t}, \sigma^{2}\right)$.
- Very similar to maximum likelihood but additional effect of prior.
- Known as MAP (maximum a posteriori) solution.
- Once we have $\widehat{\mathbf{w}}$, make predictions with:

$$
P\left(t_{\text {new }}=1 \mid \mathbf{x}_{\text {new }}, \widehat{\mathbf{w}}\right)=\frac{1}{1+\exp \left(-\widehat{\mathbf{w}}^{\top} \mathbf{x}_{\text {new }}\right)}
$$

MAP

- When we met maximum likelihood, we could find $\widehat{\mathbf{w}}$ exactly with some algebra.
- Can't do that here (can't solve $\frac{\partial g\left(\mathbf{w} ; \mathbf{X}, \mathbf{t}, \sigma^{2}\right)}{\partial \mathbf{w}}=\mathbf{0}$)

MAP

- When we met maximum likelihood, we could find $\widehat{\mathbf{w}}$ exactly with some algebra.
- Can't do that here (can't solve $\frac{\partial g\left(\mathbf{w} ; \mathbf{X}, \mathbf{t}, \sigma^{2}\right)}{\partial \mathbf{w}}=\mathbf{0}$)
- Resort to numerical optimisation:

1. Guess \widehat{w}
2. Change it a bit in a way that increases $g\left(\mathbf{w} ; \mathbf{X}, \mathbf{t}, \sigma^{2}\right)$
3. Repeat until no further increase is possible.

MAP

- When we met maximum likelihood, we could find $\widehat{\mathbf{w}}$ exactly with some algebra.
- Can't do that here (can't solve $\frac{\partial g\left(\mathbf{w} ; \mathbf{X}, \mathbf{t}, \sigma^{2}\right)}{\partial \mathbf{w}}=\mathbf{0}$)
- Resort to numerical optimisation:

1. Guess \widehat{w}
2. Change it a bit in a way that increases $g\left(\mathbf{w} ; \mathbf{X}, \mathbf{t}, \sigma^{2}\right)$
3. Repeat until no further increase is possible.

- Many algorithms exist that differ in how they do step 2.
- e.g. Gradient Descent and Newton-Raphson (book Chapter 4)
- Not covered in this course. You just need to know that sometimes we can't do things analytically and there are methods to help us!

MAP - numerical optimisation for our data

- Left: Data.
- Right: Evolution of $\widehat{\mathbf{w}}$ in numerical optimisation.
- We set $\sigma^{2}=10$.

Decision boundary

- Once we have $\widehat{\mathbf{w}}$, we can classify new examples.
- Decision boundary is a useful visualisation:

- Line corresponding to $P\left(t_{\text {new }}=1 \mid \mathbf{x}_{\text {new }}, \widehat{\mathbf{w}}\right)=0.5$.

$$
0.5=\frac{1}{2}=\frac{1}{1+\exp \left(-\widehat{\mathbf{w}}^{\top} \mathbf{x}_{\text {new }}\right)} .
$$

So: $\exp \left(-\widehat{\mathbf{w}}^{\top} \mathbf{x}_{\text {new }}\right)=1$. Or: $\widehat{\mathbf{w}}^{\top} \mathbf{x}_{\text {new }}=0$

Predictive probabilities

- Contours of $P\left(t_{\text {new }}=1 \mid \mathbf{x}_{\text {new }}, \widehat{\mathbf{w}}\right)$.
- Do they look sensible?

Roadmap

- Find the most likely value of \mathbf{w} - a point estimate.
- Approximate $p\left(\mathbf{w} \mid \mathbf{X}, \mathbf{t}, \sigma^{2}\right)$ with something easier.
- Sample from $p\left(\mathbf{w} \mid \mathbf{X}, \mathbf{t}, \sigma^{2}\right)$.

Laplace approximation

- Our second method involves approximating $p\left(\mathbf{w} \mid \mathbf{X}, \mathbf{t}, \sigma^{2}\right)$ with another distribution.
- i.e. Find a distribution $q\left(\mathbf{w} \mid \mathbf{X}, \mathbf{t}, \sigma^{2}\right)$ which is similar.

Laplace approximation

- Our second method involves approximating $p\left(\mathbf{w} \mid \mathbf{X}, \mathbf{t}, \sigma^{2}\right)$ with another distribution.
- i.e. Find a distribution $q\left(\mathbf{w} \mid \mathbf{X}, \mathbf{t}, \sigma^{2}\right)$ which is similar.
- What is 'similar'?
- Mode (highest point) in same place.
- Similar shape?
- Might as well choose something that is easy to manipulate!

Laplace approximation

- Approximate $p\left(\mathbf{w} \mid \mathbf{X}, \mathbf{t}, \sigma^{2}\right)$ with a Gaussian:

$$
q(\mathbf{w} \mid \mathbf{X}, \mathbf{t})=\mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})
$$

- Where:

$$
\boldsymbol{\mu}=\widehat{\mathbf{w}}, \boldsymbol{\Sigma}^{-1}=-\left.\frac{\partial^{2} \log g\left(\mathbf{w} ; \mathbf{X}, \mathbf{t}, \sigma^{2}\right)}{\partial \mathbf{w} \partial \mathbf{w}^{\top}}\right|_{\widehat{\mathbf{w}}}
$$

- And:

$$
\widehat{\mathbf{w}}=\underset{\mathbf{w}}{\operatorname{argmax}} \log g\left(\mathbf{w} ; \mathbf{X}, \mathbf{t}, \sigma^{2}\right)
$$

- We already know $\widehat{\mathbf{w}} . \boldsymbol{\Sigma}$ is the negative of the inverse Hessian.

Laplace approximation

- Justification?
- Not covered on this course.
- Based on Taylor expansion of $\log g\left(\mathbf{w} ; \mathbf{X}, \mathbf{t}, \sigma^{2}\right)$ around mode ($\widehat{\boldsymbol{w}}$).
- Means approximation will be best at mode.
- Expansion up to 2nd order terms 'looks' like a Gaussian.
- See book Chapter 4 for details.

Laplace approximation - 1D example

$$
p(y \mid \alpha, \beta)=\frac{\beta^{\alpha}}{\Gamma(\alpha)} y^{\alpha-1} \exp (-\beta y)
$$

Laplace approximation - 1D example

$$
\begin{aligned}
p(y \mid \alpha, \beta) & =\frac{\beta^{\alpha}}{\Gamma(\alpha)} y^{\alpha-1} \exp (-\beta y) \\
\hat{y} & =\frac{\alpha-1}{\beta}
\end{aligned}
$$

- Note, I happen to know what the mode is. You're not expected to be able to work this out!

Laplace approximation - 1D example

$$
\begin{aligned}
p(y \mid \alpha, \beta) & =\frac{\beta^{\alpha}}{\Gamma(\alpha)} y^{\alpha-1} \exp (-\beta y) \\
\widehat{y} & =\frac{\alpha-1}{\beta} \\
\frac{\partial^{2} \log p(.)}{\partial y^{2}} & =-\frac{\alpha-1}{y^{2}} \\
\left.\frac{\partial^{2} \log p(.)}{\partial y^{2}}\right|_{\widehat{y}} & =-\frac{\alpha-1}{\widehat{y}^{2}}
\end{aligned}
$$

- Note, I happen to know what the mode is. You're not expected to be able to work this out!

Laplace approximation - 1D example

$$
\begin{aligned}
p(y \mid \alpha, \beta) & =\frac{\beta^{\alpha}}{\Gamma(\alpha)} y^{\alpha-1} \exp (-\beta y) \\
\hat{y} & =\frac{\alpha-1}{\beta} \\
\frac{\partial^{2} \log p(.)}{\partial y^{2}} & =-\frac{\alpha-1}{y^{2}} \\
\left.\frac{\partial^{2} \log p(.)}{\partial y^{2}}\right|_{\widehat{y}} & =-\frac{\alpha-1}{\widehat{y}^{2}} \\
q(y \mid \alpha, \beta) & =\mathcal{N}\left(\frac{\alpha-1}{\beta}, \frac{\widehat{y}^{2}}{\alpha-1}\right)
\end{aligned}
$$

- Note, I happen to know what the mode is. You're not expected to be able to work this out!

- Solid: true density. Dashed: approximation.
- Left: $\alpha=20, \beta=0.45$

- Solid: true density. Dashed: approximation.
- Left: $\alpha=20, \beta=0.45$
- Right: $\alpha=2, \beta=100$

- Solid: true density. Dashed: approximation.
- Left: $\alpha=20, \beta=0.45$
- Right: $\alpha=2, \beta=100$
- Approximation is best when density looks like a Gaussian (left).
- Approximation deteriorates as we move away from the mode (both).

Laplace approximation for logistic regression

- Not going into the details here.
- $p\left(\mathbf{w} \mid \mathbf{X}, \mathbf{t}, \sigma^{2}\right) \approx \mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$.
- Find $\mu=\widehat{\mathbf{w}}$ (that maximises $g\left(\mathbf{w} ; \mathbf{X}, \mathbf{t}, \sigma^{2}\right)$) by

Gradient-Descent or Newton-Raphson (already done it MAP).

- Find:

$$
\boldsymbol{\Sigma}^{-1}=-\left.\frac{\partial^{2} \log g\left(\mathbf{w} ; \mathbf{X}, \mathbf{t}, \sigma^{2}\right)}{\partial \mathbf{w} \partial \mathbf{w}^{\top}}\right|_{\widehat{\mathbf{w}}}
$$

- (Details given in book Chapter 4 if you're interested)
- How good an approximation is it?

Laplace approximation for logistic regression

- Dark lines - approximation. Light lines - proportional to $p\left(\mathbf{w} \mid \mathbf{X}, \mathbf{t}, \sigma^{2}\right)$.
- Approximation is OK.
- As expected, it gets worse as we travel away from the mode.

Predictions with the Laplace approximation

- We have $\mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$ as an approximation to $p(\mathbf{w} \mid \mathbf{X}, \mathbf{t})$.
- Can we use it to make predictions?

Predictions with the Laplace approximation

- We have $\mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$ as an approximation to $p(\mathbf{w} \mid \mathbf{X}, \mathbf{t})$.
- Can we use it to make predictions?
- Need to evaluate:

$$
\begin{aligned}
P\left(t_{\text {new }}=1 \mid \mathbf{x}_{\text {new }}, \mathbf{X}, \mathbf{t}\right) & =\mathbf{E}_{\mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})}\left\{P\left(t_{\text {new }}=1 \mid \mathbf{x}_{\text {new }}, \mathbf{w}\right)\right\} \\
& =\int \mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma}) \frac{1}{1+\exp \left(-\mathbf{w}^{\top} \mathbf{x}_{\text {new }}\right)} d \mathbf{w}
\end{aligned}
$$

Predictions with the Laplace approximation

- We have $\mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$ as an approximation to $p(\mathbf{w} \mid \mathbf{X}, \mathbf{t})$.
- Can we use it to make predictions?
- Need to evaluate:

$$
\begin{aligned}
P\left(t_{\text {new }}=1 \mid \mathbf{x}_{\text {new }}, \mathbf{X}, \mathbf{t}\right) & =\mathbf{E}_{\mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})}\left\{P\left(t_{\text {new }}=1 \mid \mathbf{x}_{\text {new }}, \mathbf{w}\right)\right\} \\
& =\int \mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma}) \frac{1}{1+\exp \left(-\mathbf{w}^{\top} \mathbf{x}_{\text {new }}\right)} d \mathbf{w}
\end{aligned}
$$

- Cannot do this! So, what was the point?

Predictions with the Laplace approximation

- We have $\mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$ as an approximation to $p(\mathbf{w} \mid \mathbf{X}, \mathbf{t})$.
- Can we use it to make predictions?
- Need to evaluate:

$$
\begin{aligned}
P\left(t_{\text {new }}=1 \mid \mathbf{x}_{\text {new }}, \mathbf{X}, \mathbf{t}\right) & =\mathbf{E}_{\mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})}\left\{P\left(t_{\text {new }}=1 \mid \mathbf{x}_{\text {new }}, \mathbf{w}\right)\right\} \\
& =\int \mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma}) \frac{1}{1+\exp \left(-\mathbf{w}^{\top} \mathbf{x}_{\text {new }}\right)} d \mathbf{w}
\end{aligned}
$$

- Cannot do this! So, what was the point?
- Sampling from $\mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$ is easy
- And we can approximate an expectation with samples!

Predictions with the Laplace approximation

- Draw S samples $\mathbf{w}_{1}, \ldots, \mathbf{w}_{S}$ from $\mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$

$$
\mathbf{E}_{\mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})}\left\{P\left(t_{\text {new }}=1 \mid \mathbf{x}_{\text {new }}, \mathbf{w}\right)\right\} \approx \frac{1}{S} \sum_{s=1}^{S} \frac{1}{1+\exp \left(-\mathbf{w}_{s}^{\top} \mathbf{x}_{\text {new }}\right)}
$$

Predictions with the Laplace approximation

- Draw S samples $\mathbf{w}_{1}, \ldots, \mathbf{w}_{S}$ from $\mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$

$$
\mathbf{E}_{\mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})}\left\{P\left(t_{\text {new }}=1 \mid \mathbf{x}_{\text {new }}, \mathbf{w}\right)\right\} \approx \frac{1}{S} \sum_{s=1}^{S} \frac{1}{1+\exp \left(-\mathbf{w}_{s}^{\top} \mathbf{x}_{\text {new }}\right)}
$$

- Contours of $P\left(t_{\text {new }}=1 \mid \mathbf{x}_{\text {new }}, \mathbf{X}, \mathbf{t}\right)$.
- Better than those from the point prediction?

Point prediction v Laplace approximation

Why the difference?

Point prediction v Laplace approximation

Why the difference?

Laplace uses a distribution $(\mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma}))$ over \mathbf{w} (and therefore a distribution over decision boundaries) and hence has less certainty.

Summary - roadmap

- Defined a squashing function that meant we could model $P\left(t_{\text {new }}=1 \mid \mathbf{x}_{\text {new }}, \mathbf{w}\right)=h\left(\mathbf{w}^{\top} \mathbf{x}_{\text {new }}\right)$
- Wanted to make 'Bayesian predictions': average over all posterior values of \mathbf{w}.
- Couldn't do it exactly.
- Tried a point estimate (MAP) and an approximate distribution (via Laplace).
- Laplace probability contours looked more sensible (to me at least!)

Summary - roadmap

- Defined a squashing function that meant we could model $P\left(t_{\text {new }}=1 \mid \mathbf{x}_{\text {new }}, \mathbf{w}\right)=h\left(\mathbf{w}^{\top} \mathbf{x}_{\text {new }}\right)$
- Wanted to make 'Bayesian predictions': average over all posterior values of \mathbf{w}.
- Couldn't do it exactly.
- Tried a point estimate (MAP) and an approximate distribution (via Laplace).
- Laplace probability contours looked more sensible (to me at least!)
- Next:
- Find the most likely value of \mathbf{w} - a point estimate.
- Approximate $p\left(\mathbf{w} \mid \mathbf{X}, \mathbf{t}, \sigma^{2}\right)$ with something easier.
- Sample from $p\left(\mathbf{w} \mid \mathbf{X}, \mathbf{t}, \sigma^{2}\right)$.

MCMC sampling

- Laplace approximation still didn't let us exactly evaluate the expectation we need for predictions.
- But....we could easily sample from it and approximate our approximation.

MCMC sampling

- Laplace approximation still didn't let us exactly evaluate the expectation we need for predictions.
- But....we could easily sample from it and approximate our approximation.
- Good news! If we're happy to sample, we can sample directly from $p\left(\mathbf{w} \mid \mathbf{X}, \mathbf{t}, \sigma^{2}\right)$ even though we can't compute it!
- i.e. don't need to use an approximation like Laplace.
- Various algorithms exist - we'll use Metropolis-Hastings

Aside - sampling from things we can't compute

- At first glance it seems strange - we can roll the die but we can't make it!
- But - it's pretty common in the world!
- Darts.....

Darts

- I want to know the probability that I hit treble 20 when I aim for treble 20.
- The distribution over where the dart lands when I aim treble 20:

$$
p(\mathbf{x} \mid \text { stuff })
$$

Darts

- I want to know the probability that I hit treble 20 when I aim for treble 20.
- The distribution over where the dart lands when I aim treble 20:

$$
p(\mathbf{x} \mid \text { stuff })
$$

- Define function $f(\mathbf{x})=1$ if \mathbf{x} in treble 20 and 0 otherwise.

Darts

- I want to know the probability that I hit treble 20 when I aim for treble 20.
- The distribution over where the dart lands when I aim treble 20:

$$
p(\mathbf{x} \mid \text { stuff })
$$

- Define function $f(\mathbf{x})=1$ if \mathbf{x} in treble 20 and 0 otherwise.
- Probability I hit treble twenty is therefore:

$$
\int f(\mathbf{x}) p(\mathbf{x} \mid \text { stuff }) d \mathbf{x}
$$

Darts

- I want to know the probability that I hit treble 20 when I aim for treble 20.
- The distribution over where the dart lands when I aim treble 20:

$$
p(\mathbf{x} \mid \text { stuff })
$$

- Define function $f(\mathbf{x})=1$ if \mathbf{x} in treble 20 and 0 otherwise.
- Probability I hit treble twenty is therefore:

$$
\int f(\mathbf{x}) p(\mathbf{x} \mid \text { stuff }) d \mathbf{x}
$$

- Can't even begin to work out how to write down $p(\mathbf{x} \mid$ stuff $)$.

Darts

- I want to know the probability that I hit treble 20 when I aim for treble 20.
- The distribution over where the dart lands when I aim treble 20:

$$
p(\mathbf{x} \mid \text { stuff })
$$

- Define function $f(\mathbf{x})=1$ if \mathbf{x} in treble 20 and 0 otherwise.
- Probability I hit treble twenty is therefore:

$$
\int f(\mathbf{x}) p(\mathbf{x} \mid \text { stuff }) d \mathbf{x}
$$

- Can't even begin to work out how to write down $p(\mathbf{x} \mid$ stuff $)$.
- But can sample - throw S darts, $\mathbf{x}_{1}, \ldots, \mathbf{x}_{S}$!
- Compute:

$$
\frac{1}{S} \sum_{s=1}^{S} f\left(\mathbf{x}_{s}\right)
$$

Back to the script: Metropolis-Hastings

- Produces a sequence of samples $-\mathbf{w}_{1}, \mathbf{w}_{2}, \ldots, \mathbf{w}_{s}, \ldots$
- Imagine we've just produced \mathbf{w}_{s-1}

Back to the script: Metropolis-Hastings

- Produces a sequence of samples $-\mathbf{w}_{1}, \mathbf{w}_{2}, \ldots, \mathbf{w}_{s}, \ldots$
- Imagine we've just produced \mathbf{w}_{s-1}
- MH first proposes a possible \mathbf{w}_{s} (call it $\widetilde{\mathbf{w}_{s}}$) based on \mathbf{w}_{s-1}.

Back to the script: Metropolis-Hastings

- Produces a sequence of samples $-\mathbf{w}_{1}, \mathbf{w}_{2}, \ldots, \mathbf{w}_{s}, \ldots$
- Imagine we've just produced \mathbf{w}_{s-1}
- MH first proposes a possible \mathbf{w}_{s} (call it $\widetilde{\mathbf{w}_{s}}$) based on \mathbf{w}_{s-1}.
- MH then decides whether or not to accept $\widetilde{\mathbf{w}_{s}}$
- If accepted, $\mathbf{w}_{s}=\widetilde{\mathbf{w}_{s}}$
- If not, $\mathbf{w}_{s}=\mathbf{w}_{s-1}$

Back to the script: Metropolis-Hastings

- Produces a sequence of samples $-\mathbf{w}_{1}, \mathbf{w}_{2}, \ldots, \mathbf{w}_{s}, \ldots$
- Imagine we've just produced \mathbf{w}_{s-1}
- MH first proposes a possible \mathbf{w}_{s} (call it $\widetilde{\mathbf{w}_{s}}$) based on \mathbf{w}_{s-1}.
- MH then decides whether or not to accept $\widetilde{\mathbf{w}_{s}}$
- If accepted, $\mathbf{w}_{s}=\widetilde{\mathbf{w}_{s}}$
- If not, $\mathbf{w}_{s}=\mathbf{w}_{s-1}$
- Two distinct steps - proposal and acceptance.

MH - proposal

- Treat $\widetilde{\mathbf{w}_{s}}$ as a random variable conditioned on \mathbf{w}_{s-1}
- i.e. need to define $p\left(\widetilde{\boldsymbol{w}_{s}} \mid \mathbf{w}_{s-1}\right)$
- Note that this does not necessarily have to be similar to posterior we're trying to sample from.
- Can choose whatever we like!

MH - proposal

- Treat $\widetilde{\mathbf{w}_{s}}$ as a random variable conditioned on \mathbf{w}_{s-1}
- i.e. need to define $p\left(\widetilde{\boldsymbol{w}_{s}} \mid \mathbf{w}_{s-1}\right)$
- Note that this does not necessarily have to be similar to posterior we're trying to sample from.
- Can choose whatever we like!
- e.g. use a Gaussian centered on \mathbf{w}_{s-1} with some covariance:

$$
p\left(\widetilde{\mathbf{w}_{s}} \mid \mathbf{w}_{s-1}, \boldsymbol{\Sigma}_{p}\right)=\mathcal{N}\left(\mathbf{w}_{s-1}, \boldsymbol{\Sigma}_{p}\right)
$$

MH - proposal

- Treat $\widetilde{\mathbf{w}_{s}}$ as a random variable conditioned on \mathbf{w}_{s-1}
- i.e. need to define $p\left(\widetilde{\boldsymbol{w}_{s}} \mid \mathbf{w}_{s-1}\right)$
- Note that this does not necessarily have to be similar to posterior we're trying to sample from.
- Can choose whatever we like!
- e.g. use a Gaussian centered on \mathbf{w}_{s-1} with some covariance:

$$
p\left(\widetilde{\mathbf{w}_{s}} \mid \mathbf{w}_{s-1}, \boldsymbol{\Sigma}_{p}\right)=\mathcal{N}\left(\mathbf{w}_{s-1}, \boldsymbol{\Sigma}_{p}\right)
$$

MH - acceptance

- Choice of acceptance based on the following ratio:

$$
r=\frac{p\left(\widetilde{\mathbf{w}_{s}} \mid \mathbf{X}, \mathbf{t}, \sigma^{2}\right)}{p\left(\mathbf{w}_{s-1} \mid \mathbf{X}, \mathbf{t}, \sigma^{2}\right)} \frac{p\left(\mathbf{w}_{s-1} \mid \widetilde{\mathbf{w}_{s}}, \boldsymbol{\Sigma}_{p}\right)}{p\left(\widetilde{\mathbf{w}_{s}} \mid \mathbf{w}_{s-1}, \boldsymbol{\Sigma}_{p}\right)}
$$

MH - acceptance

- Choice of acceptance based on the following ratio:

$$
r=\frac{p\left(\widetilde{\mathbf{w}_{s}} \mid \mathbf{X}, \mathbf{t}, \sigma^{2}\right)}{p\left(\mathbf{w}_{s-1} \mid \mathbf{X}, \mathbf{t}, \sigma^{2}\right)} \frac{p\left(\mathbf{w}_{s-1} \mid \widetilde{\mathbf{w}_{s}}, \boldsymbol{\Sigma}_{p}\right)}{p\left(\widetilde{\mathbf{w}_{s}} \mid \mathbf{w}_{s-1}, \boldsymbol{\Sigma}_{p}\right)}
$$

- Which simplifies to (all of which we can compute):

$$
r=\frac{g\left(\widetilde{\mathbf{w}_{s}} ; \mathbf{X}, \mathbf{t}, \sigma^{2}\right)}{g\left(\mathbf{w}_{s-1} ; \mathbf{X}, \mathbf{t}, \sigma^{2}\right)} \frac{p\left(\mathbf{w}_{s-1} \mid \widetilde{\mathbf{w}_{s}}, \boldsymbol{\Sigma}_{p}\right)}{p\left(\widetilde{\mathbf{w}_{s}} \mid \mathbf{w}_{s-1}, \boldsymbol{\Sigma}_{p}\right)} .
$$

MH - acceptance

- Choice of acceptance based on the following ratio:

$$
r=\frac{p\left(\widetilde{\mathbf{w}_{s}} \mid \mathbf{X}, \mathbf{t}, \sigma^{2}\right)}{p\left(\mathbf{w}_{s-1} \mid \mathbf{X}, \mathbf{t}, \sigma^{2}\right)} \frac{p\left(\mathbf{w}_{s-1} \mid \widetilde{\mathbf{w}_{s}}, \boldsymbol{\Sigma}_{p}\right)}{p\left(\widetilde{\mathbf{w}_{s}} \mid \mathbf{w}_{s-1}, \boldsymbol{\Sigma}_{p}\right)}
$$

- Which simplifies to (all of which we can compute):

$$
r=\frac{g\left(\widetilde{\mathbf{w}_{s}} ; \mathbf{X}, \mathbf{t}, \sigma^{2}\right)}{g\left(\mathbf{w}_{s-1} ; \mathbf{X}, \mathbf{t}, \sigma^{2}\right)} \frac{p\left(\mathbf{w}_{s-1} \mid \widetilde{\mathbf{w}_{s}}, \boldsymbol{\Sigma}_{p}\right)}{p\left(\widetilde{\mathbf{w}_{s}} \mid \mathbf{w}_{s-1}, \boldsymbol{\Sigma}_{p}\right)} .
$$

- We now use the following rules:
- If $r \geq 1$, accept: $\mathbf{w}_{s}=\widetilde{\mathbf{w}_{s}}$.
- If $r<1$, accept with probability r.

MH - acceptance

- Choice of acceptance based on the following ratio:

$$
r=\frac{p\left(\widetilde{\mathbf{w}_{s}} \mid \mathbf{X}, \mathbf{t}, \sigma^{2}\right)}{p\left(\mathbf{w}_{s-1} \mid \mathbf{X}, \mathbf{t}, \sigma^{2}\right)} \frac{p\left(\mathbf{w}_{s-1} \mid \widetilde{\mathbf{w}_{s}}, \boldsymbol{\Sigma}_{p}\right)}{p\left(\widetilde{\mathbf{w}_{s}} \mid \mathbf{w}_{s-1}, \boldsymbol{\Sigma}_{p}\right)}
$$

- Which simplifies to (all of which we can compute):

$$
r=\frac{g\left(\widetilde{\mathbf{w}_{s}} ; \mathbf{X}, \mathbf{t}, \sigma^{2}\right)}{g\left(\mathbf{w}_{s-1} ; \mathbf{X}, \mathbf{t}, \sigma^{2}\right)} \frac{p\left(\mathbf{w}_{s-1} \mid \widetilde{\mathbf{w}_{s}}, \boldsymbol{\Sigma}_{p}\right)}{p\left(\widetilde{\mathbf{w}_{s}} \mid \mathbf{w}_{s-1}, \boldsymbol{\Sigma}_{p}\right)}
$$

- We now use the following rules:
- If $r \geq 1$, accept: $\mathbf{w}_{s}=\widetilde{\mathbf{w}_{s}}$.
- If $r<1$, accept with probability r.
- If we do this enough, we'll eventually be sampling from $p(\mathbf{w} \mid \mathbf{X}, \mathbf{t})$, no matter where we started!
- i.e. for any \mathbf{w}_{1}

MH - flowchart

MH - walkthrough 1

MH - walkthrough 2

What do the samples look like?

- 1000 samples from the posterior using MH.

Predictions with MH

- MH provides us with a set of samples $-\mathbf{w}_{1}, \ldots, \mathbf{w}_{S}$.
- These can be used like the samples from the Laplace approximation:

$$
\begin{aligned}
P\left(t_{\text {new }}=1 \mid \mathbf{x}_{\text {new }}, \mathbf{X}, \mathbf{t}, \sigma^{2}\right) & =\mathbf{E}_{p\left(\mathbf{w} \mid \mathbf{x}, \mathbf{t}, \sigma^{2}\right)}\left\{P\left(t_{\text {new }} \mid \mathbf{x}_{\text {new }}, \mathbf{w}\right)\right\} \\
& \approx \frac{1}{S} \sum_{s=1}^{S} \frac{1}{1+\exp \left(-\mathbf{w}_{s}^{\top} \mathbf{x}_{\text {new }}\right)}
\end{aligned}
$$

Predictions with MH

- MH provides us with a set of samples - $\mathbf{w}_{1}, \ldots, \mathbf{w}_{S}$.
- These can be used like the samples from the Laplace approximation:

$$
\begin{aligned}
P\left(t_{\text {new }}=1 \mid \mathbf{x}_{\text {new }}, \mathbf{X}, \mathbf{t}, \sigma^{2}\right) & =\mathbf{E}_{p\left(\mathbf{w} \mid \mathbf{X}, \mathbf{t}, \sigma^{2}\right)}\left\{P\left(t_{\text {new }} \mid \mathbf{x}_{\text {new }}, \mathbf{w}\right)\right\} \\
& \approx \frac{1}{S} \sum_{s=1}^{S} \frac{1}{1+\exp \left(-\mathbf{w}_{s}^{\top} \mathbf{x}_{\text {new }}\right)}
\end{aligned}
$$

- Contours of $P\left(t_{\text {new }}=1 \mid \mathbf{x}_{\text {new }}, \mathbf{X}, \mathbf{t}, \sigma^{2}\right)$

Laplace vs. MH

Laplace vs. MH

Laplace approximation (left) allows some bad boundaries

Laplace vs. MH

Approximate posterior allows some values of w_{1} and w_{2} that are very unlikely in true posterior.

Summary

- Introduced logistic regression - a probabilistic binary classifier.
- Saw that we couldn't compute the posterior.
- Introduced examples of three alternatives:
- Point estimate - MAP solution.
- Approximate the density - Laplace.
- Sample - Metropolis-Hastings.
- Each is better than the last (in terms of predictions)....
- ...but each has greater complexity!
- To think about:
- What if posterior is multi-modal?

