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Classification syllabus

I 4 classification algorithms.
I Of which:

I 2 are probabilistic.
I Bayes classifier.
I Logistic regression.

I 2 are non-probabilistic.
I K-nearest neighbours.
I Support Vector Machines.

I There are many others!
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Logistic regression

I In the Bayes classifier, we built a model of each class and then
used Bayes rule:

P(tnew = k |xnew,X, t) =
p(xnew|tnew = k ,X, t)P(tnew = k)∑
j p(xnew|tnew = j ,X, t)P(tnew = j)

I Alternative is to directly model P(tnew = k|xnew,X, t) = f (xnew; w)
with some parameters w.

I We’ve seen f (xnew; w) = wTxnew before – can we use it here?
I No – output is unbounded and so can’t be a probability.

I But, can use P(tnew = k |xnew,w) = h(f (xnew; w)) where h(·)
squashes f (xnew; w) to lie between 0 and 1 – a probability.
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h(·)

I For logistic regression (binary), we use the sigmoid function:

P(tnew = 1|xnew,w) = h(wTxnew) =
1

1 + exp(−wTxnew)
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h(·)
I For logistic regression (binary), we use the sigmoid function:

P(T = 1|x,w) = h(wTx) =
1

1 + exp(−wTx)

P(T = 0|x,w) = 1− h(wTx) =
exp(−wTx)

1 + exp(−wTx)
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Perceptron



Likelihood

p(t|X,w) =
N∏

n=1

p(tn|xn,w)

=
∏

tn=1

p(tn|xn,w)
∏

tn=0

p(tn|xn,w)

=
∏

tn=1

h(wTxn)
∏

tn=0

(1− h(wTxn))



Cross Entropy

The negative log-likelihood is written by

J(w) = −
∑

tn=1

log h(wTxn)−
∑

tn=0

log(1− h(wTxn))

= −
N∑

n=1

tn log h(wTxn) + (1− tn) log(1− h(wTxn))



Minimization of Cross Entropy

We minimize Cross Entropy to infer the model parameters wj .

∂J

∂wj
= −

N∑

n=1

[tn − h(wTxn)]xn,j

We may use Gradient Descent for this purpose:

wj ← wj − η
∂J

∂wj



Multiclass Classification

Data in K classes
(x1, t1), · · · (xN , tN),

where each tn ∈ {1 · · ·K}



One hot representation

Each label tn ∈ {1 · · ·K} can be represented as a 0/1 K -vector,
with

tn,k =

{
1, if tn = k

0, otherwise



Softmax Regression

P(T = k |x,w) =
exp(−wkx)

∑K
`=1 exp(−w`x)

That is, we have K parameter vectors w1, · · · ,wK with wk used
to compute the probability P(tn,k = 1).



Cross Entropy: Multiple Classes

The Cross-Entropy loss is written by

J = −
N∑

n=1

K∑

k=1

tn,k log
exp(−wkxn)

∑K
`=1 exp(−w`xn)



Gradient

The gradient can be used in Gradient-Descent optimization, or for
other purposes.

∂J

∂wk
j

= −
N∑

n=1

[
tn,k −

exp(−wkxn)
∑K

`=1 exp(−w`xn)

]
xn,j



Bayesian logistic regression

I Recall the Bayesian ideas from few lectures ago....

I In theory, if we place a prior on w and define a likelihood we
can obtain a posterior:

p(w|X, t) =
p(t|X,w)p(w)

p(t|X)

I And we can make predictions by taking expectations
(averaging over w):

P(tnew = 1|xnew,X, t) = Ep(w|X,t) {P(tnew = 1|xnew,w)}

I Sounds good so far....
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Defining a prior

I Choose a Gaussian prior:

p(w) =
D∏

d=1

N (0, σ2).

I For simplicity, here we assume w0 is zero.
I The prior has the parameter σ2.
I Prior choice is always important from a data analysis point of

view.
I Previously, it was also important ‘for the maths’.
I This isn’t the case today – could choose any prior – no prior

makes the maths easier!



Defining a likelihood

I First assume independence:

p(t|X,w) =
N∏

n=1

p(tn|xn,w)

I We have already defined this – it’s our squashing function! If
tn = 1:

P(tn = 1|xn,w) =
1

1 + exp(−wTxn)

I and if tn = 0:

P(tn = 0|xn,w) = 1− P(tn = 1|x,w)
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Posterior

p(w|X, t, σ2) =
p(t|X,w)p(w|σ2)

p(t|X, σ2)

I Now things start going wrong.
I We can’t compute p(w|X, t, σ2) analytically.

I Prior is not conjugate to likelihood. No prior is!
I This means we don’t know the form of p(w|X, t, σ2)
I And we can’t compute the marginal likelihood:

p(t|X, σ2) =

∫
p(t|X,w, σ2)p(w|σ2) dw



What can we compute?

p(w|X, t, σ2) =
p(t|X,w)p(w|σ2)

p(t|X, σ2)

I We may not be able to compute p(w|X, t, σ2)
I Define g(w; X, t, σ2) = p(t|X,w)p(w|σ2)

I Armed with this, we have three options:
I Find the most likely value of w – a point estimate.

I Approximate p(w|X, t, σ2) with something easier.
I Sample from p(w|X, t, σ2).

I We’ll cover examples of each of these in turn....

I These examples aren’t the only ways of
approximating/sampling.

I They are also general techniques not unique to logistic
regression.
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MAP estimate

I Out first method is to find the value of w that maximises
p(w|X, t, σ2) (call it ŵ).
I g(w; X, t, σ2) ∝ p(w|X, t, σ2)
I ŵ therefore also maximises g(w; X, t, σ2).

I Very similar to maximum likelihood but additional effect of
prior.

I Known as MAP (maximum a posteriori) solution.

I Once we have ŵ, make predictions with:

P(tnew = 1|xnew, ŵ) =
1

1 + exp(−ŵTxnew)
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MAP

I When we met maximum likelihood, we could find ŵ exactly
with some algebra.

I Can’t do that here (can’t solve ∂g(w;X,t,σ2)
∂w = 0)

I Resort to numerical optimisation:

1. Guess ŵ
2. Change it a bit in a way that increases g(w; X, t, σ2)
3. Repeat until no further increase is possible.

I Many algorithms exist that differ in how they do step 2.
I e.g. Gradient Descent and Newton-Raphson (book

Chapter 4)
I Not covered in this course. You just need to know that

sometimes we can’t do things analytically and there are
methods to help us!
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MAP – numerical optimisation for our data
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I Left: Data.

I Right: Evolution of ŵ in numerical optimisation.

I We set σ2 = 10.



Decision boundary

I Once we have ŵ, we can classify new examples.

I Decision boundary is a useful visualisation:
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1 + exp(−ŵTxnew)
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So: exp(−ŵTxnew) = 1. Or: ŵTxnew = 0



Predictive probabilities
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I Contours of P(tnew = 1|xnew, ŵ).

I Do they look sensible?



Roadmap

I Find the most likely value of w – a point estimate.

I Approximate p(w|X, t, σ2) with something easier.

I Sample from p(w|X, t, σ2).



Laplace approximation

I Our second method involves approximating p(w|X, t, σ2)
with another distribution.

I i.e. Find a distribution q(w|X, t, σ2) which is similar.

I What is ‘similar’?
I Mode (highest point) in same place.
I Similar shape?
I Might as well choose something that is easy to manipulate!
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Laplace approximation

I Approximate p(w|X, t, σ2) with a Gaussian:

q(w|X, t) = N (µ,Σ)

I Where:

µ = ŵ, Σ−1 = − ∂2 log g(w; X, t, σ2)

∂w∂wT

∣∣∣∣
ŵ

I And:
ŵ = argmax

w
log g(w; X, t, σ2)

I We already know ŵ. Σ is the negative of the inverse Hessian.



Laplace approximation

I Justification?

I Not covered on this course.
I Based on Taylor expansion of log g(w; X, t, σ2) around mode

(ŵ).
I Means approximation will be best at mode.
I Expansion up to 2nd order terms ‘looks’ like a Gaussian.

I See book Chapter 4 for details.



Laplace approximation – 1D example

p(y |α, β) =
βα

Γ(α)
yα−1 exp(−βy)

ŷ =
α− 1

β

∂2 log p(.)

∂y2
= −α− 1

y2

∂2 log p(.)

∂y2

∣∣∣∣
ŷ

= −α− 1

ŷ2

q(y |α, β) = N
(
α− 1

β
,

ŷ2

α− 1

)

I Note, I happen to know what the mode is. You’re not
expected to be able to work this out!
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I Approximation deteriorates as we move away from the mode
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Laplace approximation for logistic regression

I Not going into the details here.

I p(w|X, t, σ2) ≈ N (µ,Σ).

I Find µ = ŵ (that maximises g(w; X, t, σ2)) by
Gradient-Descent or Newton-Raphson (already done it –
MAP).

I Find:

Σ−1 = − ∂2 log g(w; X, t, σ2)

∂w∂wT

∣∣∣∣
ŵ

I (Details given in book Chapter 4 if you’re interested)

I How good an approximation is it?



Laplace approximation for logistic regression
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I Dark lines – approximation. Light lines – proportional to
p(w|X, t, σ2).

I Approximation is OK.

I As expected, it gets worse as we travel away from the mode.



Predictions with the Laplace approximation

I We have N (µ,Σ) as an approximation to p(w|X, t).

I Can we use it to make predictions?

I Need to evaluate:

P(tnew = 1|xnew,X, t) = EN (µ,Σ) {P(tnew = 1|xnew,w)}

=

∫
N (µ,Σ)

1

1 + exp(−wTxnew)
dw

I Cannot do this! So, what was the point?
I Sampling from N (µ,Σ) is easy

I And we can approximate an expectation with samples!
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Predictions with the Laplace approximation
I Draw S samples w1, . . . ,wS from N (µ,Σ)

EN (µ,Σ) {P(tnew = 1|xnew,w)} ≈ 1

S

S∑

s=1

1

1 + exp(−wT
s xnew)
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I Contours of P(tnew = 1|xnew,X, t).
I Better than those from the point prediction?
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EN (µ,Σ) {P(tnew = 1|xnew,w)} ≈ 1

S

S∑

s=1

1

1 + exp(−wT
s xnew)
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Point prediction v Laplace approximation
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Laplace uses a distribution (N (µ,Σ)) over w (and therefore a
distribution over decision boundaries) and hence has less certainty.
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Summary – roadmap

I Defined a squashing function that meant we could model
P(tnew = 1|xnew,w) = h(wTxnew)

I Wanted to make ‘Bayesian predictions’: average over all
posterior values of w.

I Couldn’t do it exactly.

I Tried a point estimate (MAP) and an approximate
distribution (via Laplace).

I Laplace probability contours looked more sensible (to me at
least!)

I Next:
I Find the most likely value of w – a point estimate.
I Approximate p(w|X, t, σ2) with something easier.
I Sample from p(w|X, t, σ2).
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MCMC sampling

I Laplace approximation still didn’t let us exactly evaluate the
expectation we need for predictions.

I But....we could easily sample from it and approximate our
approximation.

I Good news! If we’re happy to sample, we can sample directly
from p(w|X, t, σ2) even though we can’t compute it!

I i.e. don’t need to use an approximation like Laplace.

I Various algorithms exist – we’ll use Metropolis-Hastings
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Aside – sampling from things we can’t compute

I At first glance it seems strange – we can roll the die but we
can’t make it!

I But – it’s pretty common in the world!

I Darts.....



Darts

I I want to know the probability that I hit treble 20 when I aim
for treble 20.

I The distribution over where the dart lands when I aim treble
20:

p(x|stuff)

I Define function f (x) = 1 if x in treble 20 and 0 otherwise.

I Probability I hit treble twenty is therefore:
∫

f (x)p(x|stuff) dx

I Can’t even begin to work out how to write down p(x|stuff).

I But can sample – throw S darts, x1, . . . , xS !

I Compute:

1

S

S∑

s=1

f (xs)
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Back to the script: Metropolis-Hastings

I Produces a sequence of samples – w1,w2, . . . ,ws , . . .

I Imagine we’ve just produced ws−1

I MH first proposes a possible ws (call it w̃s) based on ws−1.

I MH then decides whether or not to accept w̃s

I If accepted, ws = w̃s

I If not, ws = ws−1

I Two distinct steps – proposal and acceptance.
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MH – proposal
I Treat w̃s as a random variable conditioned on ws−1
I i.e. need to define p(w̃s |ws−1)

I Note that this does not necessarily have to be similar to
posterior we’re trying to sample from.

I Can choose whatever we like!

I e.g. use a Gaussian centered on ws−1 with some covariance:

p(w̃s |ws−1,Σp) = N (ws−1,Σp)

−2 0 2 4 6 8 10
−7

−6

−5

−4

−3

−2

−1

0

1

2

3

w1

w
2

Σ =

�
1 0
0 1

�

Σ =

�
0.1 0
0 0.1

�



MH – proposal
I Treat w̃s as a random variable conditioned on ws−1
I i.e. need to define p(w̃s |ws−1)

I Note that this does not necessarily have to be similar to
posterior we’re trying to sample from.

I Can choose whatever we like!
I e.g. use a Gaussian centered on ws−1 with some covariance:

p(w̃s |ws−1,Σp) = N (ws−1,Σp)

−2 0 2 4 6 8 10
−7

−6

−5

−4

−3

−2

−1

0

1

2

3

w1

w
2

Σ =

�
1 0
0 1

�

Σ =

�
0.1 0
0 0.1

�



MH – proposal
I Treat w̃s as a random variable conditioned on ws−1
I i.e. need to define p(w̃s |ws−1)

I Note that this does not necessarily have to be similar to
posterior we’re trying to sample from.

I Can choose whatever we like!
I e.g. use a Gaussian centered on ws−1 with some covariance:

p(w̃s |ws−1,Σp) = N (ws−1,Σp)

−2 0 2 4 6 8 10
−7

−6

−5

−4

−3

−2

−1

0

1

2

3

w1

w
2

Σ =

�
1 0
0 1

�

Σ =

�
0.1 0
0 0.1

�



MH – acceptance

I Choice of acceptance based on the following ratio:

r =
p(w̃s |X, t, σ2)

p(ws−1|X, t, σ2)

p(ws−1|w̃s ,Σp)

p(w̃s |ws−1,Σp)
.

I Which simplifies to (all of which we can compute):

r =
g(w̃s ; X, t, σ2)

g(ws−1; X, t, σ2)

p(ws−1|w̃s ,Σp)

p(w̃s |ws−1,Σp)
.

I We now use the following rules:
I If r ≥ 1, accept: ws = w̃s .
I If r < 1, accept with probability r .

I If we do this enough, we’ll eventually be sampling from
p(w|X, t), no matter where we started!
I i.e. for any w1
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MH – flowchart
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ratio r
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MH – walkthrough 1
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MH – walkthrough 2
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What do the samples look like?
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I 1000 samples from the posterior using MH.



Predictions with MH
I MH provides us with a set of samples – w1, . . . ,wS .
I These can be used like the samples from the Laplace

approximation:

P(tnew = 1|xnew,X, t, σ2) = Ep(w|X,t,σ2) {P(tnew|xnew,w)}

≈ 1

S

S∑

s=1

1

1 + exp(−wT
s xnew)
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Laplace vs. MH
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Laplace vs. MH
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Summary

I Introduced logistic regression – a probabilistic binary classifier.

I Saw that we couldn’t compute the posterior.
I Introduced examples of three alternatives:

I Point estimate – MAP solution.
I Approximate the density – Laplace.
I Sample – Metropolis-Hastings.

I Each is better than the last (in terms of predictions)....

I ...but each has greater complexity!
I To think about:

I What if posterior is multi-modal?
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