Introduction to Deep Learning

textbook: Deep Learning, An MIT Press book
http://www.deeplearningbook.org/

slides by: Alexander Amini, MIT

m=
O
wn



‘Deep Voice’ Software o o
aamemos | N€ Rise of Deep Learning  uwerrsemacm
Voice With Just 3.7

Seconds of Audio

Using snippets of voices, Baidu's ‘Deep Voice’
can generate new speech, accents, and tones.

Let There Be Sight: How Deep Learning Is Helping the Blind ‘See’

m K . . . .
5 it . *hnology outpacing security  Af beats docs in cancer spottin |
\ t W't I’}FAI":I")‘I I L\ I) I ures § r‘vi—.];::J(‘-«B.:.";(::'l::‘-‘\:!;;‘vl--u: machine Jearning as an import: | . d |
Pr s n TAR('P Y] f
= STARCRAFT | |
|
- TRIUMPH F(
‘Creative’ AlphaZero leads way for
chess computers and, maybe, science
Former ¢ ln S WOr h!u'n|1 n G m\lw| arov likes what he
How an A.l ‘Cat-and-Mouse Game’ e faces show how far Al i image generation has
Generates Believable Fake Photos nced in just four years
ito'ckPPre;iiti:lni Based On Al: Is the Market Neural networks everywhere
ruly Predictabler o Mpl New chip reduces neural networks' power consumption by up 1o 95 percent, making
st ¢ them practical for battery-powered devices.
; “ (—. -L- Digital Reporter - W (BRandne
After Millions of Trials, Th;se Simulaiéd Rumans
l.ea:ieit‘o Do Perfect Backflips and Cartwheels y ﬁ ' ot st g techoy
® Automation And Algonthms
» % De-Risking Manufacturing With
AN = S Artificial Intelligence
N & ’ . \ @ Sarah Goshrke
! ] B * Researchers |ntroducea decp tearning method z
| d foldi - e that copverts mono audio récordings into 3D [ TWEET THIS
Google's Deelen aces protein folding seunds using video scenes g e two key ppiicatons of A iy manufacturing are ricing and
N . e i manufacturability feedbac
III' B Massachusetts 6.5191 Introduction to Deep Learning 128/19
Technology introtodeeplearning.com



http://introtodeeplearning.com/

What is Deep Learning?
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Why Deep Learning and Why Now!?



Why Deep Learning!?

Hand engineered features are time consuming, brittle and not scalable in practice

Can we learn the underlying features directly from data?

Low Level Features Mid Level Features High Level Features

Lines & Edges Eyes & Nose & Ears Facial Structure
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Why Now?

N/ Neural Networks date back decades, so why the resurgence!?
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The Perceptron
The structural building block of deep learning



The Perceptron: Forward Propagation

Linear combination
Output of inputs
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The Perceptron: Forward Propagation
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of inputs
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The Perceptron: Forward Propagation

J=g(wo+X"W)

W1
andW:l5 ]

Wm

Ng
l
N

X1
where: X =
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The Perceptron: Forward Propagation

Activation Functions
1

0

xl W\‘

y = g(W0+XTW)

—_— 5 * Example: sigmoid function
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Common Activation

Sigmoid Function Hyperbolic Tangent
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g'(z)= g1 -g() g'(z)=1-g(2)?

P Q

s tf.nn.sigmoid(z)

Functions

Rectified Linear Unit (RelLU)
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4 35(22))
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g(z)=max (0, z)

'(2) = 1, z >0

9 1o, otherwise

NOTE: All activation functions are non-linear

6.5191 Introduction to Deep Learning

I I I BB Massachusetts
introtodeeplearing.com

I I Institute of
Technology

1/28/19


http://introtodeeplearning.com/

Importance of Activation Functions

The purpose of activation functions is to introduce non-linearities into the network
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Importance of Activation Functions

The purpose of activation functions is to introduce non-linearities into the network
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Linear Activation functions produce linear
decisions no matter the network size
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Importance of Activation Functions

The purpose of activation functions is to introduce non-linearities into the network
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Linear Activation functions produce linear Non-linearities allow us to approximate
decisions no matter the network size arbitrarily complex functions
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The Perceptron: Example

We have: wyg =1 and W = l_gzl

y=g(we+X"W)

-
l
N

=g (1+ [ [3)

Yy =9g(1+3x1—2x,)

/
Xy \ J

Y
This is just a line in 2D!
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The Perceptron: Example

y =901+ 3x; - 2x3)

Ry
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The Perceptron: Example

Yy =9g(1+3x1—2x5)

1 1 + / ’
-1 g
3 l 2 ]\ @) T /t\/
xl > Z = / 5} AIX%AT,'\/

_2 N
/ X1
< } } } } ) | >
X2

Assume we have input: X = [_ 1] 4
2 /
y =g(1+ @Bx—1) - (2%2)) / 1
= g(=6) ~ 0.002 !
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The Perceptron: Example

y =901+ 3x; - 2x3)
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Building Neural Networks with Perceptrons



The Perceptron: Simplified
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The Perceptron: Simplified

y =g9(2)
>

m
Z==W0-+zzﬁﬂxywi
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Multi Output Perceptron

X1
y1 = 9(z1)
Al >
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Single Layer Neural Network
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Single Layer Neural Network
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Multi Output Perceptron

Inputs

‘Zdl

Hidden

¥.° from tf.keras.layers import *

B

inputs = Inputs (m)

hidden = Dense (d;) (inputs)
outputs = Dense (2) (hidden)
model = Model (inputs, outputs)

Output
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Inputs

Deep Neural Network

Zk,dy,

Hidden

dg-1
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Zki — Wé,i) + E - g(zk—l,j) Wj(,i)
]=
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Applying Neural Networks



Example Problem

WIll | pass this class!

Let’s start with a simple two feature model

x1 = Number of lectures you attend

X, = Hours spent on the final project
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Example Problem: Will | pass this class!?

X, = Hours
spent on the
final project

x1 = Number of lectures you attend
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Example Problem: Will | pass this class!?

X, = Hours
spent on the
final project

x1 = Number of lectures you attend
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Example Problem: Will | pass this class!?

Zq
I X1
x(l) = [4 ,5] Zy V1 Predicted: 0.1
N X,
Z3
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Example Problem: Will | pass this class!?

Zq
| " Predicted: 0.1
(1) — ~ redictea: 0.
x*V =[4,5] 22 Y1 Actuali 1
N X,
Z3
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Quantifying Loss

The loss of our network measures the cost incurred from incorrect predictions

Zq
| i Predicted: 0.1
(1) — ~ redictea: 0.
X - [4 ’5] 22 V1 Actual: 1
N X,
Z3

L (f (x(i); W), y(i))

Predicted Actual
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Empirical Loss

The empirical loss measures the total loss over our entire dataset

f(x) y

_ — VAl B . B B
4,5 4 o1 | |
_ 12, | " 0.8 0
X :
5’ 8 ) V1 06 |
s X2 : :
| _ 7 o -

1~ . .
e T =L (0w, y0)

Objective function n .
- l
Cost function

Empirical Risk Predicted Actual
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Binary Cross Entropy Loss

Cross entropy loss can be used with models that output a probability between O and |

— — Z1 _f(x)_ _ Y _
45 0.1 |
_ 2, | . 0.8 0
X .
5 8 Z) Y1 06 |
. X2 . .
__ — Z3 | ’ - L ) —

JW) = %z:;ly(i) log (f(x(i); W)) +(1—-y®D)log (1 — f(x(i); W))

Actual Predicted Actual Predicted

P

"8 loss = tf.reduce mean( tf.nn.softmax cross_entropy with logits (model.y, model.pred) )



Mean Squared Error Loss

Mean squared error loss can be used with regression models that output continuous real numbers

, f0)
_ 1 SV
4ol g 30| |90
_ 2, | N 80 20
X
5, 8 “ L les| |95
: X2 . .
) ” R RN
1" . . 2 ] }
W) = — () _ ©. w Final Grades
Jw) n zi=1 (L f(x )) (percentage)

Actual Predicted

&

. loss = tf.reduce mean( tf.square(tf.subtract (model.y, model.pred) )



Training Neural Networks



Loss Optimization

We want to find the network weights that achieve the lowest loss

1~ . .
W* = argmin — E L(f(x(‘); W),y(‘))
w n i=1

W* = argmin J(W)
w
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Loss Optimization

We want to find the network weights that achieve the lowest loss

1~ . .
W* = argmin — E L(f(x(‘); W),y(‘))
w n i=1

W* = argmin J(W)
w

|

Remember:
W = {W(O), W(l)’ }
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Loss Optimization

W* = argmin J (W)
w

Remember:
Our loss is a function of
the network weights!

](WOJ Wl) |




Loss Optimization

Randomly pick an initial (wq, wy)

](W0' Wl) |




Loss Optimization

. W)
Compute gradient, W

](WOJ Wl) |




Loss Optimization

Take small step in opposite direction of gradient

](WOJ Wl) |




Gradient Descent

Repeat until convergence

](WOJ Wl) '




Gradient Descent

Algorithm

| ) |ni‘tia|ize We|gh‘ts random|>/ ~N(O, 0'2) /: weights = tf.random normal (shape, stddev=sigma)

2. Loop until convergence:

3- Compute gradien‘t a] a(W) /? grads = tf.gradients (ys=loss, xs=weights)
) W y
. a]
4. Update Welghts, W W — n a(uu;) A weights new = weights.assign(weights — lr * grads)
5. Return weights
| Illil- Massachusetts 65191 Introduction to Deep Learning 28119
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Gradient Descent

Algorithm

| ) |ni‘tia|ize We|gh‘ts random|>/ ~N(O, 0'2) /: weights = tf.random normal (shape, stddev=sigma)

2. Loop until convergence:

3- Compute gradien‘t a] a(W) /? grads = tf.gradients (ys=loss, xs=weights)
) W y
. a]
4. Update Welghts, W W — n a(uu;) A weights new = weights.assign(weights — lr * grads)
5. Return weights
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Computing Gradients: Backpropagation

How does a small change in one weight (ex. w,) dffect the final loss J(W)!
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Computing Gradients: Backpropagation

oJj(W)

aWZ

\

Let's use the chain rule!
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Computing Gradients: Backpropagation

Yw) _ogw) oy

dw, ay odw,
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Computing Gradients: Backpropagation

Yw) _ogmw) 9y

A\
owq ay owq
T | f
Apply chain rule! Apply chain rule!
| Illil- Massachusetts 65191 Introduction to Deep Learning 128/19
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Computing Gradients: Backpropagation

Jw) _gmw) 33 oz

dwq ay 074 dwq
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Computing Gradients: Backpropagation

Jyw) _gmw) 3 oz

dwq ay 074 dwq

Repeat this for every weight in the network using gradients from later layers
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Backpropagation: a simple example | x -2

flz,y,2) = (z 4+ y)z yD@,S

eg.Xx=-2,y=95,z=+4

=12

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 4 - 12 April 13, 2017



Backpropagation: a simple example | x -2
q 3
f(z,9,2) = (x + y)z yé____::>(£>
f -12

eg.Xx=-2,y=95,z=+4

z -4
_ o . 0q _
q=Tt+Y g—l,a—l
aF  _aF
f=qz 0= %5 — 4
of of of

Want:  =-—, 9 B

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 4 - 13 April 13, 2017



Backpropagation: a simple example | x -2
q 3
f(z,9,2) = (x + y)z yD@

eg.Xx=-2,y=95,z=+4

_ dqg 0q
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of _ _ of _
f=gqz 0= %5 — 4
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Backpropagation: a simple example | x -2
q 3
f(z,9,2) = (x + y)z yD@

eg.Xx=-2,y=95,z=+4
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q=Tt+Y g—l,a—l
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Backpropagation: a simple example | x -2
q 3
f(z,9,2) = (x + y)z yD@
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Backpropagation: a simple example | x -2
q 3
f(z,9,2) = (x + y)z yD@
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Backpropagation: a simple example | x -2
q 3
f(z,9,2) = (x + y)z yD@

eg.Xx=-2,y=95,z=+4

_ o . 0q _
q=Tt+Y g—l,a—l
- oF _ , OF _ 0q
f_qz 3(1_2&@3_(1
of Oof Of

Want:  =-—, 9 B
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Backpropagation: a simple example | x -2
i
f(xayaz):($+y)z YD@F
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Backpropagation: a simple example | x -2
i
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Backpropagation: a simple example | x -2
i
f(xayaz):($+y)z YD@F

eg.x=-2,y=95,z=+4

_ a a9 Chain rule: Ay
f=qz 3Q_z’@,z_q g:gﬁ
of of Of 0y dq Oy

Want:  =-—, 9 B
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Backpropagation: a simple example

flz,y,2) = (z + y)z
eg.x=-2,y=5,z=+4

_ 0 ., O0q
of _ of
f=qz 0= %5 — 4
of of Of

Want: Pz By Bz
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Backpropagation: a simple example

flz,y,2) = (z + y)z
eg.x=-2,y=5,z=+4

— g . ¢
- of _  of _ Chain rule: Oz
f_qz 3q_zaaz_q @_f_gi
of 8f of 55— 0 Bz

Want: Pz By Bz
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“local gradient”
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“local gradient”

gradients
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“local gradient”
~ 8

gradients
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“local gradient”

gradients
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Neural Networks in Practice:
Optimization



Training Neural Networks is Difficult

“Visualizing the loss landscape
of neural nets”. Dec 201 7.
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Loss Functions Can Be Difficult to Optimize

Remember:
Optimization through gradient descent
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Loss Functions Can Be Difficult to Optimize

Remember:
Optimization through gradient descent

How can we set the
learning rate?
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Setting the Learning Rate

Small learning rate converges slowly and gets stuck in false local minima

Jw),,

\ Initial guess
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Setting the Learning Rate

Large learning rates overshoot, become unstable and diverge

Jw),,

\ Initial guess
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Setting the Learning Rate

Stable learning rates converge smoothly and avoid local minima

J(6) .,

\ Initial guess
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How to deal with this?

ldea |:

Try lots of different learning rates and see what works “just right”
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How to deal with this?

ldea 2:

Do something smarter
Design an adaptive learning rate that “adapts’ to the landscape

I 6.5191 Introduction to Deep Learning
I lnstitute of ) .
Technology introtodeeplearning.com

1/28/19



http://introtodeeplearning.com/

Adaptive Learning Rates

* Learning rates are no longer fixed

* (Can be made larger or smaller depending on:

* how large gradient is

* how fast learning is happening
* size of particular weights

* elc..
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Adaptive Learning Rate Algorithms

| Qian et al.“On the momentum term in gradient
e Momentum T Cf-train.MomentumOptimizer descent learning algorithms.” 1999.

&

P . . Duchi et al."Adaptive Subgradient Methods for Online
e Ad agrad ) SIS EE RN CEIEE0, Sleun A e Learning and Stochastic Optimization.’ 201 I.

o> , . Zeller et al."ADADELTA: An Adaptive Learning Rate
° AC adelta 5 tf.train.AdadeltaOptimizer Method” 2017,

Kingma et al."Adam: A Method for Stochastic
Optimization.” 2014.

¢ AC am /: tf.train.AdamOptimizer

e RM S Pro , ’? tf.train.RMSPropOptimizer

Additional detalls: http://ruderio/optimizing-gradient-descent/
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Neural Networks in Practice:
Mini-batches



Gradient Descent

Algorithm
. Initialize weights randomly ~N (0, %)

2. Loop until convergence:

3. Compute gradient, a]a(;l;)
4 Update weights, W « W —n a]a(;l/,)

5. Return weights
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Gradient Descent

Algorithm
. Initialize weights randomly ~N (0, %)

2. Loop until convergence:

daj

3. Compute gradient, (3;)

J
4 Update weights, W « W —n (W)
5. Return weights et

Can be very
computational to
compute!
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Stochastic Gradient Descent

Algorithm
. Initialize weights randomly ~N (0, %)

2. Loop until convergence:

3. Pick single data point i

4 - aJi(W)
Compute gradient, W

>. Update weights, W « W —n a]a(:z)

6. Return weights
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Stochastic Gradient Descent

Algorithm
. Initialize weights randomly ~N (0, %)

2. Loop until convergence:

3. Pick single data point i

4 - (W)
Compute gradient, e

>. Update weights, W « W —n a]a(:z)

6. Return weights

Easy to compute but
very noisy
(stochastic)!
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Stochastic Gradient Descent

Algorithm
. Initialize weights randomly ~N (0, %)

2. Loop until convergence:

3. Pick batch of B data points ”
4 Compute gradient, a](W) = —Zk 161231”) ; I
>. Update weights, W « W —n a](W)

6. Return weights
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Stochastic Gradient Descent

Algorithm
. Initialize weights randomly ~N (0, %)

2. Loop until convergence:

3. Pick batch of B data points
4. Compute gradient, a](W) = —Zk 1 a]gg,”) Lo
> Update weights, W « W — 1) a]a(w

6. Return weights

Fast to compute and a much better
estimate of the true gradient!
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Mini-batches while training

More accurate estimation of gradient
Smoother convergence
Allows for larger learning rates
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Mini-batches while training

Mini-batches lead to fast training!
Can parallelize computation + achieve significant speed increases on GPU's
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Neural Networks in Practice:
Overdfitting



The Problem of Overfitting

Underfitting < Ideal fit > Overfitting
Model does not have capacity Too complex, extra parameters,
to fully learn the data does not generalize well
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Regularization

What is it?

lechnique that constrains our optimization problem to discourage complex models
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Regularization

Why do we need it?

Improve generalization of our model on unseen data
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Regularization |: Dropout

* During training, randomly set some activations to O

211 Z21

X1
21,2 222 1

X2
21,3 223 V2

X3
21,4 2724
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Regularization |: Dropout

* During training, randomly set some activations to O
* Typically ‘drop’ 50% of activations In layer -~

? " tf.keras.layers.Dropout (p=0.5)

* Forces network to not rely on any node

Z21
X1
21,2 1
X2
223 V2
X3
21,4 224
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Regularization |: Dropout

* During training, randomly set some activations to O
* Typically ‘drop’ 50% of activations In layer -~

? " tf.keras.layers.Dropout (p=0.5)

* Forces network to not rely on any node

211
X1
222 1
X2
21,3 223 V2
X3
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Regularization 2: Early Stopping

* Stop training before we have a chance to overfit

A

|.oss

Training lterations
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Regularization 2: Early Stopping

* Stop training before we have a chance to overfit

A

Legend

L oss Testing

T?anmg

Training Iterations
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Regularization 2: Early Stopping

* Stop training before we have a chance to overfit

A

Legend

Loss Testing

T?anmg

Training Iterations
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Regularization 2: Early Stopping

* Stop training before we have a chance to overfit

A

Legend

L oss Testing

T?anmg

Training Iterations
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* Stop training before we have a chance to overfit

Regularization 2: Early Stopping

A

|.oss
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Regularization 2: Early Stopping

* Stop training before we have a chance to overfit

|.oss
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Regularization 2: Early Stopping

* Stop training before we have a chance to overfit

A

Legend
Stop training Testing
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% Training
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Regularization 2: Early Stopping

* Stop training before we have a chance to overfit

A

Under-fitting Over-fitting

Legend
Stop training Testing
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4&&{ Training
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Core Foundation Review

The Perceptron Neural Networks Training in Practice

 Structural building blocks

* Nonlinear activation
functions

* Stacking Perceptrons to
form neural networks

Optimization through

backpropagation
2k
X1
Zk,2 91
AN X x]...[%
Zk3 V2

Zk,d,,

* Adaptive learning
e Batching

* Regularization
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Questions!
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