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Question 1

(the simplex method)

a) To transform the problem to standard form, first replace the free variable(2p)
x1 with the non-negative variables x+

1 and x−

1 such that x1 = x+
1 − x−

1 .
Then change sign on the inequality constraint and substract a slack variable
s1 ≥ 0. A BFS cannot be found directly, hence begin with a phase 1 problem
using artificial variables a1, a2 ≥ 0 in both constraints. The objective is to
minimize a1 + a2. Start with the BFS given by (a1, a2) in the basis. In
the first iteration of the simplex algorithm, x−

1 is the only variable with
a negative reduced cost (−4), and is therefore the only eligable incoming
variable. The minimum ratio test shows that a2 should leave the basis. In
the next iteration, s1 is the only variable with a negative reduced cost (− 1

3
)

and is chosen as the incoming variable. The minimum ratio test shows that
x3 should leave. No artificial variables are left in the basis, and we can
proceed to phase 2.

The reduced costs in the first iteration of the phase 2 problem are

c̃T
(x+

1
,x2,x3)

= (0, 1, 1) ≥ 0,

and thus the optimality condition is fulfilled for the current basis. We have
x∗

B = (5, 2)T, or, in the original variables, x∗ = (x1, x2, x3)
∗ = (−2, 0, 0)T,

with the optimal value z∗ = 2.

b) The dual to the LP is given by(1p)

maximize w = 2x1 − y2,

subject to − y1 + 3y2 = −1,

− 2y1 + y2 ≤−1,

− y1 ≤ 0,

y1 ∈ R (free),

y2 ≤ 0.

The primal problem has an optimal solution. Then, from strong duality, so
does the dual problem. Add a slack variable y3 ≥ 0 in the second constraint
and let the dual optimal solution be y∗. There cannot exist a solution u

to the given system, since if that would be the case, then y∗ + u would be
feasible in the dual with a larger objective value (from the third row in the
system). This is a contradiction to y∗ being optimal.
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Question 2

(modelling)

a) One possibility is the following formulation:(1p)

min f(x, y),

s.t. xj(1 − xj) = 0, j = 1, . . . , n, (NLP)

Ax ≤ b,

yi ≥ 0, i = 1, . . . , m.

b) Two problems must be solved. The optimal solution to MIP is given by the(2p)
solution to the problem with the least optimal value. That is, the optimal
value of MIP is

z∗ = min{z∗0 , z
∗

1},

where

z∗0 = min f(x, y),

s.t. x = 0, (P0)

Ax ≤ b,

yi ≥ 0, i = 1, . . . , m,

and

z∗1 = min f(x, y),

s.t. x = 1, (P1)

Ax ≤ b,

yi ≥ 0, i = 1, . . . , m.

Question 3

(topics in Lagrangian duality)

a) See The Book, Theorem 6.4.(1p)
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b) Under the assumptions on X, for any vector µ ∈ R
m the function L(·, µ) is(1p)

weakly coercive with respect to X (see The Book, Definition 4.5). By the
continuity assumptions on f and gi, i = 1, . . . , m, L(·, µ) is also continuous.
Hence, Weierstrass’ Theorem 4.7 applies.

c) x∗ = 0; the dual problem has no optimal solution; however, f ∗ = q∗ = 0,(1p)
whence the duality gap Γ = 0.

Question 4(3p)

(complementarity slackness theorem)

We first establish that if the system (3) is satisfied at (x, y) then the pair (x, y)
is primal–dual optimal in (1), (2). By assumption, x (respectively, y) is a fea-
sible solution to the primal (respectively, dual) problem. By the Weak Duality
Theorem 10.5, then, cTx ≤ bTy. The system (3) implies that in fact equality
holds. This immediately, by the Corollary 10.6 to the Weak Duality Theorem,
implies that the pair (x, y) must be optimal.

Suppose then that the pair (x, y) is primal–dual optimal in (1), (2). Then,
cTx = bTy holds, by the Strong Duality Theorem. In the string of inequalities

cTx ≤ yTATx ≤ bTy

provided by the Weak Duality Theorem 10.5, equality then must hold throughout.
From the resulting two equalities then follow (3).

Question 5

(quadratic programming)

a) The KKT-conditions are:(1p)

2Hx + ATλ = 0n

The problem is a convex problem with linear constraints, so a feasible so-
lution which fulfills the KKT-conditions is a global optimal solution. Since
H is postive definite and hence invertible, we have:

x∗ = −1
2
H−1ATλ,
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and

Ax∗ = b ⇒ −1
2
AH−1ATλ = b.

Since A has full row rank, AH−1AT is invertible, and so

λ∗ = −2(AH−1AT)−1b.

b) The dual function is found by minimizing the Lagrangian for each λ. So(1p)

x∗(λ) = −1
2
H−1ATλ,

which gives

q(λ) = L(x∗(λ), λ) = −1
4
λTAH−1ATλ − λTb.

In the dual problem, we want to maximize the dual function. Since we have
equality constraints in the primal, we have no bounds on the dual variables:

maximize q(λ) := − 1
4
λTAH−1ATλ − λTb. (Dual QP)

The dual problem is a convex unconstrained problem, and a dual optimal
solution is therefore found by setting the gradient of q to zero, which yields
λ∗ = −2(AH−1AT)−1b.

c) Let x̂ be a feasible solution, i.e., Ax̂ = b. Then x = x̂ + Zp, p ∈ R
n−m is(1p)

also a feasible solution, and (QP) is equivalent to:

minimize
p∈

�
n−m

pTZTHZp + 2pTZTHx̂ + const.

This is an unconstrained problem with a pos. semidef. Hessian, and hence
it is a convex problem. A local optimal solution is a global optimal solution.

Question 6(3p)

(The Frank-Wolfe algorithm)

Since the objective function is nonconvex, we cannot provide any lower bounds
from the subproblem solutions. An upper bound is f(x0) = 0.5. At x0 = (1, 1)T,
∇f(x0) = (1, 0)T; y0 = (0, 1)T; argminα∈[0,1] ϕ(α) = 1, where ϕ(α) = f(x0 +

α(y0 − x0)); x1 = (0, 1)T; ∇f(x1) = (0, 0)T. A new upper bound is f(x1) = 0.
The vector x1 is a KKT-point (set all Lagrange multipliers to zero). It is not
a local minimum, however, since for example x(t) = x1 + (t, 4t)T is feasible for
0 ≤ t ≤ 0.25, and for t > 0, f(x(t)) = − 15

2
t2 < f(x1). [There are two global

minima: x∗ = (0.25, 0)T and x∗ = (0.25, 2)T.]
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Question 7

(nonlinear optimization solves interesting problems)

a) Let ε > 0 be any small enough number. The optimization problem is to(1p)
find

f ∗ = minimum
(x,y,z,n)∈

�
4
+

f(x, y, z, n) := (xn + yn − zn)2,

subject to sin πx = sin πy = sin πz = sin πn = 0,

xyz ≥ ε,

n ≥ 3.

If f ∗ > 0 then Fermat’s Last Theorem has been proved. (Which it already
has by other means.)

b) Consider the problem to(1p)

minimize
x∈

�
n

f(x) := xTAx,

subject to ‖x‖ = 1.

An optimal solution, say x∗, exists due to Weierstrass’ Theorem, as the
sphere is non-empty, closed and bounded. For each non-zero vector x ∈ R

n,
the vector ‖x‖−1x is a feasible solution; hence, ‖x‖−2xTAx ≥ (x∗)TAx∗ =:
c.

c) Choose y ∈ R
n aribtrarily. To prove existence and uniqueness of a solution(1p)

to the equation Ax = y, consider the minimization of f(x) := 1
2
xTAx −

yTx over x ∈ R
n.

The function f is coercive on R
n, whence Weierstrass’ Theorem applies;

the problem has an optimal solution. As it is unconstrained, we know
that stationarity is a necessary condition, so we set the gradient of f to
zero: ∇f(x) = Ax − y = 0n, and so we know that Ax = y holds. To
establish uniqueness, we may observe that Ax1 = Ax2 = y implies that
A(x1 − x2) = 0n and hence that (x1 − x2)TA(x1 − x2) = 0. By positive
definiteness this implies that x1 = x2. We are done.


