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Question 1

(the simplex method)

a) First we need to transform the problem to standard form. The free variable(2p)
x1 is replaced with the difference of the two non-negative variables x+

1 and
x−

1 , x1 := x+
1 − x−

1 . The sign of the first constraint is changed, and a non-
negative slack (surplus) variable s1 is subtracted. In the second constraint,
a non-negative slack variable s2 is added. We get

minimize z = x+

1 − x−

1 +2x2,

subject to −2x+

1 + 2x−

1 +2x2 − s1 = 2,

2x+

1 − 2x−

1 + x2 +s2 = 2,

x+

1 , x−

1 , x2, s1, s2 ≥ 0.

Now start phase 1 using an artificial variable a ≥ 0 added in the first
constraint. Use s2 as the second basic variable.

minimize w = a,

subject to −2x+

1 +2x−

1 +2x2 − s1 + a = 2,

2x+

1 − 2x−

1 + x2 +s2 = 2,

x+

1 , x−

1 , x2, s1, s2, a ≥ 0.

We start with the BFS given by (a, s2)
T. The vector of reduced costs for

the non-basic variables x+
1 , x−

1 , x2 and s1 is (2,−2,−2, 1)T. We choose x−

1

as the entering variable. In the minimum ratio test, a is the only basic
varible for which the corresponing component of B−1N2 is positive, and is
therefore selected as the outgoing variable. No artificial variables are left in
the basis, thus the reduced costs will be non-negative and we are optimal
with w∗ = 0. We proceed to phase 2.

The BFS is given by xB = (x−

1 , s2)
T, xN = (x+

1 , x2, s1)
T and the reduced

costs with the phase 2 cos t vector are c̃T = (0, 3,−1

2
). The reduced cost is

negative for s1 which is the only eligable incoming variable. B−1b = (1, 4)T

and B−1N3 = (−1

2
,−1) T. Thus, the unboundedness criterion is fulfilled

and we have that z → −∞ for

(

xB

xN

)

=

















(

1
4

)







0
0
0























+ µ

















(

1/2
1

)







0
0
1























, µ → ∞,
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or, in the original variables, along the line

(

x1

x2

)

=

(

−1
0

)

− µ

(

1/2
0

)

, µ → ∞.

b) a) is not critical since with the reduced cost < 0 we still have a descent(1p)
direction (in fact, selection of the most negative reduced cost is not the most
efficient one in reality, and in all commercial softwares a more sophisticated
selection method is used). However, b) is a major mistake. The minimum
ratio test is used to decide how far we can move along the coordinate axis
of the incoming variable and still stay feasible. Not selecting the minimum
ratio implies that the incoming variable is given a value so high that one of
the basic variables will turn negative (since we have xB = B−1b−B−1NxN ,
and we wish to increase the value of the incoming variable in xN). Since
the idea of the simplex method is to move from extreme point to extreme
point (from BFS to BFS), this is a critical mistake, since our new point will
not be a BFS.

Question 2

(convexity)

a) The claim is true. Clearly, x4
1 is a convex function, and since we know(1p)

that a sum of convex functions remains convex, what is left to check is if
x2

2 + 4x2x3 + 5x2
3 := g(x2, x3) is convex. A computation of the eigenvalues

to the hessian of g shows that they are λ = 6 ±
√

32 > 0. Therefore, the
hessian is positive semidefinite for all x ∈ R

3 and thus, g is convex. We
conclude that f is convex.

b) The claim is true. Let h(x) := 2x1 − x2 and g(x) := x2
2 and observe that(1p)

they are both convex. f is not differentiable so we cannot use the same
procedure as in a), instead we use the definition. Let x1 and x2 be two
arbitrary points and let λ ∈ (0, 1). Since h and g are convex, we have that

h(λx1 + (1 − λ)x2) ≤ λh(x1) + (1 − λ)h(x2) and

g(λx1 + (1 − λ)x2) ≤ λg(x1) + (1 − λ)g(x2).
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Therefore,

f(λx1 + (1 − λ)x2) = max
{

h(λx1 + (1 − λ)x2), g(λx1 + (1 − λ)x2)
}

≤
max

{

λh(x1) + (1 − λ)h(x2), λg(x1) + (1 − λ)g(x2)
}

≤
max

{

λh(x1), λg(x1)
}

+ max
{

(1 − λ)h(x2), (1 − λ)g(x2)
}

=

λf(x1) + (1 − λ)f(x2),

where the last inequality comes from the obvious fact that

max {a + b, c + d} ≤ max {a, c} + max {b, d} .

c) The claim is false. The hessian to f is given by(1p)

∇2f(x) =

(

12x1 + 2x2
2 4x1x2

4x1x2 12x2
2 + 8

)

and we conclude that its eigenvalues at x = (0, 0)T are λ1 = 8 and λ2 = 0,
i.e., the matrix is positive semidefinite but not positive definite. Therefore
we cannot conclude anything about the local convexity from this fact. But
now look at the line given by

{

x1 = t
x2 = 0

and let x1 =

(

ε
0

)

, x2 =

(

−ε
0

)

.

We have f(x1) = 2ε3, f(x2) = −2ε3 and f(λx1 +(1−λ)x2) = 2ε3(2λ−1)3.
Therefore, we get that f(λx1 + (1 − λ)x2) > λf(x1) + (1 − λ)f(x2) when
(2λ−1)3 > 2λ−1 which is true for all λ < 1/2. This counterexample shows
that f is not locally convex around the origin.

Question 3(3p)

(modeling)

Introduce the constants: the number of pieces needed, n = 19, the length of
each roll L = 10 m and the length of piece i, bi for i = 1, . . . , n. Introduce the
variables

xij =







1 piece i is in roll j

0 otherwise
, i = 1, . . . , n, j = 1, . . . , n,

yj =







1 roll j is used

0 otherwise
, j = 1, . . . , n.
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The objective is

minimize
n
∑

j=1

yj.

The first constraint is that we may not cut more than L meters from each roll
(and 0 if the roll is not used):

n
∑

i=1

bixij ≤ Lyj , j = 1, . . . , n.

The second contraint is that each piece i must be cut from exactly one roll:

n
∑

j=1

xij = 1, j = 1, . . . , n.

Finally, x and y are integral variables:

xij , yj ∈ {0, 1}, i = 1, . . . , n, j = 1, . . . , n.

Question 4(3p)

(gradient projection)

Note first that the feasible region X is a square.

Iteration 1: x0 = (1 2)T, ∇f(x0) = (0 12)T. x0 −α∇f(x0) = (1 2)T − (0 12)T =
(1 − 10)T. ProjX(1 − 10)T = (1 1) = x1.

Iteration 2: x1 = (1 1)T, ∇f(x1) = (4 4)T. x1 − α∇f(x1) = (1 1)T − (4 4)T =
(−3 − 3)T. ProjX(−3 − 3)T = (0 1)T = x2.

We have convex constraints with an interior point, hence Slaters CQ imply that
KKT is necessary for local optimality (We can use LICQ or the fact that the
constraints are linear as well). The constraint g1 = −x1 and g2 = 1 − x2 are
active. ∇f(x2) = (−4 8)T, ∇g1(x

2) = (−1 0)T, ∇g2(x
2) = (0 − 1)T. The KKT

conditions do not hold. Hence x2 is not a KKT point, and therefore it is not a
local (nor a global) minimum.
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Question 5(3p)

(strong duality in linear programming)

See Theorem 10.6 in The Book.

Question 6(3p)

(the Fritz John conditions)

Introducing the redundant constraint with multiplier µm+1 results in the new
Fritz John conditions:

µ0∇f(x∗) +
m
∑

i=1

µi∇gi(x
∗) − µm+1(x

∗ − x0) = 0n, (1a)

µigi(x
∗) = 0, i = 1, . . . , m + 1,

(1b)

µ0, µi ≥ 0, i = 1, . . . , m + 1,
(1c)

(µ0, µ
T)T 6= 0m+2. (1d)

These conditions are satisfied by setting x∗ = x0, µ0 = 0, µi = 0 for i = 1, . . . , m,
and µm+1 > 0 arbitrarily.

The main conclusion is that since an arbitrary solution can be made to satisfy
the Fritz John condition, it is not a very useful measure of optimality at all.
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Question 7

(topics in linear programming)

a) The two new variables x+
j and x−

j will have columns of the system matrix A(1p)
that have the same absolute values, but have opposite signs, i.e., a+

j = −a−

j .
Since these two vectors are linearly dependent, no basis can include them
both.

b) The dual linear program is that to(1p)

maximize w = bTy, (1)

subject to ATy = c, (2)

y ≤ 0n. (3)

If c cannot be written as a linear combination of the rows of A, then the
constraint (2) cannot be satisfied. Hence this dual problem cannot have an
optimal solution.

c) The result follows from a simple argument based on weak duality. By(1p)
assumption, the problem

minimize z = cTx, (P)

subject to Ax = b,

x ≥ 0n

has an optimal solution. Then, its dual problem, that to

maximize w = bTy, (D)

subject to ATy ≤ c,

also has an optimal solution. Now, for any perturbation b̃ of b the perturbed
dual problem

maximize w = b̃
T

y, (D’)

subject to ATy ≤ c,

at least has a nonempty feasible set. By the Weak Duality Theorem, then,
its dual, to

minimize z = cTx, (P’)

subject to Ax = b̃,

x ≥ 0n
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has feasible solutions with objective values not better than any objective
values of the problem (D’). Hence, the perturbed problem (P’) cannot have
an unbounded solution. As the perturbation b̃ was arbitrary, the result
follows.

Good luck!


