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Question 1

(the simplex method)

a) The modified problem is always feasible by construction. For example,

b)

a feasible solution is z; = 0 for ¢« = 1,2,3,4 and y; = 5 and y, = 3.
Assuming that the modified problem has optimal objective value bounded
from below, the modified problem always has finite optimal solution. Let *
and y* denote the z-part and y-part of the optimal solution, respectively.
Depending on the value of y*, two cases are possible:

e At optimality, yi = y5 = 0. In this case, the original problem is
feasible. In addition, * is an optimal solution to the original problem.
It is obvious that x* is feasible to the original problem. If there were
some 7 feasible to the original problem with an objective value smaller
than that of *, then x together with y* = 0 form a better feasible
solution to the modified problem. This contradicts the optimality of
x* and y* for the modified problem.

e At optimality, at least one of y; and y3 is positive. In this case, the
original problem is infeasible. If a vector & were feasible to the original
problem, then @ together with y = 0 result in a better feasible solution
of the modified problem than x* with y* (cf. the property of M).
This would contradicts the optimality of * and y* for the modified
problem.

We can start the simplex method with y; and ys being the basic variables.
The non-basic variables are x1, x9, 3 and x,.

B:(é ?) B—1:<é ?) ch=(8341), cf=(M M)

(213 -1 (5
N‘<1 12 —1)’ vp =B b‘(?))'

The reduced costs are
ey —CchBTIN = (8—3M 3-2M 4-5M 1+42M).

We choose the third non-basic variable (i.e., x3) to enter the basis, because
it has the most negative reduced cost. The corresponding search direction
for the basic variables are dg = —B~!N3 = (=3, —2)T. The minimum ratio

test indicates that 5 3
2= in{—, —
argmin{z, 5},
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and hence the second basic variable (i.e., yo) leaves the basis.

At iteration two, we have x3 and y; being the basic variables. The non-basic
variables are z1, xs, x4 and ys.

B:@ é) Blz<(1] _%) c%:<8 31 M), cg:(zl M)
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The reduced costs are

ch—cpBIN=(6-4 1+ 3-4 2430

We choose the third non-basic variable (i.e., z4) to enter the basis. The

corresponding search direction for the basic variables are dg = —B ' N3 =
(3, —3)T. Therefore, the second basic variable (i.e., y1) leaves the basis.

At iteration three, we have basic variables being x3 and x4. The non-basic
variables are 1, xs, y; and ys.

B:(Z’ j) 3—1:(3 :;) =083 M M), =1 1),
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The reduced costs are
cy—cpBTIN=(3 4 M—6 M+7).

The reduced costs are all nonnegative. The simplex method terminates
with optimal solution

¥ =(0,0,2,1)T, y*=(0,0), z*=9

As explained in part a), z* is also an optimal solution to the original problem
with objective value 9.

Question 2

(true or false)

(1p) a) Impossible to say, since the original problem may lack optimal solutions.



(1p)

(1p)

(3p)

(3p)

(3p)

(3p)

EXAM SOLUTION
TMA947/MAN280 — OPTIMIZATION, BASIC COURSE 3

b) True—see Exercise 11.1.

c¢) Impossible to say, since the function f may not be convex.

Question 3
(optimality conditions)

This is Theorem 10.10.

Question 4
(Frank—Wolfe)

We can only guarantee that the point obtained is stationary. If f however is
concave, then we establish that the point obtained is optimal.

Question 5
(Lagrangian duality)

This is Theorem 6.8.

Question 6
(integer programming modeling)

A suggested integer programming formulation is as follows: each square is la-
beled with an i nteger index (e.g., 1,...,n?). For each square i, we define the
neighborhood N; to be the set of all indices of squares that can be attacked if a
queen is placed at square i. For each ¢, we define a 0-1 binary decision variable
x; € {0,1} such that a queen is placed at square 7 if and only if z; = 1. Then,
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an integer program modeling t he desired queen configuration problem is

n2

minimize Y. x;

Z i=1
subject to x; + ¥ ;> 1, i=1,...,n?
JEN;
n?* =D+ X z;<n*—1, i=1,...,n?
JEN;

r; €{0,1}, i=1,... n%

In the model above, the first constraint specifies that for each square 7 either
there is a queen or the square can be attacked by a queen in the neighborhood
N;. The second con straint specifies that if a queen is placed at square i, then
no queen can be placed at a ny square in the neighborhood N; (we can replace
n? —1 by any constant larger than tha t). The two constraints model exactly the
conditions required by the queen configuration pr oblem.

Question 7
(gradient projection algorithm)

At ° = (0,0)", the objective gradient vector is V f(x°) = (21 — 2,25 — 3)T =

(—=2,—3)T. Hence, the search direction is p® = =V f(2”) = (2,3)T. Because

of the form of the feasible set X (i.e., box constraints), projection on X can be
expressed analytically. The projection arc is of the form (for 0 < a® < 1):

I 0 o7 (min{1,0+ 2a"}

Projx|a” + a’p’] = (min{1,0+ 30} )

Hence, the objective function (to be minimized) for exact line search is

f2>a®) = L(min{l,2a%} — 2)% + L(min{1, 2a’} - 3)?
400 14 §a® - 1?) 0<at <
= §<1+§(a0—1)2> laa®<?2.
5 2
g 3 < a’ <1

Minimizing f° with 0 < a® < 1 yields the minimizing o to be greater than or
equal to 2/3. Hence, the next iterate is

x' = Projx[z° + a’p°] = G) .
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It is claimed that x! is an optimal solution. First, note that the objective gradient
ata! = (1, 0)Tis Vf(e!) = (z1 — 2,20 — 3)T = (=1,—3)". At ! the active
constraints are ;7 < 1 and zo < 1 with constraint function gradients being
(1,0) and (0,1)", respectively. As a result, —V f(z!) is in the cone of the active
constraint gradients. This implies that ! is a KKT point. In addition, the
optimization problem is convex with affine constraints. Hence, the KKT point
x! is indeed an optimal solution.




