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Question 1

(linear programming)

a) Rewrite the problem into standard form by subtracting slack variables x5

and xzg from the left-hand side in the first and second constraint, respec-
tively. If x5 and x3 are basic variables, the basic solution is
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and thus the basic solution is feasible.

Now we can check the reduced costs ¢! =cl, — y' N, where
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All reduced costs are non-negative, and thus the basis is optimal.
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(It is also possible to show this using LP duality and complementary slack-
ness conditions.)

The dual solution and the reduced costs are not affected by a small enough
perturbation in the right-hand side, and it is therefore enough to study how
feasibility is affected.

Basic solution as a function of 9:

(2) oo (0 5) (G205 ()3 (0)

Constraints on d > 0 for feasibility:

13-20>0 = §< 2,
3-6>0 = §<3.

Thus, o and x3 are optimal basic variables if 0 < § < 3.
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Question 2
(the Separation Theorem)

See Theorem 4.29 in the course book.

Question 3
(Lagrangian duality)
Dual problem:

¢"= max q(p),

where  g(p) = min f(@) + pngi(z) + pega().

Since the optimal solution to the dual problem is given in the table, it is easy to
calculate the dual function g(u®) = f(z*) + ufgi(x®) + plgo(z").

Thus, the following calculations can be done:

g(p') = —3.0+0-80+0-12.0= 3.0,
¢(u?) =1.0-3-3.0+3-50=T.0,

g(u?) =9.0+1.5-2.0 - 6- 1.0 = 6.0,

g(u') =12.0 —2.25-1.0 —4.5- 0.5 = 7.5,
g(0%) =8.0+2-0.0 +3.75- 1.0 = 11.75,
g(uf) = 12.25 — 2.16 - 0.25 — 4- 0.25 = 10.71.

Each q(p*) gives an optimistic estimation of the optimal objective function value,
f*. Thus, the best optimistic estimation is f* > 11.75.

Every feasible solution gives a pessimistic estimation of f*:

x? feasible = f* <12,
x0 feasible = f* < 12.25.

Thus, f* <12.

Therefore, the best possible estimation is 11.75 < f* < 12.
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Question 4

(modelling)

To simplify the notations, we change the two dimensions notations into one di-
mension. So change point (7,7) to (¢ — 1) - J + j, and pg, ji)(isj.) changes to
D(ir=1)-J+j1,(i2=1)-T+j2-

Sets:

M = {ili € {1,...,1 - J}}, the set of possible points,

N:={(i, 7)] all pairs of points (7, j) where i € M is an adjacent point of j e M}.

The decision variables are:

1 part of the optimal route goes from 7 to 7,
€T; j = .
0  otherwise,

where {i,j} eN.

Model:
maximize H (1 —pijzij),
(3,7)EN
subject to Soomy= > wky ie M\{1,1-J},
jl(.5)EN k| (ki)EN
Z ZELJ’ = Z Ik,l + 1,
Jjl(1,5)eN k|(k,1)eN
Sz = Y. werg— 1,
31(I-JJ)EN k|(k,I-J)EN
Z xi,j S S7
(4,7)EN

zij €{0,1} (i,7) EN.




EXAM SOLUTION
TMA947/MMG621 — NONLINEAR OPTIMISATION 4

Question 5

(necessary local and sufficient global optimality conditions)

(1p) a) See Proposition 4.22 in course book.

(2p)  b) See Theorem 4.23 in the course book.

Question 6

(true or false)

(1p)  a) False. Let f(z) = —x?. At the point z = 0, all feasible directions p # 0 are
descent directions. However, f/(z) = 0 and thus f'(Z)p = 0. Therefore, the
claim is false.

(It is however sufficient, i.e. if Vf(z)Tp < 0, then p is a descent direction
with respect to f at x.)

(1p)  b) False. The problem is feasible but may have an unbounded solution.

(1p) c¢) False. Consider the function g where g(z) = 4 — 2? and the two points
' = —2 and 2? = 3 which belong to the set S = {z € R | g(z) < 0}. By
Definitions 3.39 and 3.40, g is concave. However, the point
%xl + %xQ = % ¢ S. Hence, by Definition 3.1, the set S is not convex.
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Question 7

(the Karush—-Kuhn-Tucker conditions)

a) First, rewrite the problem to the following form:

minimize f(x) := 2% — 2y,
subject to 2—x; <0,
(11 —3)? =29 —2 < 0,
1-— 1+ T2 < 0.
Let:
gl(l'> =2 — Xy,

g2() = (21 — 3)* — 2o,
g3(x) =1 — 121 + x9.

The KKT conditions are:

st (43 o 3o (25 )

i=1
H, H2, p3 > 0,
wigi(x) =0, i=1,2,3,
gi(x) <0, i=1,2,3.
The following cases of active constraints are possible:
e Let g1 be active. Solving the KKT conditions gives x; = 2,
1<z <1, up =3, upo =0, and pz = 0.
e Let g1 and go be active. Solving the KKT conditions gives x1 = 2,
Ty =—1, 1 =3, 2 =0, u3 = 0.
e Let g5 be active. The KKT conditions do not give any points.
e Let gy and g3 be active. The KKT conditions do not give any points.
e Let g3 be active. The KKT conditions do not give any points.

e Let g and g3 be active. Solving the KKT conditions gives x; = 2,
x2:1;M1:3;M2:07M3:0'

e Let no constraints be active. The KKT conditions do not give any
points.

Thus, the feasible points fulfilling the KK'T conditions are @ = (3), where
—1<a<1.
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(1p)  b) The objective function f and the constraint functions g; are convex. There-
fore the KKT conditions are sufficient for global optimality, and thus all
KKT points are optimal.




