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Question 1

(the simplex method)

a) We first rewrite the problem in standard form. We introduce slack variables(2p)
s1 and s2. Consider the following linear program:

minimize z = 2x1 − x2 + x3

subject to x1 + 3x2 − x3 + s1 = 5,

2x1 − x2 + 2x3 − s2 = 2,

x1, x2, x3, s1, s2 ≥ 0.

Phase I
We introduce an artificial variable a and formulate our Phase I problem.

minimize z = a

subject to x1 + 3x2 − x3 + s1 = 5,

2x1 − x2 + 2x3 − s2 + a = 2,

x1, x2, x3, s1, s2, a ≥ 0.

We now have a starting basis (s1, a). Calculating the reduced costs we
obtain c̃N = (−2, 1,−2, 1)T, meaning that x1 or x3 should enter the basis.
We choose x3. From the minimum ratio test, we get that a should leave
the basis. This concludes Phase I and we now have the basis (s1, x3).

Phase II
Calculating the reduced costs, we obtain c̃N = (1,−1

2
, 1
2
)T. meaning that

x2 should enter the basis. From the minimum ratio test, we get that the
outgoing variable is s1. Updating the basis we now have (x2, x3) in the
basis.

Calculating the reduced costs, we obtain c̃N = (7
5
, 1
5
, 2
5
)T ≥ 0, meaning that

the current basis is optimal. The optimal solution is thus

(x1, x2, x3, s1, s2)
T = (0,

12

5
,
11

5
, 0, 0, 0)T,

which in the original variables means (x1, x2, x3)
T = (0, 12

5
, 11

5
)T with opti-

mal objective value f ? = −1
5
.

b) Calculating the reduced costs of the modified problem for the optimal basis(1p)
of the original problem, we obtain c̃N = (7

5
, 1
5
, 2
5
, 7
10

)T ≥ 0 meaning that the
the optimal basis from the original problem gives the optimal solution of the
modified problem (x1, x2, x3, x4)

T = (0, 12
5
, 11

5
, 0)T with optimal objective

value f ? = −1
5
.
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Question 2

(Quadratic programming)

Since the objective function is convex (i.e., Hessian matrix A is symmetric pos-
itive semidefinite) and the constraints are affine, the KKT conditions are both
necessary and sufficient for optimality. Therefore, a point x is a minimum if and
only if there exists a vector µ ∈ Rn (Lagrangian multipliers) such that

Ax+ b = µ

µ ≥ 0n

x ≥ 0n

µixi = 0, ∀ i = 1, . . . , n.

Eliminating µ, the above conditions are equivalent to

Ax+ b ≥ 0n

x ≥ 0n

(Ax+ b)ixi = 0, ∀ i = 1, . . . , n.

These are in turn equivalent to

Ax+ b ≥ 0n

x ≥ 0n

xTAx+ bTx = 0.

Question 3

(characterization of convexity in C1)

This is Theorem 3.61 (a) in the textbook.

Question 4

(true or false claims in optimization)

a) The claim is true, as stated by Proposition 9.1 in the textbook.(1p)
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b) The claim is false. The point x̄ with ∇f(x̄) = 0n can also be a local(1p)
maximum or saddle point.

c) The claim is false. Consider the problem with one decision variable. f(x) =(1p)
min{0,−x} and g(x) = x. The point x̄ = −1 is a constrained minimum
and g(x̄) = −1 < 0. However, removing the constraint g(x) ≤ 0 will result
in a problem whose objective value is unbounded from below.

Question 5

(KKT conditions)

a) The point x∗ = (1, 1)T is the only feasible point and hence it must be the(1p)
unique global minimum.

b) Let g1(x) := x21+x22−2 and g2(x) := (x1−2)2+(x2−2)2−2. At x∗ = (1, 1)T,(2p)
both g1(x

∗) = 0 and g2(x
∗) = 0. That is, both inequality constraints are

active. Also, it holds that

∇f(x∗) =

(
1
0

)
, ∇g1(x∗) =

(
2
2

)
, ∇g2(x∗) = −

(
2
2

)
.

Therefore, the equality (as part of KKT conditions)

−∇f(x∗) = µ1∇g1(x∗) + µ2∇g2(x∗), µ1 ≥ 0, µ2 ≥ 0

cannot hold. Hence, the KKT conditions are not satisfied. As a result, the
KKT conditions are not necessary for optimality since x∗ is a minimum
but not a KKT point. This does not contradict any result regarding the
necessity of the KKT conditions. For instance, ∇g1(x∗) and ∇g2(x∗) are
not linearly independent, and hence the LICQ constraint qualification does
not hold. On the other hand, since the problem is convex, KKT points (if
exist) are global optimal solutions.

Question 6

(Frank-Wolfe algorithm)

Figure 1 shows the feasible set of the problem (i.e., the polyhedron with thick
black boundary lines) and some contours of the objective function. The optimal
solution is denoted by x? (i.e., the red dot in the figure).
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Figure 1: Illustration of the Frank-Wolfe algorithm. The feasible set is a poly-
hedron with boundary denoted by the thick black lines. Some contours of the
objective function are shown. The optimal solution x? = (2.5, 0.5)T.

The details of the algorithm steps are as follows. Let X denote the feasible
set. Let f(x1, x2) denote the objective function. For any given iterate x(k) =

(x
(k)
1 , x

(k)
2 )T. The objective function gradient vector is

∇f(x
(k)
1 , x

(k)
2 ) =

[
12 4
4 18

] [
x
(k)
1

x
(k)
2

]
−
[
52
34

]
.

The search direction problem is

minimize
x∈X

∇f(x
(k)
1 , x

(k)
2 )

T
x. (1)

If min
x∈X
∇f(x

(k)
1 , x

(k)
2 )

T
x ≥ ∇f(x

(k)
1 , x

(k)
2 )

T
x(k), then by optimality conditions (for

minimizing a convex function over a convex feasible set) x(k) is optimal. Other-
wise, let y(k) denote an optimal solution to the search direction problem. Then
the exact minimization line search problem can be expressed into

minimize
α∈[0,1]

f(αx(k) + (1− α)y(k)) ⇐⇒ minimize
α∈[0,1]

gα2 + hα,
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where

g =
(
x(k) − y(k)

)T [6 2
2 9

] (
x(k) − y(k)

)

h =
(
x(k) − y(k)

)T ([12 4
4 18

]
y(k) −

[
52
34

])
.

(2)

The minimizing value of α, denoted by α(k), can be found using the optimality
condition to be

α(k) =


0 if − h

2g
< 0

− h
2g

if 0 ≤ − h
2g
≤ 1

1 if − h
2g
> 1

. (3)

The iterate update formula is

x(k+1) = α(k)x(k) + (1− α(k))y(k). (4)

Now we begin applying the Frank-Wolfe algorithm. At the first iteration with
x(0) = (0, 0), the objective function gradient is

∇f(x
(0)
1 , x

(0)
2 ) =

[
12 4
4 18

] [
x
(0)
1

x
(0)
2

]
−
[
52
34

]
=

[
−52
−34

]
.

To solve the search direction problem in (1), it is sufficient to restrict the feasible
set to the set of all extreme points. That is,

minimize
x∈V

∇f(x
(0)
1 , x

(0)
2 )

T
x, (5)

where V is the set of all extreme points defined as

V =
{

(0, 0)T, (0, 2)T, (2, 1)T, (2.5, 0.5)T, (2.5, 0)T
}
.

This amounts to finding the minimum among five numbers: 0, −68, −138, −147,
−130. The result is that y(0) = (2.5, 0.5)T. Applying the formula in (2) yields

g =

([
0
0

]
−
[
2.5
0.5

])T [
6 2
2 9

]([
0
0

]
−
[
2.5
0.5

])
= 44.75

h =

([
0
0

]
−
[
2.5
0.5

])T ([
12 4
4 18

] [
2.5
0.5

]
−
[
52
34

])
= 57.5

According to (3), α(0) = 0. Hence, by (4)

x(1) = y(0) = (2.5, 0.5)T.
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This is shown in Figure 1.

At the next iteration with x(1) = (2.5, 0.5)T, we have

∇f(x
(1)
1 , x

(1)
2 ) =

[
−20
−15

]
.

Solving (5) leads to y(1) = x(1) = (2.5, 0.5)T. Thus, it holds that

min
x∈X
∇f(x

(1)
1 , x

(1)
2 )

T
x ≥ ∇f(x

(1)
1 , x

(1)
2 )

T
x(1).

By optimality conditions, x(1) = (2.5, 0.5)T is the optimal solution to our problem.

Question 7

(LP duality)

Since P = {y Ay ≥ b, y ≥ 0n} is assumed to be nonempty and bounded,
strong duality implies that, for any fixed x, the minimum objective value of

inf
y

yTx

subject to Ay ≥ b
y ≥ 0n

is the same as the maximum objective value of

sup
z

bTz

subject to ATz ≤ x
z ≥ 0m.

(1)

Substituting (1) into the original problem in the statement of Problem 7 results
in

maximize
x

cTx

subject to sup
z

bTz ≥ d

ATz ≤ x
x ≥ 0n, z ≥ 0m.

This problem is equivalent to the second problem in the statement of Problem 7.


