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Question 1

(the simplex method)

a) The dual problem in standard form becomes:(1p)

minimize z = 2y1 + y2 +
1

2
y3 +

1

2
y4,

subject to 2y1 − y3 + y4 − s1 = 1,

y1 + y2 + y3 − y4 − s2 = 1,

y1, y2, y3, y4, s1, s2 ≥ 0.

b) Introducing the artificial variable a1, phase I gives the problem(1.5p)

minimize w = a1,

subject to 2y1 − y3 + y4 − s1 + a1 = 1,

y1 + y2 + y3 − y4 − s2 = 1,

y1, y2, y3, y4, s1, s2, a2 ≥ 0.

Using the starting basis (a1, y2)
T gives

B =

(
1 0
0 1

)
,N =

(
2 −1 1 −1 0
1 1 −1 0 −1

)
,xB =

(
1
1

)
, cB =

(
1
0

)
, cN =


0
0
0
0
0

 .

The reduced costs, c̄TN = cTN−cTBB−1N , for this basis is c̄TN =
(
−2, 1, −1, 1 0

)
,

which means that y1 enters the basis. B−1N 1 =
(
2 1

)T
thus the minimum ratio

test implies that a1 leaves.

Thus, we move on to phase II using the basis
(
y1, y2

)T
, and

B =

(
2 0
1 1

)
,N =

(
−1 1 −1 0
1 −1 0 −1

)
,xB =

(
1
2
1
2

)
, cB =

(
2
1

)
, cN =


1
2
1
2

0
0

 .

The new reduced costs are c̄TN =
(
0, 1, 1

2
, 1

)
. Since the reduced costs are

all non-negative, the current BFS is optimal. The optimal solution to the dual
problem is hence

(
y1, y2, y3, y4

)
=
(
1
2
, 1

2
, 0, 0

)
with the objective value of

3
2
.

c) Since the primal variables of our original problem are the dual variables of the(.5p)
dual problem, we get that xT = cTBB

−1 =
(
1
2
, 1

)
.
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Question 2

(unconstrained optimization)

a) For the steepest descent method:

p = −∇f(x0) = (−4, 0)T

b) For Netwon’s method:

p = −[∇2f(x)]−1∇f(x0) = (−4/3,−2/3)T

c) For Levemberg-Marquardt method:

p = −[∇2f(x) + γI]−1∇f(x0) = (−4/9, 2/9)T

The methods a) and c) always finds descent directions (if γ is chosen large enough)

Question 3(3p)

(Lagrangian relaxation)

Lagrangian relax the first constraint, we can get:

L(x, µ) = x1 − 2x2 + µ(2− x1 + x2) = (1− µ)x1 + (µ− 2)x2 + 2µ.

q(µ) = max
x

L(x, µ) =


7µ− 10, µ ∈ [0, 1.5) x1 = 0, x2 = 5,
0.5, µ = 1.5 x1 + x2 = 5,
5− 3µ µ ∈ (1.5,∞) x1 = 5, x2 = 0.

So q∗ = 0.5, µ∗ = 1.5.
For complementary slackness, we need to fulfill µ∗i gi(x

∗) = 0, since µ 6= 0, so gi(x
∗) = 0,

which means 2− x1 + x2 = 0. Combine with x1 + x2 = 5, we can get x∗ = (3.5, 1.5)T .
We can check that (x∗, µ∗) fulfilled all the conditions listed in Theorem 6.8, so x∗ is
the optimal solution for the original problem. The optimal value is 0.5.
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Question 4(3p)

(KKT conditions)

a) The KKT conditions are(2p)

∇f(x) + λ∇h(x) =

x2 + x3
x1 + x3
x1 + x2

+ λ

1
1
1

 =

0
0
0


There is only one feasible point fulfilling the KKT conditions:

x̄ = (4, 4, 4)T

with γ = −8.

b) The problem is undounded. Take x1 = M , x2 = M and x3 = 12 − 2M which(1p)
is feasible. The objective value is x1x2 + x1x3 + x2x3 = M2 + M(12 − 2M) +
M(12− 2M) = 24M − 3M2. Let M tend to infinity and you get an undounded
solution.

Question 5(3p)

(modelling)

Variables, let

• xij equal to one if the piece of length li is cut from the board of length Lj, and
equal to zero otherwise, i = 1, . . . , N , j = 1, . . . ,M .

• yj equal to one if the board of length Lj is purchased, j = 1, . . . ,M .

• zk be the number of times a discount has been retrieved for board of type k,
k = 1, . . . , K.

minimize
M∑
j=1

pjyj −
K∑
k=1

dkzk, (1)

s.t.
N∑
i=1

lixij ≤ Ljyj, j = 1, . . . ,M (2)

M∑
j=1

xij = 1, i = 1, . . . , N, (3)∑
j∈Sk

yj ≥ 4zk, k = 1, . . . , K, (4)

xij ∈ {0, 1}, i = 1, . . . , N, j = 1, . . . ,M (5)

yj ∈ {0, 1}, j = 1, . . . ,M. (6)

zk ∈ Z+, j = 1, . . . , K. (7)
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Question 6

(true or false)

a) True. The KKT conditions becomes(1p)

∇f(x)+
3∑

i=1

µi∇gi(x) =

(
1
0

)
+µ1

(
−x2

2x2 − x1 + 1

)
+µ2

(
−1
0

)
+µ3

(
0
−1

)
=

(
0
0

)
gi(x) ≤ 0, µi ≥ 0, µigi(x) = 0, i = 1, 2, 3

Where µ2 > 0⇒ x =

(
0
0

)
and µ2 = 0 leads to an inconsistent system.

b) True. We check if the gradient cone and tangent cone are equal. The gradient(1p)
cone is G(x∗) = {p ∈ R2 |x2 ≤ 0, x1 ≥ 0, x2 ≥ 0} = {p ∈ R2 |x1 ≥ 0, x2 = 0}.
For the tangent cone, let {xk} ⊂ S be any sequence of points converging to x∗,
thus for any ε > 0 ∃K such that xk

1 ≤ ε, ∀k ≥ K. Assuming that xk
2 > 0

leads to a contradiction that xk
1 > 1 thus xk

2 = 0, ∀k ≥ K. We thus get that
G(x∗) = TS(x∗), i.e., Abadie’s CQ holds.

c) False. Since any sequence of converging points must satisfy xk
2 = 0, we have that(1p)

there exist no sequence of strict interior points that converge to x∗.

Question 7(3p)

(convergence of an exterior penalty method)

See Theorem 13.3 in the course book.


