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Question 1

(the simplex method)

a) The dual problem in standard form becomes:

L 1 1
minimize z = 2y; + Yo + §y3 + 53/4»

subject to 21, —Y3 +ys—5 =1,
N+ Yy +ys — Y — Sy =1,
Yi, Y2, Y3, Ya, S1, S2 >0,

(1.5p) b) Introducing the artificial variable a;, phase I gives the problem

(:5p)

minimize w = as,

subject to 211 — Y3 + Ys — S1 +a; =1,
Y1+ Y2 +Ys — U — Sy =1,
Y1, Y2, Y3, Ya, S1, S2, ag > 0.

Using the starting basis (a1, y2)7 gives

1 0 29 -1 1 -1 0 1 1
B:(o 1)’N:<1 1 -1 0 —1)"”32(1)’032(0)"3N:

The reduced costs, ¢k, = cﬁ—cﬁBilN, for this basis is ¢4 = (—2, 1, -1, 1 0),
which means that y; enters the basis. BN, = (2 1)T thus the minimum ratio
test implies that a; leaves.

o O O OO

Thus, we move on to phase II using the basis (yl, yQ)T, and

(20 (-1 1 =1 0 (3 (2 B
B= (1) v=(3 L 0 )= (1) en= (1) e

The new reduced costs are ¢& = (O, 1, %, 1). Since the reduced costs are
all non-negative, the current BFS is optimal. The optimal solution to the dual

problem is hence (yl, Yo, Y3, y4) = (%, %, 0, 0) with the objective value of
3

O O

5.
Since the primal variables of our original problem are the dual variables of the

dual problem, we get that 7 = ch_l = (%, 1).
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Question 2

(unconstrained optimization)

a) For the steepest descent method:

p=-V[(z’) =(-4,0)7"
b) For Netwon’s method:
p=—[Vf(x)'Vf(") = (-4/3,-2/3)"
¢) For Levemberg-Marquardt method:

p=—[V*f(®) + 717"V f(x’) = (-4/9,2/9)"

The methods a) and ¢) always finds descent directions (if v is chosen large enough)

Question 3
(Lagrangian relaxation)
Lagrangian relax the first constraint, we can get:

Lz, p) =21 — 200 + (2 — 21 + x2) = (1 — p)xy + (0 — 2) w9 + 200
Tuw—10, pel0,1.5) x =0,29 =05,
q(p) = max L(x, u) =< 0.5, =15 1+ T3 =5,
5—3u  pe(l.5,00) x3=>529=0.

So ¢* = 0.5, u* = 1.5.

For complementary slackness, we need to fulfill i} g;(x*) = 0, since u # 0, so g;(x*) = 0,
which means 2 — z; + x5 = 0. Combine with z; + z» = 5, we can get z* = (3.5,1.5).
We can check that (z*, p*) fulfilled all the conditions listed in Theorem 6.8, so z* is
the optimal solution for the original problem. The optimal value is 0.5.
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(3p) Question 4

(KKT conditions)

(2p) a) The KKT conditions are

To + T3 1 0
Vfix)+AVh(x)=[x1+23 | +A[1] =10
X1+ Xo 1 0

There is only one feasible point fulfilling the KK'T conditions:
z=(4,4,4)"
with v = —8.
(1p) b) The problem is undounded. Take z; = M, xo = M and z3 = 12 — 2M which
is feasible. The objective value is x1zy + T123 + o035 = M? + M (12 — 2M) +

M(12 — 2M) = 24M — 3M?. Let M tend to infinity and you get an undounded
solution.

(3p) Question 5
(modelling)

Variables, let
e z;; equal to one if the piece of length /; is cut from the board of length L;, and
equal to zero otherwise, 1 =1,..., N, 7=1,..., M.
e y; equal to one if the board of length L; is purchased, j =1,..., M.

e 2z, be the number of times a discount has been retrieved for board of type k,

kE=1,...,K.
M K
minimize ijyj — Z dyz, (1)
j=1 k=1
N
s.t. lel‘l] S Ljyja j = 1, ce ,M (2)
i=1
M
> w=1, i=1,...,N, (3)
j=1
Zyjzélzk, k=1,....K, (4)
JESK
JiijE{O,l}, izl,...,N,jzl,...,M (5)
y; € {0,1}, j=1,....,M. (6)
2 €LY, ji=1,....K (7)
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Question 6

(true or false)

(1p) a) True. The KKT conditions becomes

Vf(m)+gungi(m) — <(1)) i (2x2 :x;l N 1) + 1o (—01> + 3 (_01) - (8)

Where iy > 0= x = (8) and ps = 0 leads to an inconsistent system.

(Ip) b) True. We check if the gradient cone and tangent cone are equal. The gradient
cone is G(z*) = {p € R?|zy < 0,21 > 0,29 > 0} = {p € R*|x; > 0,25 = 0}
For the tangent cone, let {:ck} C S be any sequence of points converging to x*,
thus for any € > 0 9K such that a:’f < e, Vk > K. Assuming that :1:’5 > 0
leads to a contradiction that ¥ > 1 thus @5 = 0, Yk > K. We thus get that
G(x*) = Ts(x*), i.e., Abadie’s CQ holds.

(1p)  c¢) False. Since any sequence of converging points must satisfy & = 0, we have that
there exist no sequence of strict interior points that converge to x*.

(3p) Question 7
(convergence of an exterior penalty method)

See Theorem 13.3 in the course book.




