
Notes on Inductive Sets and Induction

Ana Bove

April 29th 2019

Contents

1 Induction over the Natural Numbers 2
1.1 Mathematical (Simple) Induction . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.1
∑i=n

i=0 i(i+ 1) = n(n+1)(n+2)
3 . . . . . . . . . . . . . . . . . . . . . . . 3

1.1.2 ∀n > 7. n! > 3n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.1.3 ∀n > 3. n2 < 4n−1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2 Course-of-Values (Strong) Induction . . . . . . . . . . . . . . . . . . . . . . 5
1.2.1 ∀n > 12. ∃ i, j ∈ N. n = 4× i+ 5× j . . . . . . . . . . . . . . . . . . 5
1.2.2 Fundamental Theorem of Arithmetics . . . . . . . . . . . . . . . . . 6
1.2.3 Proving Properties of Grammars . . . . . . . . . . . . . . . . . . . . 7

2 Inductive Sets and Recursive Functions 8
2.1 Inductively Defined Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2 Example of Inductively Defined Sets . . . . . . . . . . . . . . . . . . . . . . 9
2.3 Recursively Defined Functions over Inductively Defined Sets . . . . . . . . . 10
2.4 Example of Recursively Defined Functions . . . . . . . . . . . . . . . . . . . 12

3 Structural Induction 14
3.1 ∀xs, ys ∈ List A. rev (xs++ ys) = rev ys++ rev xs . . . . . . . . . . . . . . 15
3.2 ∀xs ∈ List A. rev (rev (xs)) = xs . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.3 ∀ t ∈ Tree A. nrnds t 6 2(height t) − 1 . . . . . . . . . . . . . . . . . . . . . . . 16
3.4 ∀ e ∈ Exp. nrsg e = nrcp e+ 1 . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4 Mutual Induction 17
4.1 Mutually Defined Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.2 Proving Properties of Grammars . . . . . . . . . . . . . . . . . . . . . . . . 19

5 Final Notes on Proofs by Induction 20

1



1 Induction over the Natural Numbers

We know that the set N of Natural numbers is the infinite set containing 0, 1, 2, 3, . . . .
This infinite set can be defined in a very elegant and concrete way with the following two
rules:

0 ∈ N
n ∈ N

suc n ∈ N
The first rule says that there is an element, which we call 0, that is a Natural number.
The second rule tells that we can construct a new Natural number suc n from a given
Natural number n. Here, both 0 and suc are called constructors.

Which are the elements of N constructed by these rules? Clearly 0 is in N by the first
rule. Since 0 ∈ N, then we can use the second rule to construct suc 0 (usually denoted
as 1) which is also in N; using again the second rule suc (suc 0) (usually denoted as 2)
is also in N; further suc (suc (suc 0)) (usually denoted as 3) is in N; and we infinitely
can go on like this constructing a new element in N from the one we just constructed. In
practice, any Natural number n is constructed by applying the suc constructor n times
to the element 0, that is sucn 0. Hence, each element in the set N is constructed after
applying the rules defining the set a finite number of times. So we have an infinite set
where each element is finite; that is, each element is built by applying the constructors of
the set (in a certain order) a finite number of times.

As we will see later, the set of Natural numbers is an inductively defined set. Any set
which is inductively defined contains only finite elements. The set itself can be finite or
infinite. We will discuss more about this kind of sets in section 2.1.

In what follows, we simply write n+1 to denote suc n, and we also use decimal notation
to simplify the reading when possible.

1.1 Mathematical (Simple) Induction

Now that we know what the Natural numbers are, we can see how to prove a certain
property P over the set N, in other words, how to prove ∀n ∈ N. P (n).

The mathematical (or simple) induction principle gives us the mean to do this:

base case︷︸︸︷
P (0)

inductive step︷ ︸︸ ︷
∀n ∈ N.

IH︷ ︸︸ ︷
P (n)→ P (n+ 1)

∀n ∈ N. P (n)︸ ︷︷ ︸
statement to prove

where IH stands for “inductive hypothesis”.
Let us analyse what the principle says: if we have a proof that the property P holds for

0, that is, P (0) is true, and we have a method to prove P (n+ 1) from a proof of P (n) for
a given Natural number n, then we have a way to prove the property P for ANY element
in N.

Let us try to understand why this principle indeed proves ∀n ∈ N. P (n). To prove
that the property P is valid for any Natural number n we start by proving P (0). After we
have a proof of P (0) we can prove P (1) because we have a method that proves P (n+ 1)
from a proof of P (n) for any n, in particular for 0. Now we use P (1) to prove P (2), again
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using this same method. Once we have a proof of P (2) we can prove P (3), then we can
prove P (4), and so on in a methodical manner. In this way, we can prove P (n) for any
Natural number n!

There are cases where a certain property P is not really valid for ALL Natural numbers,
but only for those numbers greater than or equal to a certain i ∈ N. It could also be that
we first need to prove P for a few Natural numbers (not just one) before we can give
the method that proves P (n+ 1) from a proof of P (n) for any n. Hence, a more general
presentation of the principle of mathematical induction is the following:

base cases︷ ︸︸ ︷
P (i), P (i+ 1), . . . , P (j)

inductive step︷ ︸︸ ︷
∀n ∈ N. j 6 n→ (

IH︷ ︸︸ ︷
P (n)→ P (n+ 1))

∀n ∈ N. i 6 n→ P (n)

Let us now look at the use of the principle of mathematical induction in more detail
with the help of some examples. In what follows, we simply write ∀n > i. P (n) instead
of ∀n ∈ N. i 6 n → P (n). In the examples, we use both n ×m and nm to denote the
multiplication of n and m indistinctly, depending on which notation might be more clear
at each point.

1.1.1
∑i=n

i=0 i(i+ 1) = n(n+1)(n+2)
3

By using mathematical induction we prove ∀n ∈ N. P (n), so the first thing we need to do
when using this method is to actually state which property P we intent to prove!

For this example we define P (n) to be
∑i=n

i=0 i(i + 1) = n(n+1)(n+2)
3 and we prove

∀n ∈ N. P (n) by mathematical induction on the number n.
(In this example, P is simply the property we need to show, but this is not necessarily

always they case. See section 1.2.3 for an example where P is not actually the property
we want to prove, but instead this property can be deduced from P once we have proved
that P (n) is valid for all Natural numbers n.)

Our base case is n = 0. Then, showing that P (0) holds amounts to proving that∑i=0
i=0 i(i + 1) = 0(0+1)(0+2)

3 , hence 0(0 + 1) = 0(0+1)(0+2)
3 , that is, 0 = 0 which is indeed

true.
In our inductive step we need to prove that if the statement is true for a given n > 0,

then it will also be true for n+ 1. In other words, for a given n, we need to show that if
our inductive hypothesis IH P (n) holds then P (n+ 1) also holds.

Our IH P (n) states that
∑i=n

i=0 i(i+ 1) = n(n+1)(n+2)
3 is true.

We now need to prove P (n+ 1), that is,
∑i=n+1

i=0 i(i+ 1) = (n+1)(n+2)(n+3)
3 .

We know that
∑i=n+1

i=0 i(i+1) =
∑i=n

i=0 i(i+1)+(n+1)(n+2). Using our IH we obtain

i=n+1∑
i=0

i(i+ 1) =
n(n+ 1)(n+ 2)

3
+ (n+ 1)(n+ 1 + 1).

Using mathematical properties we get that

i=n+1∑
i=0

i(i+ 1) =
n(n+ 1)(n+ 2)

3
+

3(n+ 1)(n+ 2)

3
=

(n+ 1)(n+ 2)(n+ 3)

3
,
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which shows that P (n+ 1) is true.
This concludes our proof by mathematical induction and hence we can state that

∀n ∈ N. P (n).

1.1.2 ∀n > 7. n! > 3n

Recall that the factorial function n! is (recursively) defined by the following equations

0! = 1 (n+ 1)! = (n+ 1)× n!

(more on recursively defined functions in section 2.3).
We define P (n) to be n! > 3n and we prove ∀n > 7. P (n) by mathematical induction

on the number n.
Observe that our base case is n = 7! Then, showing that P (7) holds amounts to

proving that 7! > 37, that is, 7× 6× 5× 4× 3× 2× 1× 1 = 5040 > 2187 = 37, which is
indeed true.

In our inductive step we need to prove that if the statement is true for a given n > 7,
then it will also be true for n+ 1. In other words, for a given n > 7, we need to show that
if our IH P (n) holds then P (n+ 1) also holds.

Our IH P (n) states that n! > 3n is true, for n > 7.
We now need to prove P (n+ 1) for n > 7, that is, (n+ 1)! > 3n+1.
Using the definition of factorial, our IH and mathematical properties we get that

(n+ 1)! = (n+ 1)× n! > (n+ 1)× 3n > (7 + 1)× 3n = 8× 3n > 3× 3n = 3n+1,

which shows that P (n+ 1) is true.
This concludes our proof by mathematical induction and hence we can state that

∀n > 7. P (n).

1.1.3 ∀n > 3. n2 < 4n−1

We define P (n) to be n2 < 4n−1 and we prove ∀n > 3. P (n) by mathematical induction
on the number n.

Our base case is n = 3. Then, showing that P (3) holds amounts to proving that
32 < 43−1 = 42, that is, 9 < 16, which is indeed true.

In our inductive step we need to prove that if the statement is true for a given n > 3,
then it will also be true for n+ 1. In other words, for a given n > 3, we need to show that
if our IH P (n) holds then P (n+ 1) also holds.

Our IH P (n) states that n2 < 4n−1 is true for n > 3.
We now need to prove P (n+ 1) for n > 3, that is, (n+ 1)2 < 4n+1−1, in other words,

n2 + 2n+ 1 < 4n.
Observe that for n > 3 we have that 2n < 2n2 and 1 < n2 (these facts can easily be

proved by mathematical induction as well). Using these inequalities, our IH and mathe-
matical properties we get that n2 + 2n+ 1 < n2 + 2n2 + n2 = 4n2 < 4× 4n−1 = 4n, which
shows that P (n+ 1) is true.

This concludes our proof by mathematical induction and hence we can state that
∀n > 3. P (n).
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1.2 Course-of-Values (Strong) Induction

We could also use the inductive principle known as course-of-values (or strong) induction
in order to prove that ∀n ∈ N. P (n). This principle states the following:

base case︷︸︸︷
P (0)

inductive step︷ ︸︸ ︷
∀n ∈ N. (

IH︷ ︸︸ ︷
∀m ∈ N. 0 6 m 6 n→ P (m))→ P (n+ 1)

∀n ∈ N. P (n)︸ ︷︷ ︸
statement to prove

This principle is similar to the previous one, but the method to prove P (n + 1) for
a certain Natural number n > 0 can not only use the proof of P (n) but all the proofs
P (0), P (1), . . . , P (n)! That is, when proving P (n + 1) we can use the fact that P holds
for ALL Natural numbers m between 0 and n (0 6 m 6 n); in other words, all numbers
which are smaller or equal to n. Therefore, instead of just having an inductive hypothesis
P (n), we have several inductive hypotheses P (0), P (1), . . . , P (n).

Let us try to understand why this principle indeed proves ∀n ∈ N. P (n). To prove
that the property P is valid for any Natural number n we start by proving P (0). After we
have a proof of P (0) we prove P (1) using the method that proves P (n+1) from the proofs
P (0), P (1), . . . , P (n); for the case where n = 0 this simply amounts to P (0). Now we use
P (0) and P (1) to prove P (2), again using this same method. Once we have the proofs of
P (0), P (1) and P (2) we can prove P (3), then P (4), and so on in a methodic manner. In
this way we can prove P (n) for any Natural number n!

At first sight one could get the impression that the course-of-values principle is more
powerful than that of mathematical induction. However, one can actually prove that
these principles are equivalent. That is, whenever we are able to prove ∀n ∈ N. P (n) by
mathematical induction then we will also be able to prove ∀n ∈ N. P (n) by course-of-
values induction, and vice-versa. This said, in many cases one of the methods to prove
the statement is much simpler than the other.

There are again cases where a certain property P is not really valid for ALL Natural
numbers but only for those numbers greater or equal than a certain i ∈ N. It could also
be that we first need to prove P for a few Natural numbers (not just one) before we can
give the method that proves P (n+ 1) from the proofs of P (0), P (1), . . . , P (n), for a given
n. Hence, a more general presentation of the principle of course-of-values induction is the
following:

base cases︷ ︸︸ ︷
P (i), P (i+ 1), . . . , P (j)

inductive step︷ ︸︸ ︷
∀n ∈ N. j 6 n→ (

IH︷ ︸︸ ︷
∀m. i 6 m 6 n→ P (m))→ P (n+ 1)

∀n ∈ N. i 6 n→ P (n)

Let us now look at the use of the principle of course-of-values induction in more detail
with the help of some examples.

1.2.1 ∀n > 12.∃ i, j ∈ N. n = 4× i+ 5× j

We define P (n) to be ∃ i, j ∈ N. n = 4 × i + 5 × j and we prove ∀n > 12. P (n) by
course-of-values induction on the number n.
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Our base cases are n = 12, 13, 14, 15 so we proceed to prove P (12), P (13), P (14) and
P (15).

For P (12) we have that ∃ 3, 0 ∈ N. 12 = 4× 3 + 5× 0.
For P (13) we have that ∃ 2, 1 ∈ N. 13 = 4× 2 + 5× 1.
For P (14) we have that ∃ 1, 2 ∈ N. 14 = 4× 1 + 5× 2.
For P (15) we have that ∃ 0, 3 ∈ N. 15 = 4× 0 + 5× 3.
In our inductive step we need to prove that if the statement is true for 12, 13, . . . , n for

a given n > 15, then it will also be true for n+ 1. In other words, we need to show that if
our inductive hypotheses (IH) P (12), P (13), . . . , P (n) hold then P (n+ 1) also holds, for a
given n > 15.

For each m such that 12 6 m 6 n, our IH P (m) states that ∃ i, j ∈ N.m = 4×i+5×j.
We now need to prove P (n+ 1) for n > 15, that is, ∃ i, j ∈ N. n+ 1 = 4× i+ 5× j.
Since n > 15 then n+ 1 > 16 and n+ 1 > (n+ 1)− 4 > 16− 4 = 12. So our IH applies

to (n+ 1)− 4 and then we know that ∃ i, j ∈ N. (n+ 1)− 4 = 4× i+ 5× j.
Hence ∃ (i+ 1), j ∈ N. n+ 1 = 4× (i+ 1) + 5× j, which shows that P (n+ 1) is true.
This concludes our proof by course-of-values induction and hence we can state that

∀n > 12. P (n).

1.2.2 Fundamental Theorem of Arithmetics

The fundamental theorem of arithmetic, also called the unique prime factorisation theo-
rem, states that every Natural number n > 1 is either a prime number (that is, its only
factors are 1 and n) or it can be represented as the product of prime numbers, that is,
there exists i1, i2, . . . , ik prime numbers such that n = i1× i2×· · ·× ik. We now prove this
theorem with the help of course-of-values induction. (Actually, the fundamental theorem
of arithmetics also states that this factorisation is unique, but we will not look into this
here.)

Observe that any factor of a Natural number cannot be larger than the number itself,
which means that any non-prime number n always has factors that are larger than 1 but
strictly smaller than n (actually, the largest factor of a Natural number n cannot be greater
than n/2).

We define P (n) to be that either n is prime or n can be represented as the product of
prime numbers, and we prove ∀n > 2. P (n) by course-of-values induction on n.

Our base case is n = 2. Since 2 is a primer number then P (2) is clearly true.
In our inductive step we need to prove that if the statement is true for 2, 3, . . . , n for

a given n > 2, then it will also be true for n+ 1. In other words, we need to show that if
our IH P (2), P (3), . . . , P (n) hold then P (n+ 1) also holds, for a given n > 2.

For each m such that 2 6 m 6 n, our IH P (m) states that m is either a primer number
or it can be represented as the product of prime numbers.

We now need to prove P (n+ 1), that is, we need to show that either n+ 1 is a prime
number or n+ 1 can be represented as the product of primer numbers.

We have two cases here. If n+ 1 is prime, then P (n+ 1) is true and then we are done.
If n+1 is not prime then it should be the case that n+1 can be written as the product

of two Natural number 2 6 i, j < n, that is, n+ 1 = i× j. Hence our IH applies to both i
and j, so we know that both i and j are either prime numbers or they can be represented
as the product of prime numbers.
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So i = pi1 × pi2 × . . .× pik and j = pj1 × pj2 × . . .× pjk′ where each pih and each pjh′
is a primer number. Observe that if i and/or j are themselves prime numbers then they
can be represented as the product of one prime number (themselves).

Now we have that n + 1 = i × j = pi1 × pi2 × . . . × pik × pj1 × pj2 × . . . × pjk′ where
each pih and each pjh′ is a primer number, which shows that P (n+ 1) is true.

This concludes our proof by course-of-values induction and hence we can state that
∀n > 2. P (n).

1.2.3 Proving Properties of Grammars

Course-of-values induction comes very handy when we need to prove properties about the
language generated by a grammar, where a useful technique is to reason over the length
of the derivation of a certain word w in the language of the grammar.

Let us consider the language generated by the grammar

S → SabaS | aSbSa | aba

We want to prove that any occurrence of a b in a word generated by the grammar is
immediately preceded and followed by an a.

We define P (n) to be if S ⇒n w then w starts and ends with an a and any b in
the word is immediately preceded and followed by an a, and we prove ∀n > 1. P (n) by
course-of-value induction on the length n of the derivation of a word, S ⇒n w.

Observe that this is not exactly the property we need to prove. However, the property
we wish to prove can easily be deduced from the property P once we prove that P (n) is
valid for all n. This example shows the importance of explicitly indicating which property
P we intend to prove by induction, since not necessarily the statement we need to prove
is exactly the property we prove by induction.

Our base case is n = 1 since no word can be derived from S in 0 steps. That is, the
shortest derivation from the starting variable S to a word takes at least one step. So if w
has been derived in one step, S ⇒ w, then the only production that could have been used
for such a derivation should have been S → aba and then w = aba. Here, aba starts and
ends with a and the only b in the words is clearly placed between two a’s. So P (1) is true.

In our inductive step we need to prove that if the statement is true for 1, 2, . . . , n for
a given n > 1, then it will also be true for n+ 1. In other words, we need to show that if
our IH P (1), P (2), . . . , P (n) hold then P (n+ 1) also holds, for a given n > 1.

Our IH states that if a word is derived in at most n steps, that is S ⇒m w for
1 6 m 6 n, then w starts and ends with an a and any b in the word is immediately
preceded and followed by an a.

We now need to prove P (n + 1), that is, if S ⇒n+1 w with n > 1, then w starts and
ends with an a and any b in the word is immediately preceded and followed by an a.

Since n > 1 then n + 1 > 1, so the first step in the derivation should have used the
production S → SabaS or the production S → aSbSa.

If the first step in the derivation used the production S → SabaS then we have that
S ⇒ SabaS ⇒n w. Here we know that w = w1abaw2 with S ⇒i w1, S ⇒j w2, for
1 6 i, j 6 n (actually we also know that i+ j = n). Then our IH applies to both i and j,
so we know that both w1 and w2 start and end with an a and any b in the these words is
immediately preceded and followed by an a.
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Since by the IH P (i) w1 starts with a then so does w, and since by the IH P (j) w2

ends with a, then so does w. Any b in w is either a b in w1 or in w2 and hence by our IH
P (i) and P (j) the b is immediately preceded and followed by an a, or is the b just added
in the first step of the derivation, which is clearly immediately preceded and followed by
an a.

If the first step in the derivation used the production S → aSbSa then we have that
S ⇒ aSbSa ⇒n w. Here we know that w = aw1bw2a with S ⇒i w1, S ⇒j w2, for
1 6 i, j 6 n (again, we actually know that i+ j = n). Then our IH applies to both i and
j, so we know that both w1 and w2 start and end with an a and any b in the these words
is immediately preceded and followed by an a.

In this case w clearly starts and ends with an a. Any b in w is either a b in w1 or in w2

and hence by our IH P (i) and P (j) the b is immediately preceded and followed by an a,
or is the b just added in the first step of the derivation which is located between w1 and
w2. Since by the IH P (i) w1 ends with an a then this b is immediately preceded by an a;
since by the IH P (j) w2 starts with an a, then this b is immediately followed by an a.

In both cases, we have showed that P (n + 1) is true, which concludes our proof by
course-of-values induction and hence we can state that ∀n > 1. P (n).

Discussion note: If we try to performe this proof by mathematical (instead of course-
of-values) induction we would get stuck in the inductive step.

Consider the case where the first step in the derivation used the production S → SabaS
and we have that S ⇒ SabaS ⇒n w. Here we know that w = w1abaw2 with S ⇒i w1,
S ⇒j w2 such that i + j = n. Since 1 6 i, j then i, j < n! This means that our IH P (n)
is of no help here, since neither w1 nor w2 are derived in n steps!

In general, when several variables take place in the right-hand side of a production,
we do not really know how long the derivations of the sub-words are, only that they are
strictly shorter than the length of the derivation of whole word. Therefore we usually must
use course-of-values induction and not mathematical induction when proving properties
about grammars.

2 Inductive Sets and Recursive Functions

2.1 Inductively Defined Sets

If we analyse the rules defining the Natural numbers given in section 1 we can distinguish
two kinds of rules: the rule that directly constructs a Natural number, and the rule that
takes an existing Natural number and constructs a new one from it.

In general, the rules defining an inductive set can be divided into such two groups:
those rules directly constructing elements in the set without the need of previous elements
in the set we are currently defining, and those rules constructing new elements in the set
from already existing elements in the set we are currently defining. Either of these rules
could however make use of elements in other (already defined) sets A’s.

More concretely, the general structure of the rules defining an inductive set S are as
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follow:

x1 ∈ A1 · · · xj1 ∈ Aj1

e1[x1, . . . , xj1 ] ∈ S
· · · x1 ∈ A1 · · · xjm ∈ Ajm

em[x1, . . . , xjm ] ∈ S

x1 ∈ A1 · · · xj′1 ∈ Aj′1
s1, . . . , sk1 ∈ S

c1[x1, . . . , xj′1 , s1, . . . , sk1 ] ∈ S
· · · x1 ∈ A1 · · · xjn ∈ Ajn s1, . . . , skn ∈ S

cn[x1, . . . , xjn , s1, . . . , skn ] ∈ S

Every element in an inductive set is defined by applying the rules above a finite number
of times in a certain order. Hence all elements in the set are finite. Moreover, any element
in an inductive set shall only be defined via these rules, that is, there are no elements in
the set constructed by any other means. This is sometimes referred to as the clousure of
the set.

Here, each ei and cj is called a constructor of the set S and different constructors define
different elements of S; in other words, ei[. . .] 6= ei′ [. . .] and cj[. . .] 6= cj′ [. . .] whenever i 6= i′

and j 6= j′. Of course we also have ei[. . .] 6= cj[. . .] for any i, j.
When we define a set S with the rules above, the elements s1, . . . , ski ∈ S are said

to be structurally smaller than the element ci[x1, . . . , xji , s1, . . . , ski ] ∈ S. If we look at
the structure of ci[. . .] we then can see that all s1, . . . , ski are strict sub-terms of ci[. . .].
Each element s1, . . . , ski in itself is a constructor ci′ applied to other structurally smaller
elements, or simply en element of the form ei′ [. . .].

Another way to understand the concept of structurally smaller elements is by consid-
ering the parse trees of the elements in an inductively defined set. Given the parse tree of
an element s in the inductive set S, all subtrees whose roots are one of the constructors
of the set S correspond to a structurally smaller element of the original elements (observe
that the root of a subtree is simple a node of the original tree).

Discussion note: The set S we define could actually be a parametric set (a set that
depends on another set), which would allow us for example to defined the finite lists of
elements of a certain set A. We will not try to formalise this particular feature in the rules
connected to the definition of an inductive set. We hope however that the rules presented
above and your experience with parametric types from the work in programming courses
will still allow you to define inductive sets that are parametric. This particular feature is
however orthogonal to the concepts we want to treat in here, so no major problems if you
keep yourself to non-parametric inductive sets.

One could also mutually define two or more inductive sets, but we will not look into
this here.

Discussion note: One can of course also define sets containing infinite elements. Such
definitions are more complex and we will not study them here.

2.2 Example of Inductively Defined Sets

One of the most well-known inductive sets in computer science, besides that of the Natural
numbers, is the set Bool of Boolean values:

true ∈ Bool false ∈ Bool
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This set has only elements that can be directly constructed, that is, there is no element
which is constructed from a previous one. So this set is not recursively defined since
no element in the set is constructed from another element in the set. Often however one
associates inductive sets just to those sets which have at least a constructor that constructs
new elements in the set from previous ones, like in the sets of Natural numbers, lists or
trees.

Another well-known inductive set is set of finite lists of Natural numbers:

nil ∈ ListN

n ∈ N xs ∈ ListN

n : xs ∈ ListN

The definition of the parametric set of finite lists of elements in the set A is very similar
to that of list of Natural numbers:

nil ∈ List A

x ∈ A xs ∈ List A

n : xs ∈ List A

Here we overload the list constructors so they define both lists of Natural numbers and
parametric lists over a set A.

Parametric binary trees with information in the nodes and no information in their
leaves can be defined as follows:

() ∈ Tree A

x ∈ A t1, t2 ∈ Tree A

node (t1, x, t2) ∈ Tree A

Arithmetic expressions over the Natural numbers and also containing variables could
be defined as follows:

n ∈ N
num (n) ∈ Exp

x ∈ String

var (x) ∈ Exp

e1, e2 ∈ Exp

e1 ⊕ e2 ∈ Exp

e1, e2 ∈ Exp

e1 ⊗ e2 ∈ Exp

Here we took the liberty to use some of the constructors in an infix way, so we write
e1 ⊕ e2 ∈ Exp instead of ⊕(e1, e2) ∈ Exp.

The set of regular expressions RE over an alphabet Σ can also be defined inductively:

∅ ∈ RE ε ∈ RE

a ∈ Σ

v (a) ∈ RE

r, s ∈ RE

r + s ∈ RE

r, s ∈ RE

r · s ∈ RE

r ∈ RE

r∗ ∈ RE

Discussion note: Those of you who are familiar with Haskell might want to compare
the definitions presented here with the data types defining the corresponding types in
Haskell. You could see that except for syntactical and presentation issues (rules vs data
types), both definitions are very similar.

An important difference however, is that all elements in an inductively defined set are
finite, while elements in a Haskell data type could be infinite!

2.3 Recursively Defined Functions over Inductively Defined Sets

(In what follows, we will denote function applications indistinctly by f(x) or by f x, de-
pending on which notation is more convenient in each case.)

A recursive function is a function that calls itself as part of its definition.
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Consider for example the definition of the factorial function given in section 1.1.2:

0! = 1 (n+ 1)! = (n+ 1)× n!

Here the first equation directly gives the value of the function for the element 0. The
second equation however, tells that in order to compute the value of the function for the
Natural number n + 1, we need to compute the value of the function for the number n
and then multiply that value with n+ 1. So in order to compute the value of (n+ 1)! we
need to compute the value of n!.

Let us look at the definition of the factorial function in more detail. We can see that
there is one equation for each of the ways of constructing a Natural number. Moreover,
the equation that defined the function on 0 directly gives the result of the function without
invoking a recursive calls. On the other hand, the equation that defines the function on
n + 1 contains a recursive call on a structurally smaller element. This is very important
since it guarantees that the function terminates for any input! Indeed, if we want to
compute the factorial of a number of the form n + 1, then the value of (n + 1)! depends
on the value of n!. Now, to compute the value of n! we need to look at whether n is 0,
or whether n = m + 1 for some Natural number m. Now, since all Natural number are
constructed by a finite number of application of suc to the element 0, then when looking
at the argument of the recursive call (which is necessarily structurally smaller than the
original argument to the function!) we will eventually get to 0, for which we directly know
the result of the function.

Let us try to compute 4!. By definition of the factorial function we have that
4! = 4 × 3!. In order to compute 3! we look again at the definition of the function
and see that 3! = 3× 2!. We also have that 2! = 2× 1! and that 1! = 1× 0!. Now we know
that 0! = 1 so if we put all the pieces together we get that

4! = 4× 3! = 4× 3× 2! = 4× 3× 2× 1! = 4× 3× 2× 1× 0! = 4× 3× 2× 1× 1 = 24

The general structure of the definition of a recursive function f : S → A over the
inductively defined set S, where the recursive calls are on structurally smaller elements is
as follows:

f (e1[x1, . . . , xj1 ]) = g1[x1, . . . , xj1 ]
...

...
f (em[x1, . . . , xjm ]) = gm[x1, . . . , xjm ]
f (c1[x1, . . . , xj′1 , s1, . . . , sn1 ]) = h1[x1, . . . , xj′1 , f (s1), . . . , f (sn1)]

...
...

f (ck[x1, . . . , xjn , s1, . . . , snk
]) = hk[x1, . . . , xjn , f (s1), . . . , f (snk

)]

where each xi is of the correct type according to the definition of the set and each sj ∈ S.
There might be cases where we need to look “deeper” into the elements of the set in

order to define a function. Consider for example the Fibonacci function over the Natural
numbers. For inputs n > 1, the function has a recursive call on n−1 and another on n−2.
How can we write this using the structure of the elements of N? A first step is to write

fibonacci 0 = 0
fibonacci (n+ 1) = ??

11



Now, the n in the second equation is also a Natural number, hence this number is either 0
or the application of suc to a number. So we can use this information and transform the
second equation into two new equations that easily allow us to define the function:

fibonacci 0 = 0
fibonacci 1 = 1
fibonacci ((n+ 1) + 1) = fibonacci (n+ 1) + fibonacci n

Observe that even here, both recursive calls are on structurally smaller elements: the first
recursive call is on an element one step smaller in the structure of (n + 1) + 1, while the
second call is on an element two steps smaller in the structure. If we consider the parse
tree for (n + 1) + 1, one of the recursive calls is on an immediate subtree (that of n + 1)
while the other recursive calls is on a subtree deeper down in the tree structure (that of
n), which in this case is a subtree of a subtree of the original element.

We could use this same schema to define functions over non-recursive inductive sets.
These functions however will not be recursive in the strict sense of the concept.

if true then x else y = x
if false then x else y = y

2.4 Example of Recursively Defined Functions

Let us define a function which adds all the numbers in a list of Natural numbers:

sum nil = 0
sum (x : xs) = x+ (sum xs)

Observe that here it is important that we work with Natural numbers since it might not
be possible to add elements in the arbitrary type A.

Let us now define the height of a tree (the longest path from the root of the tree to its
leaves):

height () = 0
height (node (t1, x, t2)) = 1 + max (height t1, height t2)

To count the nodes in a tree we define the following function:

nrnds () = 0
nrnds (node (t1, x, t2)) = 1 + nrnds t1 + nrnds t2

Observe that the last two functions could be defined for any tree, independently of the
type of the information storaged in the nodes of the tree.

One could also define functions taking more than one argument, but where the re-
cursion is made on only one of those arguments. The definition of the addition and
multiplication of Natural numbers are well-known examples of such functions:

0 +m = m 0×m = 0
(n+ 1) +m = (n+m) + 1 (n+ 1)×m = (n×m) + n

Recall that n + 1 is just syntactic sugar for suc n and it must not be confused with the
addition function we just defined, even though the value of the number suc n is the same
as the result of adding 1 to n.
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Let us now define the append and filter functions over lists of elements in the set A,
where p : A→ Bool:

nil ++ ys = ys filter p nil = nil
(x : xs) ++ ys = x : (xs++ ys) filter p (x : xs) = if p(x) then x : (filter p xs)

else filter p xs

The function that reverses a list can now be defined as follows:

rec nil = nil
rev (x : xs) = (rev xs) ++ [x]

where [x] denotes (x : nil).
We could count the number of single (just a number or a variable) or compound

expressions (consisting of the addition or multiplication of expressions) as follows:

nrsg (num (n)) = 1 nrcp (num (n)) = 0
nrsg (var (x)) = 1 nrcp (var (x)) = 0
nrsg (e1 ⊕ e2) = nrsg e1 + nrsg e2 nrcp (e1 ⊕ e2) = 1 + nrcp e1 + nrcp e2
nrsg (e1 ⊗ e2) = nrsg e1 + nrsg e2 nrcp (e1 ⊗ e2) = 1 + nrcp e1 + nrcp e2

If we have an environment ρ : String→ N that gives values to variables, we can define
a function that evaluates an expression:

eval (num (n)) ρ = n
eval (var (x)) ρ = ρ(x)
eval (e1 ⊕ e2) ρ = eval e1 ρ+ eval e2 ρ
eval (e1 ⊗ e2) ρ = eval e1 ρ× eval e2 ρ

Discussion note: Those of you who are familiar with Haskell might want to compare
these definitions with the equivalent ones performed by pattern-matching on the elements
of corresponding data types.

Discussion note: It is also possible to do recursion on both arguments simultaneously.
Consider for example the merge function over (ordered) lists of Natural numbers (here we
need to be able to use the relation < on N):

merge xs nil = xs
merge nil ys = ys
merge (x : xs) (y : ys) = if (x < y) then x : (merge xs (y : ys)) else y : (merge (x : xs) ys)

We can see that in each recursive call at least one of the lists is structurally smaller than the
original lists while the other list remains the same, so the function is bound to terminate
for any pair of lists. However, this function is strictly speaking not defined by recursion
on lists but on pairs of lists, with the notion of structurally smaller coming from that of
pairs of elements. We will however not go into details about this here.
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Discussion note: There are of course recursive functions where the recursive call is
not performed on structurally smaller elements. A well-known example is the quicksort
algorithm on lists of Natural numbers:

quicksort nil = nil
quicksort (x : xs) = quicksort (filter (6 x) xs) ++ [x] ++ quicksort (filter (> x) xs)

The definition of this function does not automatically guarantee its termination since the
arguments on which we perform the recursive calls, filter (6 x) xs and filter (> x) xs, are
syntactically not structurally smaller than the original argument (x : xs) of the function.

Here however, we can reason about the termination of the function since the lengths of
the lists on which we perform the recursive calls are strictly smaller than the length of the
original list. So there is a measure which strictly decrease in each recursive call and allows
us to prove (using the so called well-founded induction) that the function terminates.

There are also more complex function definitions. Consider for example McCarthy’s
f91 function:

f91 n =

{
n− 10 if n > 100
f91 (f91 (n+ 11)) if n 6 100

Here the function is not really defined following the structure of the Natural numbers.
Moreover, we have nested recursive calls, and also a recursive call on an argument which
is clearly greater than the original one. It so happens that we can prove that this function
terminates with the value 91 for all n 6 100, and with the value n − 10 otherwise. But
this is not a trivial task.

Reasoning about the termination of non-structurally smaller recursive definition is not
trivial. For example, the function below is believed to always terminate with the value 1,
but no one has really been able to prove it!

collatz 0 = 1
collatz 1 = 1

collatz n =

{
collatz (n/2) if n is even and n > 1
collatz (3n+ 1) if n is odd and n > 1

As a programmer, it is not always easy to define the solutions to our problems so
that the functions only have recursive calls on structurally smaller arguments. We should
anyhow make sure our programs terminate, no matter how complex our algorithms look
like. Here however we will concentrate just on recursive functions where the recursive calls
are on structurally smaller arguments.

3 Structural Induction

Associated to each inductively defined set we have an inductive principle which allows us
to prove properties about the elements in the set, and about the functions defined over
such elements.

Recall the general structure of the rules defining an inductive set S presented in section
2.1. In order to prove ∀ s ∈ S. P (s), for a given property P over the elements of S, we
proceed as follows:

Base cases: We prove P (ei[. . .]) for each element ei[. . .] ∈ S constructed without the need
of previous elements in the set S;
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Inductive steps: For each constructor ci defining a new element in S in terms of previ-
ously defined elements s1, . . . , ski ∈ S, we give a method to prove P (ci[. . . , s1, . . . , ski ])
from the proofs of P (s1), . . . , P (ski). In other words, for each constructor ci, given
s1, . . . , ski ∈ S, we need to prove that if our inductive hypotheses (IH) P (s1), . . . , P (ski)
hold then P (ci[. . . , s1, . . . , ski ]) also holds.

After we have completed these steps, we then have a way to prove the property P for
ANY element in S.

The general structure of the inductive principle associated to a set S defined as in
section 2.1 is as follows:

base cases


∀x1 ∈ A1 · · · xj1 ∈ Aj1 . P (e1[x1, . . . , xj1 ])

...
∀x1 ∈ A1 · · · xjm ∈ Ajm . P (em[x1, . . . , xjm ])

inductive steps


∀x1 · · ·xj′1 s1, . . . , sk1 ∈ S.

IH︷ ︸︸ ︷
P (s1) ∧ · · · ∧ P (sk1)→ P (c1[x1, . . . , xj′1 , s1, . . . , sk1 ])

...

∀x1 · · ·xjn s1, . . . , skn ∈ S.
IH︷ ︸︸ ︷

P (s1) ∧ · · · ∧ P (skn)→ P (cn[x1, . . . , xjn , sk1 , . . . , skn ])

∀ s ∈ S. P (s)

Compare this general principle with that of mathematical induction. It is hopefully
easy to see that mathematical induction is actually just a special case of structural induc-
tion over the inductive set of Natural numbers.

Discussion note: Structural induction on an element s ∈ S is actually nothing more
than course-of-values induction on the height of the parse tree for s. As we mentioned
in section 2.1, each structurally smaller element of s correspond to a subtree of the parse
tree of s whose root is a constructor of S. The height of such subtree is strictly smaller
than the height of the parse tree of s, thought not necessarily just one unit smaller, hence
course-of-values and not mathematical induction.

Let us now look at the use of structural induction in more detail with the help of some
examples.

3.1 ∀xs, ys ∈ List A. rev (xs++ ys) = rev ys++ rev xs

For this example we assume that we already know that append is associative and that
∀xs ∈ List A. xs++ nil = xs. These properties can easily be proved by structural induction
on the appropriate argument.

Observe that here we have two arguments, namely xs and ys, on which we could be
performing induction on, so it is very important to clearly specify which is the argument
the property P takes. Which argument to choose depends on what we want to prove, and
how the functions involved in the property to prove were defined. This situation is not
exclusive of proofs by structural induction and can of course arise also when working with
mathematical or course-of-values induction.
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We define P (xs) to be ∀ ys ∈ List A. rev (xs ++ ys) = rev ys ++ rev xs and we prove
∀xs ∈ List A.P (xs) by structural induction on the list xs.

Our base case is xs = nil. Then, showing that P (nil) holds amounts to proving that
∀ ys ∈ List A. rev (nil ++ ys) = rev ys ++ rev nil. By definition of reverse and append we
then need to show that ∀ ys ∈ List A. rev ys = rev ys++ nil, which we know is true by one
of our assumptions.

Given xs ∈ ListA, our IH P (xs) states that ∀ ys ∈ List A. rev (xs++ ys) = rev ys++ rev xs.
We now need to prove P (x : xs) for a given x ∈ A, that is,

∀ ys ∈ List A. rev ((x : xs) ++ ys) = rev ys ++ rev (x : xs). By definitions of reverse and
append we need to show that ∀ ys ∈ List A. rev (x : (xs++ ys)) = rev ys++ (rev xs++ [x]).
Working further with the definitions of the functions involved, and using the assumption
that append is associative, we now need to show that
∀ ys ∈ List A. rev (xs++ ys) ++ [x] = (rev ys++ rev xs) ++ [x], which is true by IH.

This shows that P (x : xs) is true, which concludes our proof by structural induction
that ∀xs ∈ List A.P (xs).

3.2 ∀xs ∈ List A. rev (rev (xs)) = xs

We define P (xs) to be rev (rev (xs)) = xs and we prove ∀xs ∈ List A.P (xs) by structural
induction on the list xs.

Our base case is xs = nil. Then, showing that P (nil) holds amounts to proving that
rev (rev nil) = nil, which is indeed true by definition of reverse.

Given xs ∈ List A, our IH P (xs) states that rev (rev (xs)) = xs.
We now need to prove P (x : xs) for a given x ∈ A, that is, rev (rev (x : xs)) = x : xs.

By definition of reverse this amounts to proving rev (rev xs ++ [x]) = x : xs. Using the
property in section 3.1, we then need to show that rev [x] ++ rev (rev (xs)) = x : xs.

Observe that by the definitions of the reverse and append functions we have that
∀x ∈ A. rev [x] = [x] and ∀x ∈ A.∀xs ∈ List A. [x]++xs = x : xs. Using these observations
on the appropriate arguments, it remains to show that x : rev (rev (xs)) = x : xs, which is
indeed true by IH.

This shows that P (x : xs) is true, which concludes our proof by structural induction
that ∀xs ∈ List A.P (xs).

3.3 ∀ t ∈ Tree A. nrnds t 6 2(height t) − 1

We define P (t) to be nrnds t 6 2(height t)− 1 and we prove ∀ t ∈ Tree A.P (t) by structural
induction on the tree t.

Our base case is t = (). Then showing that P (()) holds amounts to proving that
nrnds () 6 2(height ())−1. By definitions of the functions nrnds and height, we need to show
that 0 6 20 − 1, that is 0 6 1− 1 = 0, which is indeed true.

Given t1, t2 ∈ Tree A, our IH P (t1) and P (t2) say that nrnds t1 6 2(height t1) − 1 and
nrnds t2 6 2(height t2) − 1, respectively.

We now need to prove that P (node (t1, x, t2)) holds for a given x ∈ A, that is,
nrnds (node (t1, x, t2)) 6 2(height (node (t1,x,t2))) − 1.

By the definitions of the functions involved, we need to show that
1 + nrnds t1 + nrnds t2 6 21+max (height t1,height t2) − 1 = 2× 2max (height t1,height t2) − 1.

By IH and mathematical properties we know that
nrnds t1 + nrnds t2 6 2(height t1) − 1 + 2(height t2) − 1 6 2× 2max (height t1,height t2) − 2.
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By adding 1 to each side of this inequality we show that P (node (t1, x, t2)) is true,
which concludes our proof by structural induction that ∀ t ∈ Tree A.P (t).

3.4 ∀ e ∈ Exp. nrsg e = nrcp e+ 1

We define P (e) to be nrsg e = nrcp e + 1 and we prove ∀ e ∈ Exp. P (e) by structural
induction on the expression e.

Our base cases are e = num (n) for a certain n ∈ N, and e = var (x) for a certain
x ∈ String. To prove P (num (n)) we need to show that nrsg (num (n)) = nrcp (num (n)) + 1.
By the definitions of the functions nrsg and nrcp, we then need to show that 1 = 0 + 1,
which is indeed true. Similarly, to prove P (var (x)) we need to show that
nrsg (var (x)) = nrcp (var (x)) + 1. By the definitions of the functions involved we then
need to show that 1 = 0 + 1, which is indeed true.

Observe that in this example we have two inductive steps to prove, one stating that
∀ e1, e2 ∈ Exp. P (e1) ∧ P (e2) → P (e1 ⊕ e2) and the other stating that
∀ e1, e2 ∈ Exp. P (e1) ∧ P (e2)→ P (e1 ⊗ e2).

For both inductive steps, given e1, e2 ∈ Exp, our IH P (e1) and P (e2) state that
nrsg e1 = nrcp e1 + 1 and nrsg e2 = nrcp e2 + 1, respectively.

We now need to prove both that P (e1 ⊕ e2) and that P (e1 ⊗ e2).
To prove P (e1⊕e2) we need to show that nrsg (e1⊕e2) = nrcp (e1⊕e2)+1. By the defini-

tions of the functions involved we then need to show that
nrsg e1 + nrsg e2 = (1 + nrcp e1 + nrcp e2) + 1. By IH and mathematical properties,
we know that nrsg e1 + nrsg e2 = (nrcp e1 +1)+(nrcp e2 +1), which shows that P (e1⊕e2)
is true.

Since the definitions of the functions nrsg and nrcp are identical for both (e1⊕ e2) and
(e1 ⊗ e2), the proof of P (e1 ⊗ e2) is basically the same as the proof of P (e1 ⊕ e2).

So this concludes the proofs of our two inductive steps and hence, our proof by struc-
tural induction that ∀ e ∈ Exp. P (e).

4 Mutual Induction

Sometimes we cannot prove a particular property P by induction but we instead need to
prove two or more properties P1, P2, . . . , Pn simultaneously by induction. So our property
P is the conjunction of all P1, P2, . . . , Pn.

It is generally the case that these properties are mutually dependent, that is, in order
to prove Pi we need to use Pj for one or more j’s. Observe however that mutual induction
is in itself not a particular induction principle; the actual induction principle to be used
will depend on the problem at hand.

Mutual induction is very useful when working with mutually defined functions, with
automata or with grammars. In general, to prove a particular property about a function
which is mutually defined with other functions f1, . . . , fn we usually also need to prove
certain properties about the functions f1, . . . , fn. In the same way, proving that an au-
tomaton satisfies a property P amounts to proving that each particular state qi in the
automaton satisfies a certain property Pi. Similarly, to prove that the language generated
by a grammar satisfies a property P , we usually need to prove that the language generated
by each particular variable Vj in the grammar satisfies a certain property Pj .
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4.1 Mutually Defined Functions

Consider the following functions over the Natural numbers:

f(0) = 1 g(0) = 0 h(0) = 0
f(n+ 1) = f(n) + 1 g(n+ 1) = h(n) + n+ 2 h(n+ 1) = f(n)

These functions do not really follow the structure in section 2.3: g(n + 1) does not call
g(n) but instead calls h(n), similarly h(n + 1) calls f(n). So to define g we make use of
h and to define h we make use of f ; hence there is a certain mutual dependency in the
definitions of these functions. Observe however, that in each call the argument indeed
decrease, which guarantees the termination of these functions for any input.

We want to prove that ∀n ∈ N. g(n) = 2× (f(n)− 1).
If we define P (n) to be exactly g(n) = 2 × (f(n) − 1) and we attempt to prove

∀n ∈ N. P (n) by mathematical induction on the number n we will soon get stuck. Let us
try and see.

Our base case would be n = 0. Here showing that P (0) holds amounts to proving that
g(0) = 2× (f(0)− 1), that is, 0 = 2× (1− 1) = 0, which is true.

Now, for a given n ∈ N we assume our IH P (n) and try to prove P (n+ 1).
Our IH states that g(n) = 2× (f(n)− 1), and hence that g(n) + 2 = 2× f(n).
We now need to prove that g(n+1) = 2× (f(n+1)−1). By the definitions of g and f ,

we see that we need to prove that h(n) +n+ 2 = 2× (f(n) + 1− 1) = 2× f(n). Using our
IH we see that to prove P (n+ 1) we need to show that h(n) +n+ 2 = g(n) + 2 and hence
that h(n) + n = g(n). But here we get stuck since we know nothing about the relation
between h and f , or h and g.

So instead we actually prove another property P ′(n) consisting of three statements
Pg(n), Pf (n) and Ph(n). Pg(n) is defined as g(n) = 2×h(n), Ph(n) is defined as h(n) = n
and Pf (n) is defined as f(n) = h(n) + 1. We now prove ∀n ∈ N. P ′(n), or in other words
∀n ∈ N. Pg(n) ∧ Pf (n) ∧ Ph(n), by mathematical induction on the number n.

Our base case is n = 0 and we need to prove Pg(0), Pf (0) and Ph(0). Here we need to
prove that g(0) = 2× h(0), h(0) = 0 and f(0) = h(0) + 1 which amounts to proving that
0 = 2× 0, 0 = 0 and 1 = 0 + 1, which are all true.

Given n ∈ N, our IH is P ′(n), or in other words Pg(n), Pf (n) and Ph(n). Here we have
that g(n) = 2×h(n), h(n) = n and f(n) = h(n) + 1, which also gives us that g(n) = 2×n
and that f(n) = n+ 1.

We now need to prove P ′(n+1), that is, Pg(n+1), Pf (n+1) and Ph(n+1). Hence we
need to prove that g(n+1) = 2×h(n+1), h(n+1) = n+1 and f(n+1) = h(n+1)+1. By
the definitions of f , g and h, we need to show that h(n)+n+2 = 2×f(n), f(n) = n+1 and
f(n)+1 = f(n)+1. By the IH Ph(n) and Pf (n), Pg(n+1) becomes 2×n+2 = 2× (n+1)
which is indeed true. Ph(n+ 1) is simply true by the IH Ph(n) and Pf (n), and Pf (n+ 1)
is trivially true.

This shows that P ′(n+ 1) is true, which concludes our proof by mutual induction that
∀n ∈ N. P ′(n).

Finally, we deduce ∀n ∈ N. g(n) = 2× (f(n)− 1) from ∀n ∈ N. P ′(n): for a given n,
we have that g(n) = 2× h(n) = 2× n = 2× (f(n)− 1).

This is another example where the property we actually prove by induction is not
really the statement we need to prove in the first place.
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4.2 Proving Properties of Grammars

Consider the following grammar with start symbol S:

S → 0A | 1B A→ 1 | 1S B → 0 | 0S

We want to prove that L(S) = (01 + 10)+, but it will be difficult to just prove this
statement since the L(S) depends on L(A) and L(B), which in turn both depend on L(S).
So in order to prove a statement about L(S) we will also need to prove certain statements
about L(A) and L(B).

So instead we prove that L(S) = (01 + 10)+, that L(A) = 1(01 + 10)∗, and that
L(B) = 0(01 + 10)∗.

We define P (n) as the conjunction of three statements PS(n), PA(n) and PB(n), where
each PV (n) is defined as follows: for all w, if V ⇒n w then w ∈ L(V ), for V ∈ {S,A,B}
and L(V ) as defined above. We then prove that ∀n > 1. P (n) by mathematical induction
on the length n of the derivation V ⇒n w.

Our base case is n = 1 (recall there is no derivation to a word taking less than one
step) and we need to prove PS(1), PA(1) and PB(1).

PS(1) states that for all w, if S ⇒ w then w ∈ L(S). Observe that it is not possible
to derive a word from S in only one step, so PS(1) is true simply because the condition in
the conditional-statement is false.

PA(1) states that for all w, if A ⇒ w then w ∈ L(A). Here w must be 1 (by looking
at the productions in the grammar), which clearly is in L(A).

Similarly, PB(1) states that for all w, if B ⇒ w then w ∈ L(B). Here w must be 0
(again by looking at the productions in the grammar), which clearly is in L(B).

Given n ∈ N, our IH is P (n), or in other words PS(n), PA(n) and PB(n). So we have
that for all w, if V ⇒n w then w ∈ L(V ), for V ∈ {S,A,B}.

We now need to prove P (n+ 1), that is, PS(n+ 1), PA(n+ 1) and PB(n+ 1).
Consider a word w such that S ⇒n+1 w. Then we have two cases: either

S ⇒ 0A⇒n w = 0w′ with A⇒n w′, or S ⇒ 1B ⇒n w = 1w′ with B ⇒n w′.
In the first case, by the IH PA(n) we know that w′ ∈ L(A) = 1(01 + 10)∗. Hence

w = 0w′ ∈ 01(01 + 10)∗ ⊆ (01 + 10)+ = L(S).
In the second case, by the IH PB(n) we know that w′ ∈ L(B) = 0(01 + 10)∗. Hence

w = 1w′ ∈ 10(01 + 10)∗ ⊆ (01 + 10)+ = L(S).
This proves PS(n+ 1).
Let us now consider a word w such that A ⇒n+1 w. Then we must have that

A ⇒ 1S ⇒n w = 1w′ with S ⇒n w′. (Observe that our base case is n = 1 so
n + 1 > 1 and hence the production A → 1 could not have been used as first step in
the derivation A⇒n+1 w, which is longer than one step.) By the IH PS(n) we have that
w′ ∈ L(S) = (01 + 10)+. Hence w = 1w′ ∈ 1(01 + 10)+ ⊆ 1(01 + 10)∗ = L(A), which
proves PA(n+ 1).

Finally, let us consider a word w such that B ⇒n+1 w. Then we must have that
B ⇒ 0S ⇒n w = 0w′ with S ⇒n w′. (Again, since our base case is n = 1 then n + 1 >
1 so the production B → 0 could not have been used as first step in the derivation
B ⇒n+1 w.) By the IH PS(n) we have that w′ ∈ L(S) = (01 + 10)+. Hence we have that
w = 0w′ ∈ 0(01 + 10)+ ⊆ 0(01 + 10)∗ = L(B), which proves PB(n+ 1).

This concludes our proof by mutual induction that ∀n > 1. P (n).
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Discussion note: Observe that we use mathematical induction here while we used
course-of-values induction in section 1.2.3 when we also wanted to prove a property about
the language generated by a grammar. The reason we can use mathematical induction
here (and not there) is that there is at most one variable on the right-hand-side of each of
the productions in the grammar. Hence, when we have that V ⇒n+1 w and we know the
first step uses a production of the form V → aW , then we must have that V ⇒ aW ⇒n w
with w = aw′ and W ⇒n w′. Here P (n) could be used to prove P (n + 1) if P is defined
in the right way.

5 Final Notes on Proofs by Induction

To end, we summarise the steps that need to be followed when making a proof by induction.
Observe that if any of these steps is missing then very likely the proof is not correct!

1. State the property P to be proved by induction.

Recall that sometimes the property that we want to prove is not exactly the one we
actually prove by induction!

2. Determine and state the method to use in the proof!

For example: Mathematical induction on the length of the list, course-of-values
induction on the length of a derivation, structural induction over a certain element
in an inductive set, . . .

3. Identify and state base case(s).

Recall that we could have more than one base case!

4. Prove base case(s).

5. Identify and state IH!

Our IH will depend on the method to be used (see step 2). It is very useful to
actually state the IH in detail instead of simply saying “we assume our IH P(n)”.
By spelling out the IH in detail it becomes more clear what information we actually
have at hand to work with.

6. Prove inductive step(s).

7. Deduce the desired property to be proved from P .

Recall step 1 and the fact that the actual property to be proved might not exactly
be P .
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