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Outline

I Introduction to stochastic processes

I Introduction to Bayesian inference

I Course structure and course content

I Review: Dobrow Chapter 1, appendices A, B, C, D

I Conditional probability and conditional expectation.
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Stochastic (or probabilistic) models

I Example: A random variable X that is normally distributed with
expectation 14.7 and standard deviation 2.3 models the braking
distance of a car at a certain speed.

I Note: The prediction is a probability distribution

I An equivalent representation of the model: A computer program
which em simulates predicted values (for example braking distances).

I Monte Carlo simulation:

Frequency of computer output ≈ Probability of output

I Note: The prediction need not be a single number, it can be
I A vector of numbers
I An image (represented by numbers in a grid)
I A 3D model of a building (represented by numbers at points)
I An infinite sequence of numbers
I A continuous function from [0, 1] to real numbers.
I . . .
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Stochastic processes

A stochastic process is a collection of random variables {Xt , t ∈ I} where

I the index set I can be for example {0, 1, 2, . . . } or [0,∞).

I The random variables are defined on a common state space S .

I Example: I = {0, 1, . . . } and S is finite.

I Example: I = {0, 1, . . . } and S = {0, 1, . . . }.
I Example: I = {0, 1, . . . } and S = R.

I Example: I = [0,∞) and S is finite.

I Example: I = [0,∞) and S = R.

I NOTE: The random variables are generally not independent!
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Review: Random variables

A random variable X with state space S is a real-valued function on S
together with a probability Pr (·) on S . The probability Pr (·) satisfies

I 0 ≤ Pr (A) ≤ 1 for all measurable subsets A ⊆ S .

I Pr (S) = 1

I Pr (∪∞i=1Ai ) =
∑∞

i=1 Pr (Ai ) when the Ai are disjoint.

I These are the Kolmogorov axioms for probability.

I Measurable sets are called events.

I What is a measurable subset?

5 / 14



Measurable subsets

Let S be any set.

I A sigma algebra Ω on S is a set of subsets of S such that
I Ω includes S
I If A ∈ Ω then Ac = S \ A ∈ Ω.
I If A1,A2, . . . ,∈ Ω then ∪∞

i=1Ai ∈ Ω

I The measurable sets are those that are in an appropriately defined
sigma-algebra.

I What you need to know for this course: When S is finite or
countable, all subsets will be measurable. When S is some interval
of real numbers, there will exist subsets that are not measurable, but
we will not be concerned with them.
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Inference

I We have shown some stochastic processes which we would like to
use as scientific models.

I In some examples, stochastic models can be specified based on what
is reasonable.

I In most real applications, stochastic models have parameters that
need to be learned from data. This learning process is called
inference (svenska: slutledning).

I In this course, we have added Bayesian inference to the material in
Dobrow.

I More about Bayesian inference in Lecture 2.
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Course components

I Lectures

I Exercise classes

I Three obligatory assignments

I Written exam
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Learning material

I Dobrow (e-book)

I Lecture Notes (on Canvas course homepage)

I Insua et al: reference material (e-book)

I Overheads from lectures (on Canvas)

I Old exams with solutions (on Canvas)
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Conditional probability

I Given events A and B, the conditional probability for A given B is

Pr (A | B) =
Pr (A,B)

Pr (B)

I Events A and B are independent if Pr (A,B) = Pr (A) Pr (B).

I Law of total probability: Let B1, . . . ,Bk be a sequence of events
that partitions S . Then

Pr (A) =
k∑

i=1

Pr (A ∩ Bi ) =
k∑

i=1

Pr (A | Bi ) Pr (Bi ) .
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Conditional distributions

I Discrete case:

Pr (Y = y | X = x) =
Pr (X = x ,Y = y)

Pr (X = x)

I Continuous case:

fY |X (y | x) =
f (x , y)

fX (x)

I Common notational convention (used in Lecture Notes): Use π as
generic function:

π(y | x) =
π(x , y)

π(x)
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Conditional expectation

I Recall, the expectation of a discrete random variable is

E (Y ) =
∑
y

y Pr (Y = y)

and of a continuous random variable

E (Y ) =

∫
y

yfY (y) dy .

I The conditional expectation in the discrete case is

E (Y | X = x) =
∑
y

y Pr (Y = y | X = x)

and in the continous case

E (Y | X = x) =

∫
y

yfY |X (y | x) dy .

I Note that if we use the π notation and interpret integrals of discrete
variables as sums, we can write both equations as

E (Y | X = x) =

∫
y

yπ(y | x) dy .

12 / 14



Law of total expectation

I If A1, . . . ,Ak are a sequence of events partitioning S then

E (Y ) =
k∑

i=1

E (Y | Ai ) Pr (Ai )

I More generally, for a random variable X we have

E (Y ) =

∫
x

E (Y | X = x)π(x) dx

I This can also be written as

E (Y ) = E (E (Y | X )) .
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Law of total variance

I Recall that, by definition,

Var (Y ) = E
(
(Y − E (Y ))2

)
= E

(
Y 2
)
− E (Y )2 .

I If X is another random variable we get

Var (Y ) = E (Var (Y | X )) + Var (E (Y | X ))
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