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Introduction to stochastic processes

Introduction to Bayesian inference

Course structure and course content

Review: Dobrow Chapter 1, appendices A, B, C, D
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Conditional probability and conditional expectation.
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Stochastic (or probabilistic) models

» Example: A random variable X that is normally distributed with
expectation 14.7 and standard deviation 2.3 models the braking
distance of a car at a certain speed.

» Note: The prediction is a probability distribution
» An equivalent representation of the model: A computer program
which em simulates predicted values (for example braking distances).

» Monte Carlo simulation:
Frequency of computer output =~ Probability of output

» Note: The prediction need not be a single number, it can be

> A vector of numbers

An image (represented by numbers in a grid)

A 3D model of a building (represented by numbers at points)
An infinite sequence of numbers

A continuous function from [0, 1] to real numbers.
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Stochastic processes

A stochastic process is a collection of random variables {X;, t € I} where

>
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the index set | can be for example {0,1,2,...} or [0, 00).
The random variables are defined on a common state space S.
Example: 1 ={0,1,...} and S is finite.

Example: 1 ={0,1,...} and S={0,1,...}.

Example: 1 ={0,1,...} and S =R.

Example: | =[0,00) and S is finite.

Example: | =[0,00) and S =R.

NOTE: The random variables are generally not independent!
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Review: Random variables

A random variable X with state space S is a real-valued function on S
together with a probability Pr () on S. The probability Pr (-) satisfies

» 0 < Pr(A) <1 for all measurable subsets A C S.
» Pr(S)=1
Pr(U,A)) = >°7, Pr(A;) when the A; are disjoint.
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These are the Kolmogorov axioms for probability.

Measurable sets are called events.

v

What is a measurable subset?

v
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Measurable subsets

Let S be any set.
> A sigma algebra Q on S is a set of subsets of S such that
> Qincludes S
» If A€ Qthen AA=S\AcQ.
> If A1, Az, ..., € Q then UZ A € Q

» The measurable sets are those that are in an appropriately defined
sigma-algebra.

» What you need to know for this course: When S is finite or
countable, all subsets will be measurable. When S is some interval
of real numbers, there will exist subsets that are not measurable, but
we will not be concerned with them.
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We have shown some stochastic processes which we would like to
use as scientific models.

In some examples, stochastic models can be specified based on what
is reasonable.

In most real applications, stochastic models have parameters that
need to be learned from data. This learning process is called
inference (svenska: slutledning).

In this course, we have added Bayesian inference to the material in
Dobrow.

More about Bayesian inference in Lecture 2.
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Course components

Lectures
Exercise classes
Three obligatory assignments
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Written exam
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Learning material

Dobrow (e-book)

Lecture Notes (on Canvas course homepage)
Insua et al: reference material (e-book)
Overheads from lectures (on Canvas)
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Old exams with solutions (on Canvas)
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Conditional probability

» Given events A and B, the conditional probability for A given B is

Pr (A, B)

PrALB) = 5, 5

» Events A and B are independent if Pr (A, B) = Pr(A) Pr(B).
> Law of total probability: Let By, ..., Bx be a sequence of events
that partitions S. Then

k

k
Pr(A)=) Pr(AnB)=> Pr(A|B;)Pr(B).
i=1

i=1
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Conditional distributions

» Discrete case:

Pr(X=x,Y=y)
Pr(Y=y|X=x)= Pr (X =)
» Continuous case:
f(x,y)

fY\X(y | X) = fX(X)

» Common notational convention (used in Lecture Notes): Use 7 as
generic function:

) = ")
’/T(y| )* 7T(X)
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Conditional expectation

» Recall, the expectation of a discrete random variable is
E(Y)=) yPr(Y=y)
y
and of a continuous random variable
E(Y) = /yfv(y) dy.
y

» The conditional expectation in the discrete case is

E(Y[X=x)=) yPr(Y=y|X=x)
y
and in the continous case

Hv|x:xr:/waW|mmn

» Note that if we use the 7 notation and interpret integrals of discrete
variables as sums, we can write both equations as

HHX=M=/WUMM%
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Law of total expectation

» If Ay,..., Ak are a sequence of events partitioning S then

k
E(Y)= ZE(Y | Ai) Pr(A))
i=1
» More generally, for a random variable X we have

E(Y) = /E(Y | X = x) 7(x) dx
» This can also be written as

E(Y)=E(E(Y | X)).
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Law of total variance

» Recall that, by definition,
Var(Y)=E((Y —E(Y))?) =E(Y?) —E(Y).
» If X is another random variable we get

Var(Y) =E(Var (Y | X))+ Var(E(Y | X))
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