MVE550 2019 Lecture 5

Petter Mostad

Chalmers University

November 19, 2019

- Hidden Markov Models: Ideas and definitions.
- Example: Discriminating between types of DNA sequences using HMMs.
- Inference for HMMs.
- The Forward and Backward algorithms.
- The Multinomial Dirichlet conjugacy.
- Bayesian learning about parameters of Markov chains.

Hidden Markov Models

Figure: A hidden Markov model.

- A Hidden Markov Model (HMM) consists of
 - a Markov chain $X_0, \ldots, X_n, \ldots,$ and
 - another chain Y_0, \ldots, Y_n, \ldots , so that

 $\Pr\left(Y_k \mid Y_0, \ldots, Y_{k-1}, X_0, \ldots, X_k\right) = \Pr\left(Y_k \mid Y_{k-1}, X_k\right)$

- ▶ In some models Y_k depends only on X_k , not on Y_{k-1} .
- ▶ Generally, Y₀,..., Y_k..., are *observed*, while X₀,..., X_k..., are *hidden*.
- In our applications, the X_k have a finite state space and the Y_k are discrete.

Inference questions for HMMs

- ► If the HMM parameters are given and the Y_i are observed, "find" the values of the X_i's:
 - ► Find the sequence X₀,..., X_k maximizing the probability of the observed Y₀,..., Y_k in the given model: The Viterbi algorithm (not part of course).
 - ▶ Find the *joint distribution* of X₀,..., X_k given the observed Y₀,..., Y_k and the model. (In practice: Find a sequence X₀,..., X_k that is a *sample* from this joint distribution).
 - Find the marginal distribution for each X_i given the observed Y₀,..., Y_k and the model: The Forward-Backward algorithm, see below.
- If the HMM parameters are NOT known:
 - ▶ If the X_i and Y_i are observed for some "training data", we can infer parameters (see below).
 - More advanced algorithms can be used if the training data is only partially observed.

The Forward algorithm

Figure: A hidden Markov model.

• The forward algorithm: For i = 0, ..., T, compute $\pi(X_i \mid Y_0, ..., Y_{i-1})$.

A recursive formula is possible to obtain:

- Obtain $\pi(X_i | Y_0, ..., Y_i)$ from $\pi(X_i | Y_0, ..., Y_{i-1})$ using Bayes formula.
- ▶ Obtain π(X_{i+1} | Y₀..., Y_i) from π(X_i | Y₀..., Y_i) using the transition matrix.
- Note: A version of the algorithm can also be made if there is a direct dependency of Y_i on Y_{i-1}.

The Backward algorithm

Figure: A hidden Markov model.

- The backward algorithm: For i = T, ..., 0, compute $\pi(Y_i, ..., Y_T \mid X_i)$.
- A recursive formula is possible to obtain:

$$\pi(Y_i, \dots, Y_T \mid X_i) = \\ \pi(Y_i \mid X_i) \sum_{X_{i+1}} \pi(Y_{i+1}, \dots, Y_T \mid X_{i+1}) \pi(X_{i+1} \mid X_i)$$

Note: A version of the algorithm can also be made if there is a direct dependency of Y_i on Y_{i-1}. Put the two together using

 $\pi(X_i \mid Y_0, \ldots, Y_T) \propto_{X_i} \pi(Y_i, \ldots, Y_T \mid X_i) \pi(X_i \mid Y_0, \ldots, Y_{i-1})$

► One can use the forward algorithm together with an adaptation of the backward algorithm to find a sequence x₀,..., x_T that is a sample from

$$\pi(X_0,\ldots,X_T \mid Y_0,\ldots,Y_T)$$

Actual implementation depends on the types of variables involved.

The Multinomial Dirchlet conjugacy

A vector x = (x₁,..., x_k) of non-negative integers has a Multinomial distribution with parameters n and p, where n > 0 is an integer and p is a probability vector of length k if ∑_{i=1}^k x_i = n and the probability mass function is given by

$$\pi(x \mid n, p) = \frac{n!}{x_1! x_2! \dots x_k!} p_1^{x_1} p_2^{x_2} \dots p_k^{x_k}.$$

- A vector $\theta = (\theta_1, \dots, \theta_k)$ of non-negative real numbers satisfying $\sum_{i=1}^k \theta_i = 1$ has a Dirichlet distribution with parameter vector $\alpha = (\alpha_1, \dots, \alpha_k)$, if it has probability density function $\pi(\theta \mid \alpha) = \frac{\Gamma(\alpha_1 + \alpha_2 + \dots + \alpha_k)}{\Gamma(\alpha_1)\Gamma(\alpha_2) \cdot \Gamma(\alpha_k)} \theta_1^{\alpha_1 - 1} \theta_2^{\alpha_2 - 1} \cdots \theta_k^{\alpha_k - 1}.$
- ▶ We have conjugacy in this case.
- The predictive distribution is given by

$$\pi(x) = \frac{n!}{x_1! \dots x_k!} \cdot \frac{\Gamma(\alpha_1 + x_1)}{\Gamma(\alpha_1)} \cdots \frac{\Gamma(\alpha_k + x_k)}{\Gamma(\alpha_k)} \cdot \frac{\Gamma(\sum_{i=1}^k \alpha_i)}{\Gamma(\sum_{i=1}^k \alpha_i + x_i)}.$$

Learning about the transition matrix from data

- We can use as prior a product of Dirichlet densities, one for each row of the transition matrix.
- ▶ The posterior is then also a product of Dirichlet densities.
- ▶ Use of *pseudocounts* and comparison to using frequencies.
- Computation of predictions for one or more further steps of the chain.
- Other alternatives for the prior can be used.