MVE550 2019 Lecture 5

Petter Mostad

Chalmers University

November 19, 2019

Overview lecture 5: HMMs

- Hidden Markov Models: Ideas and definitions.
- Example: Discriminating between types of DNA sequences using HMMs.
- Inference for HMMs.
- The Forward and Backward algorithms.
- The Multinomial Dirichlet conjugacy.
- Bayesian learning about parameters of Markov chains.

Hidden Markov Models

Figure: A hidden Markov model.

- A Hidden Markov Model (HMM) consists of
- a Markov chain $X_{0}, \ldots, X_{n}, \ldots$, and
- another chain $Y_{0}, \ldots, Y_{n}, \ldots$, so that

$$
\operatorname{Pr}\left(Y_{k} \mid Y_{0}, \ldots, Y_{k-1}, X_{0}, \ldots, X_{k}\right)=\operatorname{Pr}\left(Y_{k} \mid Y_{k-1}, X_{k}\right)
$$

- In some models Y_{k} depends only on X_{k}, not on Y_{k-1}.
- Generally, $Y_{0}, \ldots, Y_{k} \ldots$, are observed, while $X_{0}, \ldots, X_{k} \ldots$, are hidden.
- In our applications, the X_{k} have a finite state space and the Y_{k} are discrete.

Inference questions for HMMs

- If the HMM parameters are given and the Y_{i} are observed, "find" the values of the X_{i} 's:
- Find the sequence X_{0}, \ldots, X_{k} maximizing the probability of the observed Y_{0}, \ldots, Y_{k} in the given model: The Viterbi algorithm (not part of course).
- Find the joint distribution of X_{0}, \ldots, X_{k} given the observed Y_{0}, \ldots, Y_{k} and the model. (In practice: Find a sequence X_{0}, \ldots, X_{k} that is a sample from this joint distribution).
- Find the marginal distribution for each X_{i} given the observed Y_{0}, \ldots, Y_{k} and the model: The Forward-Backward algorithm, see below.
- If the HMM parameters are NOT known:
- If the X_{i} and Y_{i} are observed for some "training data", we can infer parameters (see below).
- More advanced algorithms can be used if the training data is only partially observed.

The Forward algorithm

Figure: A hidden Markov model.

- The forward algorithm: For $i=0, \ldots, T$, compute $\pi\left(X_{i} \mid Y_{0}, \ldots, Y_{i-1}\right)$.
- A recursive formula is possible to obtain:
- Obtain $\pi\left(X_{i} \mid Y_{0}, \ldots, Y_{i}\right)$ from $\pi\left(X_{i} \mid Y_{0}, \ldots, Y_{i-1}\right)$ using Bayes formula.
- Obtain $\pi\left(X_{i+1} \mid Y_{0} \ldots, Y_{i}\right)$ from $\pi\left(X_{i} \mid Y_{0} \ldots, Y_{i}\right)$ using the transition matrix.
- Note: A version of the algorithm can also be made if there is a direct dependency of Y_{i} on Y_{i-1}.

The Backward algorithm

Figure: A hidden Markov model.

- The backward algorithm: For $i=T, \ldots, 0$, compute $\pi\left(Y_{i}, \ldots, Y_{T} \mid X_{i}\right)$.
- A recursive formula is possible to obtain:

$$
\begin{aligned}
& \pi\left(Y_{i}, \ldots, Y_{T} \mid X_{i}\right)= \\
& \pi\left(Y_{i} \mid X_{i}\right) \sum_{X_{i+1}} \pi\left(Y_{i+1}, \ldots, Y_{T} \mid X_{i+1}\right) \pi\left(X_{i+1} \mid X_{i}\right)
\end{aligned}
$$

- Note: A version of the algorithm can also be made if there is a direct dependency of Y_{i} on Y_{i-1}.

The Forward Backward algorithm

- Put the two together using

$$
\pi\left(X_{i} \mid Y_{0}, \ldots, Y_{T}\right) \propto x_{i} \pi\left(Y_{i}, \ldots, Y_{T} \mid X_{i}\right) \pi\left(X_{i} \mid Y_{0}, \ldots, Y_{i-1}\right)
$$

- One can use the forward algorithm together with an adaptation of the backward algorithm to find a sequence x_{0}, \ldots, x_{T} that is a sample from

$$
\pi\left(X_{0}, \ldots, X_{T} \mid Y_{0}, \ldots, Y_{T}\right)
$$

- Actual implementation depends on the types of variables involved.

The Multinomial Dirchlet conjugacy

- A vector $x=\left(x_{1}, \ldots, x_{k}\right)$ of non-negative integers has a Multinomial distribution with parameters n and p, where $n>0$ is an integer and p is a probability vector of length k if $\sum_{i=1}^{k} x_{i}=n$ and the probability mass function is given by

$$
\pi(x \mid n, p)=\frac{n!}{x_{1}!x_{2}!\ldots x_{k}!} p_{1}^{x_{1}} p_{2}^{x_{2}} \ldots p_{k}^{x_{k}}
$$

- A vector $\theta=\left(\theta_{1}, \ldots, \theta_{k}\right)$ of non-negative real numbers satisfying $\sum_{i=1}^{k} \theta_{i}=1$ has a Dirichlet distribution with parameter vector $\alpha=\left(\alpha_{1}, \ldots, \alpha_{k}\right)$, if it has probability density function

$$
\pi(\theta \mid \alpha)=\frac{\Gamma\left(\alpha_{1}+\alpha_{2}+\cdots+\alpha_{k}\right)}{\Gamma\left(\alpha_{1}\right) \Gamma\left(\alpha_{2}\right) \cdot \Gamma\left(\alpha_{k}\right)} \theta_{1}^{\alpha_{1}-1} \theta_{2}^{\alpha_{2}-1} \cdots \theta_{k}^{\alpha_{k}-1}
$$

- We have conjugacy in this case.
- The predictive distribution is given by

$$
\pi(x)=\frac{n!}{x_{1}!\ldots x_{k}!} \cdot \frac{\Gamma\left(\alpha_{1}+x_{1}\right)}{\Gamma\left(\alpha_{1}\right)} \cdots \frac{\Gamma\left(\alpha_{k}+x_{k}\right)}{\Gamma\left(\alpha_{k}\right)} \cdot \frac{\Gamma\left(\sum_{i=1}^{k} \alpha_{i}\right)}{\Gamma\left(\sum_{i=1}^{k} \alpha_{i}+x_{i}\right)}
$$

Learning about the transition matrix from data

- We can use as prior a product of Dirichlet densities, one for each row of the transition matrix.
- The posterior is then also a product of Dirichlet densities.
- Use of pseudocounts and comparison to using frequencies.
- Computation of predictions for one or more further steps of the chain.
- Other alternatives for the prior can be used.

