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Overview lecture 5: HMMs

I Hidden Markov Models: Ideas and definitions.

I Example: Discriminating between types of DNA sequences using
HMMs.

I Inference for HMMs.

I The Forward and Backward algorithms.

I The Multinomial Dirichlet conjugacy.

I Bayesian learning about parameters of Markov chains.
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Hidden Markov Models

Figure: A hidden Markov model.

I A Hidden Markov Model (HMM) consists of
I a Markov chain X0, . . . ,Xn, . . . ,, and
I another chain Y0, . . . ,Yn, . . . , so that

Pr (Yk | Y0, . . . ,Yk−1,X0, . . . ,Xk) = Pr (Yk | Yk−1,Xk)

I In some models Yk depends only on Xk , not on Yk−1.

I Generally, Y0, . . . ,Yk . . . , are observed, while X0, . . . ,Xk . . . , are
hidden.

I In our applications, the Xk have a finite state space and the Yk are
discrete.
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Inference questions for HMMs

I If the HMM parameters are given and the Yi are observed, “find”
the values of the Xi ’s:

I Find the sequence X0, . . . ,Xk maximizing the probability of the
observed Y0, . . . ,Yk in the given model: The Viterbi algorithm (not
part of course).

I Find the joint distribution of X0, . . . ,Xk given the observed
Y0, . . . ,Yk and the model. (In practice: Find a sequence X0, . . . ,Xk

that is a sample from this joint distribution).
I Find the marginal distribution for each Xi given the observed

Y0, . . . ,Yk and the model: The Forward-Backward algorithm, see
below.

I If the HMM parameters are NOT known:
I If the Xi and Yi are observed for some “training data”, we can infer

parameters (see below).
I More advanced algorithms can be used if the training data is only

partially observed.
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The Forward algorithm

Figure: A hidden Markov model.

I The forward algorithm: For i = 0, . . . ,T , compute
π(Xi | Y0, . . . ,Yi−1).

I A recursive formula is possible to obtain:
I Obtain π(Xi | Y0, . . . ,Yi ) from π(Xi | Y0, . . . ,Yi−1) using Bayes

formula.
I Obtain π(Xi+1 | Y0 . . . ,Yi ) from π(Xi | Y0 . . . ,Yi ) using the

transition matrix.

I Note: A version of the algorithm can also be made if there is a
direct dependency of Yi on Yi−1.

5 / 9



The Backward algorithm

Figure: A hidden Markov model.

I The backward algorithm: For i = T , . . . , 0, compute
π(Yi , . . . ,YT | Xi ).

I A recursive formula is possible to obtain:

π(Yi , . . . ,YT | Xi ) =

π(Yi | Xi )
∑
Xi+1

π(Yi+1, . . . ,YT | Xi+1)π(Xi+1 | Xi )

I Note: A version of the algorithm can also be made if there is a
direct dependency of Yi on Yi−1.
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The Forward Backward algorithm

I Put the two together using

π(Xi | Y0, . . . ,YT ) ∝Xi π(Yi , . . . ,YT | Xi )π(Xi | Y0, . . . ,Yi−1)

I One can use the forward algorithm together with an adaptation of
the backward algorithm to find a sequence x0, . . . , xT that is a
sample from

π(X0, . . . ,XT | Y0, . . . ,YT )

I Actual implementation depends on the types of variables involved.
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The Multinomial Dirchlet conjugacy

I A vector x = (x1, . . . , xk) of non-negative integers has a Multinomial
distribution with parameters n and p, where n > 0 is an integer and
p is a probability vector of length k if

∑k
i=1 xi = n and the

probability mass function is given by

π(x | n, p) =
n!

x1!x2! . . . xk !
px11 px22 . . . pxkk .

I A vector θ = (θ1, . . . , θk) of non-negative real numbers satisfying∑k
i=1 θi = 1 has a Dirichlet distribution with parameter vector

α = (α1, . . . , αk), if it has probability density function

π(θ | α) =
Γ(α1 + α2 + · · ·+ αk)

Γ(α1)Γ(α2) · Γ(αk)
θα1−1
1 θα2−1

2 · · · θαk−1
k .

I We have conjugacy in this case.
I The predictive distribution is given by

π(x) =
n!

x1! . . . xk !
· Γ(α1 + x1)

Γ(α1)
· · · Γ(αk + xk)

Γ(αk)
·

Γ(
∑k

i=1 αi )

Γ(
∑k

i=1 αi + xi )
.
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Learning about the transition matrix from data

I We can use as prior a product of Dirichlet densities, one for each
row of the transition matrix.

I The posterior is then also a product of Dirichlet densities.

I Use of pseudocounts and comparison to using frequencies.

I Computation of predictions for one or more further steps of the
chain.

I Other alternatives for the prior can be used.
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