MVE550 2019 Lecture 7

Petter Mostad

Chalmers University

November 26, 2019

Overview

- The Multinomial Dirichlet conjugacy.
- Bayesian inference for Markov chains.
- Bayesian inference for HMMs.
- Bayesian inference for Branching processes.
- If time, the Normal Normal conjugacy.

The Multinomial Dirchlet conjugacy

- A vector $x=\left(x_{1}, \ldots, x_{k}\right)$ of non-negative integers has a Multinomial distribution with parameters n and p, where $n>0$ is an integer and p is a probability vector of length k if $\sum_{i=1}^{k} x_{i}=n$ and the probability mass function is given by

$$
\pi(x \mid n, p)=\frac{n!}{x_{1}!x_{2}!\ldots x_{k}!} p_{1}^{x_{1}} p_{2}^{x_{2}} \ldots p_{k}^{x_{k}}
$$

- A vector $\theta=\left(\theta_{1}, \ldots, \theta_{k}\right)$ of non-negative real numbers satisfying $\sum_{i=1}^{k} \theta_{i}=1$ has a Dirichlet distribution with parameter vector $\alpha=\left(\alpha_{1}, \ldots, \alpha_{k}\right)$, if it has probability density function

$$
\pi(\theta \mid \alpha)=\frac{\Gamma\left(\alpha_{1}+\alpha_{2}+\cdots+\alpha_{k}\right)}{\Gamma\left(\alpha_{1}\right) \Gamma\left(\alpha_{2}\right) \cdot \Gamma\left(\alpha_{k}\right)} \theta_{1}^{\alpha_{1}-1} \theta_{2}^{\alpha_{2}-1} \cdots \theta_{k}^{\alpha_{k}-1}
$$

- We have conjugacy in this case.
- The predictive distribution is given by

$$
\pi(x)=\frac{n!}{x_{1}!\ldots x_{k}!} \cdot \frac{\Gamma\left(\alpha_{1}+x_{1}\right)}{\Gamma\left(\alpha_{1}\right)} \cdots \frac{\Gamma\left(\alpha_{k}+x_{k}\right)}{\Gamma\left(\alpha_{k}\right)} \cdot \frac{\Gamma\left(\sum_{i=1}^{k} \alpha_{i}\right)}{\Gamma\left(\sum_{i=1}^{k} \alpha_{i}+x_{i}\right)}
$$

Bayesian inference for discrete state space Markov chains

- The parametres are P, the transition matrix, and p, the probability vector for the initial value X_{0}.
- Idea: Specify a prior for the parameters, find the posterior given available data, and use the posteriors for predictions.
- One possibility: p fixed and

$$
\pi(P)=\prod_{i=1}^{s} \operatorname{Dirichlet}\left(P_{i} ; \alpha_{i}\right)
$$

where s is the size of the state space, P_{i} is the i 'th row of P, and α_{i} is a vector of length s of positive parameters: Most often, $\alpha=(1,1, \ldots, 1)$.

- We get the posterior

$$
\pi(P \mid \text { data })=\prod_{i=1}^{s} \operatorname{Dirichlet}\left(P_{i} ; \alpha_{i}+c_{i}\right)
$$

where c_{i} is the vector of counts of observed transitions starting at state i.

Prediction

- Assume you have observed $x_{0}, x_{1}, \ldots, x_{k}$ as the first $k+1$ steps of a Markov chain, and would like to predict the probability distribution for x_{k+1}. Then

$$
\pi\left(x_{k+1} \mid x_{0}, \ldots, x_{k}\right)=\int P_{x_{k}, x_{k+1}} \pi\left(P_{x_{k}} \mid x_{0}, \ldots, x_{k}\right) d P_{x_{k}}
$$

- For each possible value of x_{k+1} this is the expectation of the posterior for $P_{x_{k}, x_{k+1}}$.
- Using the Dirichlet distributions above in the prior, we get

$$
\pi\left(x_{k+1} \mid x_{0}, \ldots, x_{k}\right)=\frac{\alpha_{x_{k}}+c_{x_{k}}}{\alpha_{x_{k}, 1}+\cdots+\alpha_{x_{k}, s}+c_{x_{k}, 1}+\cdots+c_{x_{k}, s}}
$$

- To predict longer sequences x_{k+1}, x_{k+2}, \ldots, it is possible to derive formulas, or one can simulate them stepwise: Then, at each step, the previously simulated values are added to the data.

Bayesian inference for HMMs

- Many different inference questions can be raised, depending on the data that is available.
- We will assume
- We have observed X_{0}, \ldots, X_{n} and Y_{0}, \ldots, Y_{n}
- We use a model where the parameters are p and P for the underlying X chain, and a matrix Q with $Q_{i j}=\operatorname{Pr}\left(Y_{k}=j \mid X_{k}=i\right)$ of emittance probabilities.
- Then, the inference for p and P, and for Q, can be done separately.
- The posterior for Q will of course depend on the choice of prior for Q.
- Examples.

Bayesian inference for Branching processes

- The parameter of a Branching process is the probability vector a for the offspring process.
- We assume the data is a set of counts $y_{1}, y_{2}, \ldots, y_{n}$ representing the outcomes of n realizations of the offspring process.
- As usual, we choose a prior for for the parameter a, obtain the posterior given the data, and use the posterior for predictions.
- Examples.

The Normal Normal conjugacy

- Assume $y \sim \operatorname{Normal}\left(\theta, \frac{1}{\tau_{y}}\right)$ where θ is unknown and the precision τ_{y} is known and fixed. Then the normal family is a conjugate family for θ.
- In fact, if $\theta \sim \operatorname{Normal}\left(\mu, \frac{1}{\tau_{\mu}}\right)$ then

$$
\theta \left\lvert\, y \sim \operatorname{Normal}\left(\frac{\tau_{y} y+\tau_{\mu} \mu}{\tau_{y}+\tau_{\mu}}, \frac{1}{\tau_{y}+\tau_{\mu}}\right)\right.
$$

- The predictive distribution is also normal. In fact,

$$
y \sim \operatorname{Normal}\left(\mu, \frac{1}{\tau_{y}}+\frac{1}{\tau_{\mu}}\right) .
$$

