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Overview

I The Multinomial Dirichlet conjugacy.

I Bayesian inference for Markov chains.

I Bayesian inference for HMMs.

I Bayesian inference for Branching processes.

I If time, the Normal Normal conjugacy.
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The Multinomial Dirchlet conjugacy

I A vector x = (x1, . . . , xk) of non-negative integers has a Multinomial
distribution with parameters n and p, where n > 0 is an integer and
p is a probability vector of length k if

∑k
i=1 xi = n and the

probability mass function is given by

π(x | n, p) =
n!

x1!x2! . . . xk !
px11 px22 . . . pxkk .

I A vector θ = (θ1, . . . , θk) of non-negative real numbers satisfying∑k
i=1 θi = 1 has a Dirichlet distribution with parameter vector

α = (α1, . . . , αk), if it has probability density function

π(θ | α) =
Γ(α1 + α2 + · · ·+ αk)

Γ(α1)Γ(α2) · Γ(αk)
θα1−1
1 θα2−1

2 · · · θαk−1
k .

I We have conjugacy in this case.
I The predictive distribution is given by

π(x) =
n!

x1! . . . xk !
· Γ(α1 + x1)

Γ(α1)
· · · Γ(αk + xk)

Γ(αk)
·

Γ(
∑k

i=1 αi )

Γ(
∑k

i=1 αi + xi )
.
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Bayesian inference for discrete state space Markov chains

I The parametres are P, the transition matrix, and p, the probability
vector for the initial value X0.

I Idea: Specify a prior for the parameters, find the posterior given
available data, and use the posteriors for predictions.

I One possibility: p fixed and

π(P) =
s∏

i=1

Dirichlet(Pi ;αi )

where s is the size of the state space, Pi is the i ’th row of P, and αi

is a vector of length s of positive parameters: Most often,
α = (1, 1, . . . , 1).

I We get the posterior

π(P | data) =
s∏

i=1

Dirichlet(Pi ;αi + ci )

where ci is the vector of counts of observed transitions starting at
state i .
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Prediction

I Assume you have observed x0, x1, . . . , xk as the first k + 1 steps of a
Markov chain, and would like to predict the probability distribution
for xk+1. Then

π(xk+1 | x0, . . . , xk) =

∫
Pxk ,xk+1

π(Pxk | x0, . . . , xk) dPxk .

I For each possible value of xk+1 this is the expectation of the
posterior for Pxk ,xk+1

.

I Using the Dirichlet distributions above in the prior, we get

π(xk+1 | x0, . . . , xk) =
αxk + cxk

αxk ,1 + · · ·+ αxk ,s + cxk ,1 + · · ·+ cxk ,s
.

I To predict longer sequences xk+1, xk+2, . . . , it is possible to derive
formulas, or one can simulate them stepwise: Then, at each step,
the previously simulated values are added to the data.
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Bayesian inference for HMMs

I Many different inference questions can be raised, depending on the
data that is available.

I We will assume
I We have observed X0, . . . ,Xn and Y0, . . . ,Yn

I We use a model where the parameters are p and P for the underlying
X chain, and a matrix Q with Qij = Pr (Yk = j | Xk = i) of
emittance probabilities.

I Then, the inference for p and P, and for Q, can be done separately.

I The posterior for Q will of course depend on the choice of prior for
Q.

I Examples.
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Bayesian inference for Branching processes

I The parameter of a Branching process is the probability vector a for
the offspring process.

I We assume the data is a set of counts y1, y2, . . . , yn representing the
outcomes of n realizations of the offspring process.

I As usual, we choose a prior for for the parameter a, obtain the
posterior given the data, and use the posterior for predictions.

I Examples.
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The Normal Normal conjugacy

I Assume y ∼ Normal
(
θ, 1

τy

)
where θ is unknown and the precision

τy is known and fixed. Then the normal family is a conjugate family
for θ.

I In fact, if θ ∼ Normal
(
µ, 1

τµ

)
then

θ | y ∼ Normal

(
τyy + τµµ

τy + τµ
,

1

τy + τµ

)
.

I The predictive distribution is also normal. In fact,

y ∼ Normal

(
µ,

1

τy
+

1

τµ

)
.
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