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Overview

The Multinomial Dirichlet conjugacy.
Bayesian inference for Markov chains.
Bayesian inference for HMMs.

Bayesian inference for Branching processes.
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If time, the Normal Normal conjugacy.
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The Multinomial Dirchlet conjugacy

> A vector x = (xq,...,xx) of non-negative integers has a Multinomial
distribution with parameters n and p, where n > 0 is an integer and
p is a probability vector of length k if Zf-;l x; = n and the
probability mass function is given by

— n! X1 X2 Xk
7T(X | n,p)— mpl p2 pk .
» A vector § = (01, ...,60k) of non-negative real numbers satisfying
ZLI 0; =1 has a Dirichlet distribution with parameter vector
a = (ai,...,ax), if it has probability density function
r
71_(0 | a): (Oz1+012+ +ak)9111—192042—1...0?k—1.

M) (az) - Tax)
» We have conjugacy in this case.
» The predictive distribution is given by

nl o Taatx)  Mlextx) (D5 o)
xi!..oxg! M(a1) (k) [‘(Eﬁ‘zl a; + x,-).

m(x) =
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Bayesian inference for discrete state space Markov chains

» The parametres are P, the transition matrix, and p, the probability
vector for the initial value Xp.

» Idea: Specify a prior for the parameters, find the posterior given
available data, and use the posteriors for predictions.

» One possibility: p fixed and

s
m(P) = H Dirichlet(P;; ;)
i=1
where s is the size of the state space, P; is the i'th row of P, and «;
is a vector of length s of positive parameters: Most often,
a=(1,1,...,1).
» We get the posterior

S
m(P | data) = H Dirichlet(P;; a; + ¢;)
i=1
where ¢; is the vector of counts of observed transitions starting at

state J.
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» Assume you have observed xg, x1, ..., xx as the first k + 1 steps of a
Markov chain, and would like to predict the probability distribution
for x¢ky1. Then

7T(Xk+1 | X0y .- - ,Xk) = /PXk7Xk+17T(PXk | X0y .- - ,Xk) dka«

» For each possible value of x,; this is the expectation of the

posterior for Py, ..

» Using the Dirichlet distributions above in the prior, we get

o Ay, + Cx,
T(Xkt1 | X0y -y Xk) = .
Qxe 1t F Qs T g1+ G
» To predict longer sequences Xx41, Xk+2, - - -, it is possible to derive

formulas, or one can simulate them stepwise: Then, at each step,
the previously simulated values are added to the data.
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Bayesian inference for HMMs

» Many different inference questions can be raised, depending on the
data that is available.
» We will assume
» We have observed Xp,..., X, and Yo,..., Y,
> We use a model where the parameters are p and P for the underlying
X chain, and a matrix Q with Q;j = Pr(Yx =, | Xk = i) of
emittance probabilities.
» Then, the inference for p and P, and for @, can be done separately.
» The posterior for @ will of course depend on the choice of prior for

Q.

» Examples.
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Bayesian inference for Branching processes

» The parameter of a Branching process is the probability vector a for
the offspring process.

» We assume the data is a set of counts y1, y»,..., ¥, representing the
outcomes of n realizations of the offspring process.

» As usual, we choose a prior for for the parameter a, obtain the
posterior given the data, and use the posterior for predictions.

» Examples.

7/8



The Normal Normal conjugacy

» Assume y ~ Normal (9, Ti) where 0 is unknown and the precision

y
7, is known and fixed. Then the normal family is a conjugate family
for 6.

> In fact, if & ~ Normal (u, %) then

1
0|y~NormaI<Tyy+Tﬂ'u, >
Ty +Tu Ty + Ty

» The predictive distribution is also normal. In fact,

1 1
y ~ Normal (,u, —+ > .

Ty Ty
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