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Overview

I Overview of MCMC.

I Strong law of large numbers for ergodic Markov chains.

I The Metropolis Hastings algorithm. Example.

I Gibbs sampling. Example.
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Markov chain Monte Carlo (MCMC)

I A hugely important and useful set of algorithms.

I In particular useful in Bayesian statistics.

I NOTE: So far, we have used Bayesian inference to learn about, for
example, parameters in Markov chains. Now, we use Markov chains
as a tool to do Bayesian statistics.
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Laws of large numbers

I Strong law of large numbers for samples: If Y1,Y2, . . . ,Ym and Y
are independent random variables from a distribution with finite
mean, and if r is a bounded function, then, with probability 1,

lim
m→∞

r(Y1) + r(Y2) + · · ·+ r(Ym)

m
= E[r(Y )]

I Strong law of large numbers for Markov chains: If X0,X1, . . . , is an
ergodic Markov chain with stationary distribution π, and if r is a
bounded function, then, with probability 1,

lim
m→∞

r(X1) + r(X2) + · · ·+ r(Xm)

m
= E[r(X )]

where X has the stationary distribution π.
I Note that this holds not only for Markov chains with discrete state

spaces, but also for Markov chains with continuous distributions
(which we will look at later).

I NOTE: When using this theorem in practice, one might improve
accuracy by throwing away the first sequence X1, . . . ,Xs for s < m
before computing the average. This first sequence is called the
burn-in.
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Overview: MCMC for Bayesian inference

I We assume we know the densities for the likelihood π(y | θ) and the
prior π(θ). Then π(θ | y) ∝θ π(y | θ)π(θ) gives us the posterior
density up to a constant.

I If we have a sample θ1, . . . , θm from the posterior θ | y , we can
approximate predictions by the strong law of large numbers as
follows:

π(ynew | y) =

∫
π(ynew | θ, y)π(θ | y) dθ ≈ 1

m

k∑
i=1

π(ynew | θi )

I MCMC does not provide a sample, but instead a sequence
θ1, . . . , θm so that the above holds when m→∞ by the strong law
of large numbers for ergodic Markov chains.

I NOTE: More generally, to find the expected value of a variable
x = f (θ) under the posterior distribution, we can use

E[x ] =

∫
f (θ)π(θ | y) dθ ≈ 1

m

m∑
i=1

f (θi ).
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The Metropolis Hastings algorithm

I Assume a density (or probability mass function) π(θ) is provided.

I We also assume given a proposal function q(θnew | θ), which, for
every given θ, provides a probability distribution (or probability mass
function) for a new θnew .

I Finally, define, for θ and θnew , the acceptance probability

a = min

(
1,
π(θnew )q(θ | θnew )

π(θ)q(θnew | θ)

)
I The Metropolis Hastings algorithm is: Starting with some initial

value θ0, generate θ1, θ2, . . . by, at each step, proposing a new θ
based on the old using the proposal function and accepting it with
probability a. If it is not accepted, the old value is used again.

I If this defines an ergodic Markov chain, its unique stationary
distribution is π(θ) (Proof below).
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The Metropolis Hastings algorithm, continued

NOTE:

I The computations for good binary sequences is an example of this,
with π(θ) uniform and q the random walk.

I The density π(θ) only needs to be known up to a constant.

I If the proposal function is symmetric, i.e., q(θ | θnew ) = q(θnew | θ)
for all θ and θnew , then q disappears in the formula for the
acceptance probaility a.

I Unless the distribution π(θ) is positive, remark 4 in Dobrow page
188 does NOT hold. If π(θ) is not positive, ergodicity of the
Metropolis Hastings Markov chain needs to be checked separately,
even if the proposal Markov chain is ergodic.
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Proof that MH algorithm works

I In fact, we will show that the Metropolis Hastings chain fulfills the
detailed balance condition relative to π(θ). Thus it is time reversible
and if it is ergodic it will have π(θ) as its limiting distribution.

I Let T (θi+1 | θi ) be the transition function for the MH Markov chain.
Assume θi+1 6= θi , and

π(θi+1)q(θi | θi+1)

π(θi )q(θi+1 | θi )
≤ 1

Then

π(θi )T (θi+1 | θi ) = π(θi )q(θi+1 | θi )
π(θi+1)q(θi | θi+1)

π(θi )q(θi+1 | θi )
= π(θi+1)q(θi | θi+1) = π(θi+1)T (θi | θi+1)

I We get a similar computation when the opposite inequality holds.
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More notes on the MH algorithm

I We have so far worked with Markov chains where the state space is
discrete. However, the theory we need for the Metropolis Hastings
method to work is unchanged also if the state space is continuous,
or even multivariate with a mix of continuous and discrete variables.

I Note that the proposal distribution can be chosen with almost total
freedom (as long as one can prove that the resulting MH Markov
chain becomes ergodic). The choice of proposal function generally
has a large influence on the rate of convergence of the MH chain,
and thus on the accuracy of results!

I If the target density is positive on the same set as the the one where
the proposal function generates proposals, and if the proposal
function is ergodic, then the MH chain is ergodic.
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Example

I Assume that a model has the real parameter θ, and that the
posterior for θ has been found to be

π(θ | data) = 0.3 Normal(θ; 2, 0.52) + 0.7 Normal(θ; 6, 12).

As a test example, compare a sample simulated directly from this
distribution to one simulated using Metropolis Hastings. Use as
starting value 1 and proposal function
π(θ′ | θ) = Uniform(θ′; θ − 0.5, θ + 0.5).

I Assume we would like find the predictive distribution for y when
y | θ ∼ Normal(θ, 0.32) and θ has the distribution above.

I Do this first by using a sample from generated by Metropolis
Hastings.

I Then, compute and compare to the theoretical distribution.
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