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Overview

Review of the Metropolis Hastings algorithm.
Example.

Gibbs sampling in the Ising model.

Perfect sampling.

vV v.v. v .Y

Total Variation Distance and card shuffling.
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The Metropolis Hastings algorithm

» Assume a density (or probability mass function) 7(8) is provided.

> We also assume given a proposal function q(0pew | 0), which, for
every given 6, provides a probability distribution (or probability mass
function) for a new ey .

» Finally, define, for # and 6., the acceptance probability

= min 7 (6new)q(0 | Onew)
" <17 7-‘—(g)cl(enew ‘ 9) )

» The Metropolis Hastings algorithm is: Starting with some initial
value 0y, generate 61,05, ... by, at each step, proposing a new 6
based on the old using the proposal function and accepting it with
probability a. If it is not accepted, the old value is used again.

» If this defines an ergodic Markov chain, its unique stationary
distribution is 7(8).
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» Assume that a model has the real parameter 6, and that the
posterior for 8 has been found to be

7(6 | data) = 0.3 Normal(6; 2,0.5%) + 0.7 Normal(6; 6, 12).

As a toy example, compare a sample simulated directly from this
distribution to one simulated using Metropolis Hastings. Use as
starting value 1 and proposal function
w(0" | 0) = Uniform(¢’;0 — 0.5,0 + 0.5).
> Assume we would like find the predictive distribution for y when
y | 8 ~ Normal(,0.32) and ¢ has the distribution above.
> Do this first by using a sample from generated by Metropolis

Hastings.
> Then, compute and compare to the theoretical distribution.
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Gibbs sampling

v

A version of Metropolis Hastings with a special type of proposal
functions: For each component of § = (01,05, ...,6y), use the

conditional distribution where all but one of the components are
fixed.

It is straightforward to show that the acceptance probability
becomes 1.

When conditional distributions are easy to derive, this is a popular
choice for proposal functions.

Convergence is not always fast.
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The Ising model

v

The configurations o consist of nodes in a grid, where in each node
v the configuration has value 0, =1 or o, = —1.

The energy of a configuration is defined as
E(c)=— Z OvOw

where the sum is over all neighbour pairs v and w.

The Gibbs distribution on the set of all configurations has probaility

mass function
exp (—BE(o))

M) = = ep (CBE()

where [ is a real parameter.

Gibbs sampling works well as a simulation method for the Gibbs
distribution.

(One can observe a “phase transition” at a particular value of 3.)
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Perfect sampling

Given ergodic Markov chain with finite sample space of size k and
limiting distribution 7.
» Idea: Given n, prove that X, actually has the limit distribution.

» Method: Prove that the distribution at X, is independent of the
starting value at Xj.

» How: Construct k Markov chains that are dependent (“coupled”)
but which are marginally Markov chains as above. If they all start at
the k possible values at Xy but have identical values at X,,, we are
done.

» Note: n cannot be determined as the first value where the k chains
meet; it must be determined beforehand!

» Thus usually one wants to generate a chain X_,, X_,41,...,Xp
where Xy has the limiting distribution, and we stepwise increase n to
make all chains coalesce to one chain.
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Using same source of randomness for all chains

Consider the chains XE’?,, e ,Xéj) forj=1,..., k.
» Instead of simulating X,-(er)l based on X,-(j) independently for each j,
we define a function g so that Xi(i)l = g(X,.(j), U;) for all j, where
U; ~ Uniform(0, 1).
» Thus if two chains have identical values in X;, they will also be
identical at Xjy1.

» See Figure 5.10 in Dobrow.
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