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Overview

I Review of the Metropolis Hastings algorithm.

I Example.

I Gibbs sampling in the Ising model.

I Perfect sampling.

I Total Variation Distance and card shuffling.
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The Metropolis Hastings algorithm

I Assume a density (or probability mass function) π(θ) is provided.

I We also assume given a proposal function q(θnew | θ), which, for
every given θ, provides a probability distribution (or probability mass
function) for a new θnew .

I Finally, define, for θ and θnew , the acceptance probability

a = min

(
1,
π(θnew )q(θ | θnew )

π(θ)q(θnew | θ)

)
I The Metropolis Hastings algorithm is: Starting with some initial

value θ0, generate θ1, θ2, . . . by, at each step, proposing a new θ
based on the old using the proposal function and accepting it with
probability a. If it is not accepted, the old value is used again.

I If this defines an ergodic Markov chain, its unique stationary
distribution is π(θ).
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Example

I Assume that a model has the real parameter θ, and that the
posterior for θ has been found to be

π(θ | data) = 0.3 Normal(θ; 2, 0.52) + 0.7 Normal(θ; 6, 12).

As a toy example, compare a sample simulated directly from this
distribution to one simulated using Metropolis Hastings. Use as
starting value 1 and proposal function
π(θ′ | θ) = Uniform(θ′; θ − 0.5, θ + 0.5).

I Assume we would like find the predictive distribution for y when
y | θ ∼ Normal(θ, 0.32) and θ has the distribution above.

I Do this first by using a sample from generated by Metropolis
Hastings.

I Then, compute and compare to the theoretical distribution.
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Gibbs sampling

I A version of Metropolis Hastings with a special type of proposal
functions: For each component of θ = (θ1, θ2, . . . , θk), use the
conditional distribution where all but one of the components are
fixed.

I It is straightforward to show that the acceptance probability
becomes 1.

I When conditional distributions are easy to derive, this is a popular
choice for proposal functions.

I Convergence is not always fast.
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The Ising model

I The configurations σ consist of nodes in a grid, where in each node
v the configuration has value σv = 1 or σv = −1.

I The energy of a configuration is defined as

E (σ) = −
∑
v∼w

σvσw

where the sum is over all neighbour pairs v and w .

I The Gibbs distribution on the set of all configurations has probaility
mass function

π(σ) =
exp (−βE (σ))∑
τ exp (−βE (τ))

where β is a real parameter.

I Gibbs sampling works well as a simulation method for the Gibbs
distribution.

I (One can observe a “phase transition” at a particular value of β.)
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Perfect sampling

Given ergodic Markov chain with finite sample space of size k and
limiting distribution π.

I Idea: Given n, prove that Xn actually has the limit distribution.

I Method: Prove that the distribution at Xn is independent of the
starting value at X0.

I How: Construct k Markov chains that are dependent (“coupled”)
but which are marginally Markov chains as above. If they all start at
the k possible values at X0 but have identical values at Xn, we are
done.

I Note: n cannot be determined as the first value where the k chains
meet; it must be determined beforehand!

I Thus usually one wants to generate a chain X−n,X−n+1, . . . ,X0

where X0 has the limiting distribution, and we stepwise increase n to
make all chains coalesce to one chain.
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Using same source of randomness for all chains

Consider the chains X
(j)
−n, . . . ,X

(j)
0 for j = 1, . . . , k .

I Instead of simulating X
(j)
i+1 based on X

(j)
i independently for each j ,

we define a function g so that X
(j)
i+1 = g(X

(j)
i ,Ui ) for all j , where

Ui ∼ Uniform(0, 1).

I Thus if two chains have identical values in Xi , they will also be
identical at Xi+1.

I See Figure 5.10 in Dobrow.
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