MVE550 2019 Lecture 10

Petter Mostad

Chalmers University

December 5, 2019

Where are we?

- ▶ In the beginning of the course, we defined a stochastic process as a collection $\{X_t, t \in I\}$ of random variables with a common state space S.
- So far, the set I has been the non-negative integers. We now move on to processes where I is a non-countable set, for example all positive real numbers, or all subsets of ℝ².
- ► Chapters 6 and 7 of Dobrow concern such stochastic processes where the state space *S* is discrete.
- ▶ In Chapter 8 of Dobrow we look at the situation when the random variables X_t are continuous variables.

Overview

- ▶ Three equivalent definitions of a Poisson process.
- ▶ A number of important and useful properties.
- ▶ Examples and example computations!
- ▶ Spatial Poisson processes and inhomogeneous Poisson processes.

Counting processes

- ▶ A counting process $\{N_t, t \in I\}$ is a stochastic process where $I = \mathbb{R}_0^+$, where the state space is the non-negative integers, and where $0 \le s \le t$ implies $N_s \le N_t$.
- ▶ Informally, when s < t, $N_t N_s$ counts the number of "events" in (s, t].
- \triangleright N_t is a function of t that is a right-continuous step function.

Poisson process: Definiton 1

- ▶ A Poisson process $\{N_t\}_{t\geq 0}$ with parameter $\lambda>0$ is a counting process fulfilling
 - $N_0 = 0.$
 - $N_t \sim \text{Poisson}(\lambda t)$ for all t > 0.
 - ▶ Stationary increments: $N_{t+s} N_s$ has the same distribution as N_t .
 - ▶ Independent increments: $N_t N_s$ and $N_r N_q$ are independent, when $0 \le q < r \le s < t$.
- ▶ Note: Not obvious that such a process exists.
- Note: $E(N_t) = \lambda t$. Thus what one is counting occurs with a *rate* of λ items per time unit.

Poisson process: Definition 2

Let X_1, X_2, \ldots , be a sequence of iid exponential random variables with parmeter λ . Define $N_0 = 0$ and, for t > 0,

$$N_t = \max\{n : X_1 + \cdots + X_n \le t\}.$$

Then $\{N_t\}_{t\geq 0}$ is a Poisson process with parameter λ .

- ▶ We call $S_n = X_1 + \cdots + X_n$ the *arrival times* of the process.
- ▶ We call $X_k = S_k S_{k-1}$ the *inter-arrival times* of the process.
- ▶ This provides an easy way to simulate a Poisson process.

Memorylessness of the exponential distribution

▶ A random variable *X* is called *memoryless* if

$$P(X > s + t \mid X > s) = P(X > t)$$

for all s > 0, t > 0.

- ► The exponential distribution is memoryless, and is the only memoryless continuous random variable.
- Consider the consequences of this when using the exponential as a model.

Minimum and sum of independent exponentially distributed variables

- ▶ Define $M = \min(X_1, ..., X_n)$ where, independently for each i, $X_i \sim \text{Exponential}(\lambda_i)$. Then:
 - $M \sim \text{Exponential}(\lambda_1 + \cdots + \lambda_n)$.
 - $P(M=X_k) = \frac{\lambda_k}{\lambda_1 + \dots + \lambda_n}.$
- Let $S_n = X_1 + \cdots + X_n$ where, independently for each i, $X_i \sim \text{Exponential}(\lambda)$. Then $S_n \sim \text{Gamma}(n, \lambda)$.

Poisson process: Definition 3

- ▶ Introduce/review the o(h) and o(g(h)) notation.
- ▶ A Poisson process $\{N_t\}_{t\geq 0}$ with parameter λ is a couting process fulfilling
 - $N_0 = 0.$
 - The process has stationary and independent increments.
 - We have

$$P(N_h = 0) = 1 - \lambda h + o(h)$$

$$P(N_h = 1) = \lambda h + o(h)$$

$$P(N_h > 1) = o(h)$$

▶ All the three definitions of a Poission process are equivalent.

Thinned poisson processes

Let $\{N_t\}_{t\geq 0}$ be a Poisson process with parameter λ . Assume each arrivial is "marked" as "type k", for one of n types, with probability p_k , where $p_1+\cdots+p_n$. Let $N_t^{(k)}$ be the count of the number of arrivals of type k by time t. Then

- ▶ $\left\{N_t^{(k)}\right\}_{t\geq 0}$ is a Poisson process with parameter $p_k\lambda$.
- ► The processes

$$\left\{N_t^{(1)}\right\}_{t\geq 0},\ldots,\left\{N_t^{(n)}\right\}_{t\geq 0}$$

are independent.

Superposition process

Assume

$$\left\{N_t^{(1)}\right\}_{t\geq 0}, \ldots, \left\{N_t^{(n)}\right\}_{t\geq 0}$$

are independent Poisson processes with parameters $\lambda_1,\ldots,\lambda_n$, respectively. Define, for t>0,

$$N_t = N_t^{(1)} + \cdots + N_t^{(n)}.$$

Then $\{N_t\}_{t\geq 0}$ is a Poisson process with parameter $\lambda=\lambda_1+\cdots+\lambda_n$.

Uniform distribution when count is fixed

Let S_1, S_2, \ldots , be the arrival times of a Poisson process with parameter λ . Conditional on $N_t = n$, we have

- ▶ The joint density function for $S_1, ..., S_n$ is uniform on the set $0 < s_1 < s_2 < ..., < s_n < t$.
- ▶ Equivalently, if U_1, \ldots, U_n are iid uniform on [0, t], and if $U_{(1)}, \ldots, U_{(n)}$ is the ordering of these random variables, then (S_1, \ldots, S_n) and $(U_{(1)}, \ldots, U_{(n)})$ have the same distribution.
- ▶ The upshot: If we want to simulate a Poisson process on an interval [0, t], we may first simulate N_t (the total number of "events") and then independently simulate the arrival times of each of the N_t events uniformly on [0, t].

Spatial Poisson processes

- ▶ A collection of random variables $\{N_A\}_{A\subseteq\mathbb{R}^d}$ is a spatial Poisson process with parameter λ if
 - ▶ For each bounded set $A \subseteq \mathbb{R}^d$, N_A has a Poisson distribution with parameter $\lambda |A|$.
 - ▶ Whenever $A \subseteq B$, $N_A \le N_B$.
 - ▶ Whenever A and B are disjoint sets, N_A and N_B are independent.
- ▶ How to simulate
- One may use simulations to estimate properties such as the average distance to the nearest neighbour (or the third nearest neighbour or whatever).
- Very useful model in practice.

Non-homogeneous Poisson processes

- ▶ A counting process $\{N_t\}_{t\geq 0}$ is a *non-homogeneous* Poisson process with intensity function $\lambda(t)$ if
 - $ightharpoonup N_0 = 0.$
 - For t > 0,

$$N_t \sim \text{Poisson}\left(\int_0^t \lambda(x) \, dx\right)$$

- It has independent increments.
- Again a very flexible and useful model in practice.
- ▶ One may have non-homogeneous spatial Poisson processes.