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Where are we?

I In the beginning of the course, we defined a stochastic process as a
collection {Xt , t ∈ I} of random variables with a common state
space S .

I So far, the set I has been the non-negative integers. We now move
on to processes where I is a non-countable set, for example all
positive real numbers, or all subsets of R2.

I Chapters 6 and 7 of Dobrow concern such stochastic processes
where the state space S is discrete.

I In Chapter 8 of Dobrow we look at the situation when the random
variables Xt are continuous variables.
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Overview

I Three equivalent definitions of a Poisson process.

I A number of important and useful properties.

I Examples and example computations!

I Spatial Poisson processes and inhomogeneous Poisson processes.
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Counting processes

I A counting process {Nt , t ∈ I} is a stochastic process where
I = R+

0 , where the state space is the non-negative integers, and
where 0 ≤ s ≤ t implies Ns ≤ Nt .

I Informally, when s < t, Nt − Ns counts the number of “events” in
(s, t].

I Nt is a function of t that is a right-continuous step function.
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Poisson process: Definiton 1

I A Poisson process {Nt}t≥0 with parameter λ > 0 is a counting
process fulfilling

I N0 = 0.
I Nt ∼ Poisson(λt) for all t > 0.
I Stationary increments: Nt+s − Ns has the same distribution as Nt .
I Independent increments: Nt − Ns and Nr − Nq are independent,

when 0 ≤ q < r ≤ s < t.

I Note: Not obvious that such a process exists.

I Note: E(Nt) = λt. Thus what one is counting occurs with a rate of
λ items per time unit.
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Poisson process: Definition 2

I Let X1,X2, . . . , be a sequence of iid exponential random variables
with parmeter λ. Define N0 = 0 and, for t > 0,

Nt = max{n : X1 + · · ·+ Xn ≤ t}.

Then {Nt}t≥0 is a Poisson process with parameter λ.

I We call Sn = X1 + · · ·+ Xn the arrival times of the process.

I We call Xk = Sk − Sk−1 the inter-arrival times of the process.

I This provides an easy way to simulate a Poisson process.
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Memorylessness of the exponential distribution

I A random variable X is called memoryless if

P(X > s + t | X > s) = P(X > t)

for all s > 0, t > 0.

I The exponential distribution is memoryless, and is the only
memoryless continuous random variable.

I Consider the consequences of this when using the exponential as a
model.
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Minimum and sum of independent exponentially
distributed variables

I Define M = min(X1, . . . ,Xn) where, independently for each i ,
Xi ∼ Exponential(λi ). Then:

I M ∼ Exponential(λ1 + · · ·+ λn).
I P(M = Xk) =

λk
λ1+···+λn

.

I Let Sn = X1 + · · ·+ Xn where, independently for each i ,
Xi ∼ Exponential(λ). Then Sn ∼ Gamma(n, λ).
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Poisson process: Definition 3

I Introduce/review the o(h) and o(g(h)) notation.

I A Poisson process {Nt}t≥0 with parameter λ is a couting process
fulfilling

I N0 = 0.
I The process has stationary and independent increments.
I We have

P(Nh = 0) = 1− λh + o(h)

P(Nh = 1) = λh + o(h)

P(Nh > 1) = o(h)

I All the three definitions of a Poission process are equivalent.
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Thinned poisson processes

Let {Nt}t≥0 be a Poisson process with parameter λ. Assume each arrivial
is “marked” as “type k”, for one of n types, with probability pk , where

p1 + · · ·+ pn. Let N
(k)
t be the count of the number of arrivals of type k

by time t. Then

I
{
N

(k)
t

}
t≥0

is a Poisson process with parameter pkλ.

I The processes {
N

(1)
t

}
t≥0

, . . . ,
{
N

(n)
t

}
t≥0

are independent.
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Superposition process

Assume {
N

(1)
t

}
t≥0

, . . . ,
{
N

(n)
t

}
t≥0

are independent Poisson processes with parameters λ1, . . . , λn,
respectively. Define, for t > 0,

Nt = N
(1)
t + · · ·+ N

(n)
t .

Then {Nt}t≥0 is a Poisson process with parameter λ = λ1 + · · ·+ λn.
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Uniform distribution when count is fixed

Let S1,S2, . . . , be the arrival times of a Poisson process with parameter
λ. Conditional on Nt = n, we have

I The joint density function for S1, . . . ,Sn is uniform on the set
0 < s1 < s2 < . . . , < sn < t.

I Equivalently, if U1, . . . ,Un are iid uniform on [0, t], and if
U(1), . . . ,U(n) is the ordering of these random variables, then
(S1, . . . ,Sn) and (U(1), . . . ,U(n)) have the same distribution.

I The upshot: If we want to simulate a Poisson process on an interval
[0, t], we may first simulate Nt (the total number of “events”) and
then independently simulate the arrival times of each of the Nt

events uniformly on [0, t].
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Spatial Poisson processes

I A collection of random variables {NA}A⊆Rd is a spatial Poisson
process with parameter λ if

I For each bounded set A ⊆ Rd , NA has a Poisson distribution with
parameter λ|A|.

I Whenever A ⊆ B, NA ≤ NB .
I Whenever A and B are disjoint sets, NA and NB are independent.

I How to simulate

I One may use simulations to estimate properties such as the average
distance to the nearest neighbour (or the third nearest neighbour or
whatever).

I Very useful model in practice.
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Non-homogeneous Poisson processes

I A counting process {Nt}t≥0 is a non-homogeneous Poisson process
with intensity function λ(t) if

I N0 = 0.
I For t > 0,

Nt ∼ Poisson

(∫ t

0

λ(x) dx

)
I It has independent increments.

I Again a very flexible and useful model in practice.

I One may have non-homogeneous spatial Poisson processes.
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