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Overview

I Properties for the long run; review.

I Time reversible chains

I Queueing theory

I Poisson subordination

I Back to some more examples, if time.
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Limiting and stationary distributions

I A probability vector v represents a limiting distribution if, for all
states i and j ,

lim
t→∞

Pij(t) = vj .

I A probability vector v represents a stationary distribution, if, for all
t ≥ 0,

v = vP(t)

I A limiting distribution is a stationary distribution but not necessarily
vice versa.

I A continuous-time Markov chain is irreducible if for all i and j there
exists a t > 0 such that Pij(t) > 0.

I However, periodic continuous-time Markov chains do not exist: If
Pij(t) > 0 for some t > 0 then Pij(t) > 0 for all t > 0.
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The fundamental limit theorem

I For a finite-state continuous-time Markov chain with finite holding
time parameters, there are two possibilities:

I The process is irreducible, and Pij(t) > 0 for all t > 0 and all i , j .
I The process contains one or more absorbing communication classes.

I Fundamental Limit Theorem: Let {Xt}t≥0 be a finite, irreducible,
continuous-time Markov chain with transition funciton P(t). Then
there exists a unique stationary distribution vector v which is also
the limiting distribution.

I A probability vector v is a stationary distribution of a
continuous-time Markov chain with infinitesimal generator Q if and
only if vQ = 0.
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Absorbing states

I Assume {Xt}t≥0 is a continuous-time Markov chain with k states.
Assume the last, called a, is absorbing and the rest are not. (They
are then transient).

I The entire row for a must consist of zeros. We may write

Q =

[
V ∗
0 0

]
.

I Let F be the (k − 1)× (k − 1) matrix so that Fij is the expected
time spent in state j when the state starts in i . We can shown that
(VF ) = −I , so that F = −V−1.

I Note that, if the chain starts in state i , the expected time until
absorbtion is the sum of the i ’th row of F .
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Stationary distribution of the embedded chain

I Recall the embedded chain of a continuous-time Markov chain, with
transition matrix P̃.

I Stationary distributions for the embedded chain and for the
continuous-time chain are generally not the same!

I However, there is a simple relationship: A probability vector v is a
stationary distribution for a continuous-time Markov chain if and
only if ψ is a stationary distribution for the embedded chain, where
ψj = Cvjqj for the appropriate normalizing constant C .
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Global Balance

I For a continuous-time Markov chain, the long term rate of
movement into a state must correspond to the long term rate of
movement out of the chain. This is called global balance.

I This corresponds to the equation, for each state j ,∑
i 6=j

πiqij = πjqj

I Note that this corresponds exactly to the rows of the matrix equation
πQ = 0, which we know holds for stationary distributions π.

I Generalization: If A is a set of states, then the long term rates of
movement into and out of A are the same:∑

i∈A

∑
j /∈A

πiqij =
∑
i∈A

∑
j /∈A

πjqji
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Time reversibility and local balance

I The continuous-time Markov chain with unique stationary
distribution π is said to be time reversible if for all i , j ,

πiqij = πjqji

I This is called the local balance condition.

I Note: The rate of observed changes from i to j is the same as the
rate of observed changes from j to i . Thus we have time reversibility.

I Note that (similar to discrete chains): If a probability vector v
satisfies local balance condition, then v is the unique stationary
distribution. (Easy to show).
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Markov processes with transition graphs that are trees

I A tree is a graph that does not contain cycles.

I Assume the transition graph of an irreducible continuous-time
Markov chain is a tree.

I From the generalized global balance property, it then follows that
the process is time reversible, i.e., πiqij = πjqji for all i and j .

I Note that the process can be time reversible even if the transition
graph is not a tree.
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Birth-and-death processes

I A birth-and-death process is a continuous-time Markov chain where
the state space is the set of nonnegative integers and transitions
only occur to neighbouring integers.

I The process is necessarily time-reversible, as the transition graph is a
tree (in fact, a line).

I We denote the rate of births from i to i + 1 with λi , and the rate of
deaths from i to i − 1 with µi .

I The generator matrix is

Q =


−λ0 λ0 0 0 . . .
µ1 −(µ1 + λ1) λ1 0 . . .
0 µ2 −(µ2 + λ2) λ2 . . .
0 0 µ3 −(µ3 + λ3) . . .
...

...
...

...
. . .


I Provided

∑∞
k=0

∏∞
k=1

λi−1

µi
≤ ∞, the unique stationary distribution is

given by

πk = π0

k∏
i=1

λi−1
µi

, and π0 =

( ∞∑
k=0

k∏
i=1

λi−1
µi

)−1
.
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Queues

I This is a large set of continuous-time stochastic processes with the
set of non-negative integers as the state space. Not necessarily
Markov.

I A common notation is on the form A/B/c, where A describes the
arrival process, B the service time process, and c describes the
number of “servers”.

I Little’s formula:
L = λW

I L: Long term average number of “customers” in system.
I λ: Long term rate of arrival of customers.
I W : Long term average time for customer in system.
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M/M/1

I M means “Markov” (or memoryless): Arrival times and service times
have exponential distributions, and there is one server.

I If {Xt}t≥0 denotes the number of customers in the system at time t,
then this is a birth-and-death process with constant birth rate λ and
constant death rate µ. (Why?)

I Using the formula for the limiting distribution for birth-and-death
processes, we can show that for M/M/1 queues, it becomes a
geometric distribution with parameter 1− λ/µ.
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M/M/c

I The arrival times and service times have exponential distributions,
but there are now c servers.

I If {Xt}t≥0 denotes the number of customers in the system at time t,
then this is a birth-and-death process with

I The birth rate is constant, λ.
I The death rate is

µi =

{
iµ for i = 1, . . . , c
cµ for i ≥ c

for some µ.

I Using the general formula for the limiting distribution for
birth-and-death processes, we get that

πk =


π0

k!

(
λ
µ

)k
for k = 1, . . . , c

π0

ck−cc!

(
λ
µ

)k
for k ≥ c
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Poisson subortination

I Let Y0,Y1, . . . , be a discrete time discrete state space Markov chain
with transition matrix R. Let {Nt}t≥0 be a Poisson process with
parameter λ. Then Xt = YNt is a continuous time Markov chain with

P(t) =
∞∑
i=0

Rk Poisson(k ; tλ). (1)

I Conversely, assume Xt is a continuous time Markov chain with
generator matrix Q. Define

R =
1

λ
Q + I

where λ is chosen so that R has only positive elements. Then
Equation 1 holds, so Xt is described as a Poisson subordination
process as above.

I The discrete time process and the continuous time process have the
same stationary distributions.

I Using Equation 1 for P(t) and truncating the number of terms
provides a way to estimate P(t), if exp(tQ) is difficult to estimate.
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