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Properties for the long run; review.
Time reversible chains

Queueing theory

Poisson subordination

vV v.v v .Yy

Back to some more examples, if time.
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Limiting and stationary distributions

A probability vector v represents a limiting distribution if, for all
states / and J,

v

lim P;(t) = v;.

t—o0

v

A probability vector v represents a stationary distribution, if, for all
t >0,
v = vP(t)

v

A limiting distribution is a stationary distribution but not necessarily
vice versa.

» A continuous-time Markov chain is irreducible if for all i and j there
exists a t > 0 such that Pj(t) > 0.

v

However, periodic continuous-time Markov chains do not exist: If
Pj(t) > 0 for some t > 0 then Pj(t) > 0 for all t > 0.

3/14



The fundamental limit theorem

> For a finite-state continuous-time Markov chain with finite holding
time parameters, there are two possibilities:
> The process is irreducible, and Pj(t) > 0 for all t > 0 and all i,;.
> The process contains one or more absorbing communication classes.

> Fundamental Limit Theorem: Let {X;}+>0 be a finite, irreducible,
continuous-time Markov chain with transition funciton P(t). Then
there exists a unique stationary distribution vector v which is also
the limiting distribution.

> A probability vector v is a stationary distribution of a
continuous-time Markov chain with infinitesimal generator Q if and
only if vQ = 0.
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Absorbing states

> Assume {X;}+>0 is a continuous-time Markov chain with k states.
Assume the last, called a, is absorbing and the rest are not. (They
are then transient).

» The entire row for a must consist of zeros. We may write
vV x
o-[o o]
> Let F be the (k — 1) x (k — 1) matrix so that Fj; is the expected

time spent in state j when the state starts in /. We can shown that
(VF) = —I, sothat F = —V~1

» Note that, if the chain starts in state /, the expected time until
absorbtion is the sum of the /'th row of F.
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Stationary distribution of the embedded chain

» Recall the embedded chain of a continuous-time Markov chain, with
transition matrix P.

» Stationary distributions for the embedded chain and for the
continuous-time chain are generally not the same!

» However, there is a simple relationship: A probability vector v is a
stationary distribution for a continuous-time Markov chain if and
only if ¥ is a stationary distribution for the embedded chain, where
1; = Cv;q; for the appropriate normalizing constant C.
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Global Balance

» For a continuous-time Markov chain, the long term rate of
movement into a state must correspond to the long term rate of
movement out of the chain. This is called global balance.

» This corresponds to the equation, for each state j,
> miqy = mq;
i)

» Note that this corresponds exactly to the rows of the matrix equation
7Q = 0, which we know holds for stationary distributions .

> Generalization: If A is a set of states, then the long term rates of
movement into and out of A are the same:

PIPITIE 3 S2!

€A jgA €A j¢A
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Time reversibility and local balance

» The continuous-time Markov chain with unique stationary
distribution 7 is said to be time reversible if for all i, J,

Tiqjj = Tjqji

» This is called the local balance condition.

» Note: The rate of observed changes from i to j is the same as the
rate of observed changes from j to i. Thus we have time reversibility.

» Note that (similar to discrete chains): If a probability vector v
satisfies local balance condition, then v is the unique stationary
distribution. (Easy to show).
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Markov processes with transition graphs that are trees

> A treeis a graph that does not contain cycles.

> Assume the transition graph of an irreducible continuous-time
Markov chain is a tree.

> From the generalized global balance property, it then follows that
the process is time reversible, i.e., m;q; = m;q; for all i and j.

» Note that the process can be time reversible even if the transition
graph is not a tree.
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Birth-and-death processes

» A birth-and-death process is a continuous-time Markov chain where
the state space is the set of nonnegative integers and transitions
only occur to neighbouring integers.

» The process is necessarily time-reversible, as the transition graph is a
tree (in fact, a line).

» We denote the rate of births from i to i + 1 with A;, and the rate of
deaths from i to i — 1 with p;.

» The generator matrix is

—Xo Ao 0 0
pr —(p1+ M) AL 0
Q=10 W2 —(p2 + A2) A2

0 0 U3 —(u3 + A3)

» Provided Y 2 [Tee; )‘l’;l < 00, the unique stationary distribution is
given by

,and mo = (iﬁA’—_1>_l.

k
Ai—1
me=mo ][ =~
o1 Hi k—oi=1 M
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» This is a large set of continuous-time stochastic processes with the
set of non-negative integers as the state space. Not necessarily
Markov.

» A common notation is on the form A/B/c, where A describes the
arrival process, B the service time process, and ¢ describes the
number of “servers”.

» Little's formula:

L=\W

> L: Long term average number of “customers” in system.
> \: Long term rate of arrival of customers.
» W: Long term average time for customer in system.
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» M means “Markov” (or memoryless): Arrival times and service times
have exponential distributions, and there is one server.

> If {X:}+>0 denotes the number of customers in the system at time t,
then this is a birth-and-death process with constant birth rate A and
constant death rate p. (Why?)

» Using the formula for the limiting distribution for birth-and-death
processes, we can show that for M/M/1 queues, it becomes a
geometric distribution with parameter 1 — \/p.
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» The arrival times and service times have exponential distributions,
but there are now c servers.

> If {X:}>0 denotes the number of customers in the system at time t,
then this is a birth-and-death process with

» The birth rate is constant, .

» The death rate is

for some p.

fori=1,...,c

_ )i
’u'i{ cu fori>c

» Using the general formula for the limiting distribution for
birth-and-death processes, we get that

T =

fork=1,...,¢c

for k > ¢

k
o A
ck=ccl (u)
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Poisson subortination

> Let Yy, Yi,..., be a discrete time discrete state space Markov chain
with transition matrix R. Let {N;};>o be a Poisson process with
parameter A\. Then X; = Y), is a continuous time Markov chain with

oo
P(t) = Z R* Poisson(k; t)). (1)
i=0
» Conversely, assume X; is a continuous time Markov chain with
generator matrix Q. Define

1
R=-Q+I
)\Q+

where A is chosen so that R has only positive elements. Then
Equation 1 holds, so X; is described as a Poisson subordination
process as above.

» The discrete time process and the continuous time process have the
same stationary distributions.

» Using Equation 1 for P(t) and truncating the number of terms
provides a way to estimate P(t), if exp(tQ) is difficult to estimate.
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