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Distributions with varying parametrizations

I In the normal distribution
Normal(x ;µ, σ2) = 1√

2πσ2
exp

(
− 1

2σ2 (x − µ2)
)

the second parameter

is the variance.

I However, in R, the second parameter is the standard deviation:
dnorm(x, mu, sigma).

I In the negative binomial distribution
NegativeBinomial(x ; r , p) =

(
x+r−1

x

)
(1− p)xpr the second parameter

is the chance of success.

I This corresponds to R: dnorm(x, r, p).

I In the original version of the lecture notes, the second parameter was
the chance of failure. This has now been changed to the above.

I With the notation above, if x ∼ Poisson(θ) and θ ∼ Gamma(α, β),
then x ∼ NegativeBinomial(α, β/(1 + β)).
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More distributions with varying parametrizations

I In the Gamma distribution Gamma(x ;α, β) = βα

Γ(α)x
α−1 exp(−βx)

the second parameter is the rate.

I Sometimes, one instead uses the scale 1/β as the second parameter.

I In R, we can use either dgamma(x, alpha, beta) or dgamma(x,
alpha, scale=1/beta).

I In the Geometric distribution Geometric(x ; p) = (1− p)xp one
assumes the possible values for x are {0, 1, 2, 3, . . . }.

I Sometimes, the possible values for x are assumed to be {1, 2, 3, . . . }
and the probabilities are shifted one step.

I R uses the first definition, e.g., dgeom(0, 0.3) is 0.3.

3 / 16



A review of the Exponential distribution

I The exponential distribution has density
Exponential(x ;λ) = λe−λx .

I The expectation is 1/λ.

I Sometimes, the expectation is used as the parameter.

I R (and our course) uses the density above: dexp(x, lambda) has
expectation 1/lambda.

I The cumulative density is F (x) = 1− e−λx . Thus
Pr (X > t) = e−λt .

I The variance is 1/λ2.

I The exponential distribution is the only distribution on R+ that is
memoryless:

Pr (X > s + t | X > s) = Pr (X > t) .
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Overview

I Definition of continuous-time Markov processes.

I Some basic properties.

I The matrix exponential.

I Properties for the long run.
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Continuous time Markov chains

I A continuous time stochastic process {Xt}t≥0 with discrete state
space S is a continuous time Markov chain if

P(Xt+s = j | Xs = i ,Xu, 0 ≤ u < s) = P(Xt+s = j | Xs = i)

where s, t ≥ 0 and i , j , xu ∈ S .

I The process is time-homogeneous if for s, t ≥ 0 and all i , j ∈ S

P(Xt+s = j | Xs = i) = P(Xt = j | X0 = i)

.

I We then define the transition function as the matrix function P(t)
with

P(t)ij = P(Xt = j | X0 = i)
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The Chapman-Kolmogorov Equations

For the transition function P(t) we have

I

P(s + t) = P(s)P(t)

I

P(0) = I

I Note similarity to the properties of the exponential function!
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Holding times are exponentially distributed

I Define Ti as the time the continuous-time Markov chain started in i
stays in i before moving to a different state, so that for any s > 0

P(Ti > s) = P(Xu = i , 0 ≤ u ≤ s)

I The distribution of Ti is memoryless and thus exponential.

I We define qi so that

Ti ∼ Exponential(qi )

I Remember that this means that the average time the process stays
in i is 1/qi . The rate of transition out of the state is qi .

I Note that we can have qi = 0 meaning that the state i is absorbing:
P(Ti > s) = 1 .

8 / 16



The embedded chain

I Define a new stochastic process by listing the states the chain visits.
This will be a discrete step Markov chain.

I It is called the embedded chain; transition matrix is denoted P̃.

I Note that P̃ has zeros along its diagonal!

I Note that the continuous time Markov chain is completely
determined by the expected holding times (1/q1, . . . , 1/qk) and the
transition matrix P̃ of the embedded chain. We will soon find
explicit formulas relating (q1, . . . , qk) and P̃ with P(t).
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Transition rates

A way to describe a continuous-time Markov chain is to describe
k × (k − 1) independent “alarm clocks”:

I For states i and j so that i 6= j , let qij be the parameter of an
Exponentially distributed random variable representing the time until
an “alarm clock” rings.

I When in state i , wait until the first alarm clock rings, then move to
the state given by the index j of that alarm clock. This defines a
continuous-time Markov chain.

I Note that the time until the first alarmclock rings is Exponentially
distributed with parameter equal to the sum of the qij ’s. Thus, for
the holding time parameter qi we get

qi = qi1 + qi2 + · · ·+ qi,i−1 + qi,i+1 + · · ·+ qik

I Thus the rate of leaving state i is the sum of the rates of moving to
each of the other states.

I The probability that the j ’th clock rings first is given by qij/
∑

k qik .
Thus

P̃ij =
qij

qi1 + · · ·+ qi,i−1 + qi,i+1 + · · ·+ qik
=

qij
qi
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The derivative at zero

I To relate P(t) to the qij ’s, we first relate them to P ′(0).

I Assuming P(t) is differentiable we get

P ′(0) =


−q1 q12 q13 . . . q1k

q21 −q2 q23 . . . q2k

q31 q31 −q3 . . . q3k

...
...

...
. . .

...
qk1 qk2 qk3 . . . −qk

 = Q

where the qi and the qij are those defined earlier.

I In fact we don’t need to require a finite state space; discrete is
enough.

I Q is called the (infinitesimal) generator of the chain.

11 / 16



Kolmogorov Forward Backward

I Prove: We get that for all t ≥ 0,

P ′(t) = P(t)Q = QP(t)

I Note what this means in terms of the components of P(t):

P ′(t)ij = −Pij(t)qj +
∑
k 6=j

Pik(t)qkj

P ′(t)ij = −qiPij(t) +
∑
k 6=i

qikPkj(t)

I The equations above define a set of differential equations which the
components of the matrix function P(t) needs to fulfill.
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The matrix exponential

I For any square matrix A define the matrix exponential as

eA =
∞∑
n=0

1

n!
An = I + A +

1

2
A2 +

1

6
A3 +

1

24
A4 + . . .

I Some important properties:
I e0 = I .
I eAe−A = I .
I e(s+t)A = esAetA.
I If AB = BA then eA+B = eAeB = eBeA.
I ∂

∂t
etA = AetA = etAA.

I P(t) = etQ is the unique solution to the differential equations
P ′(t) = QP(t) for all t ≥ 0 and P(0) = I .

13 / 16



Computing the matrix exponential

I Assume there exists an invertible matrix S and a matrix D such that
Q = SDS−1. Then (show!)

etQ = SetDS−1

I If D =


λ1 0 . . . 0
0 λ2 . . . 0
...

...
. . .

...
0 0 . . . λk

 is a diagonal matrix, then (show!)

etD =


etλ1 0 . . . 0

0 etλ2 . . . 0
...

...
. . .

...
0 0 . . . etλk

.

I Recall that if Q is diagonalizable it can be written as Q = SDS−1

where D is diagonal with the eigenvalues along the diagonal, and S
has the corresponding eigenvectors as columns.

I In R you may use expm from R package expm.
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Limiting and stationary distributions

I A probability vector v represents a limiting distribution if, for all
states i and j ,

lim
t→∞

Pij(t) = vj .

I A probability vector v represents a stationary distribution, if, for all
t ≥ 0,

v = vP(t)

I A limiting distribution is a stationary distribution but not necessarily
vice versa.

I A continuous-time Markov chain is irreducible if for all i and j there
exists a t > 0 such that Pij(t) > 0.

I However, periodic continuous-time Markov chains do not exist: If
Pij(t) > 0 for some t > 0 then Pij(t) > 0 for all t > 0.

15 / 16



The fundamental limit theorem

I An absorbing communication class is one where there is zero
probability (i.e., zero rate) of leaving it to other commuication
classes.

I For a finite-state continuous-time Markov chain with finite holding
time parameters, there are two possibilities:

I The process is irreducible, and Pij(t) > 0 for all t > 0 and all i , j .
I The process contains one or more absorbing communication classes.

I Fundamental Limit Theorem: Let {Xt}t≥0 be a finite, irreducible,
continuous-time Markov chain with transition funciton P(t). Then
there exists a unique stationary distribution vector v which is also
the limiting distribution.

I A probability vector v is a stationary distribution of a
continuous-time Markov chain with infinitesimal generator Q if and
only if vQ = 0.
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