Petter Mostad
Applied Mathematics and Statistics
Chalmers
Suggested solutions for MVE550 Stochastic Processes and Bayesian Inference Exam 2019, January 16

1. (a) We get

$$
P=\left[\begin{array}{ccccc}
0 & \frac{2}{3} & \frac{1}{3} & 0 & 0 \\
\frac{1}{3} & 0 & \frac{1}{6} & \frac{1}{6} & \frac{1}{3} \\
\frac{1}{4} & \frac{1}{4} & 0 & \frac{1}{2} & 0 \\
0 & \frac{1}{4} & \frac{1}{2} & 0 & \frac{1}{4} \\
0 & \frac{2}{3} & 0 & \frac{1}{3} & 0
\end{array}\right]
$$

(b) For any random walk on a weighted undirected graph, the stationary distribution can be read off the graph. Note that the sum of all weights is 10 . Thus

$$
\begin{aligned}
v & =\left(\frac{1+2}{2 \cdot 10}, \frac{2+1+1+2}{2 \cdot 10}, \frac{1+1+2}{2 \cdot 10}, \frac{1+1+2}{2 \cdot 10}, \frac{1+2}{2 \cdot 10}\right) \\
& =(0.15,0.3,0.2,0.2,0.15)
\end{aligned}
$$

(c) Let v be the probability vector representing the stationary distribution. Then the chain is time-reversible if and only if, for all i and j,

$$
v_{i} P_{i j}=v_{j} P_{j i}
$$

Let $w_{i j}$ denote the weight on the line connecting state i and state j. Then, for the random walk, we have

$$
P_{i j}=\frac{w_{i j}}{\sum_{k} w_{i k}}
$$

and

$$
v_{i}=\frac{\sum_{k} w_{i k}}{\sum_{s} \sum_{k} w_{s k}} .
$$

Thus

$$
\begin{aligned}
& v_{i} P_{i j}=\frac{\sum_{k} w_{i k}}{\sum_{s} \sum_{k} w_{s k}} \cdot \frac{w_{i j}}{\sum_{k} w_{i k}}=\frac{w_{i j}}{\sum_{s} \sum_{k} w_{s k}} \\
& v_{j} P_{j i}=\frac{\sum_{k} w_{j k}}{\sum_{s} \sum_{k} w_{s k}} \cdot \frac{w_{j i}}{\sum_{k} w_{j k}}=\frac{w_{j i}}{\sum_{s} \sum_{k} w_{s k}} .
\end{aligned}
$$

As $w_{i j}=w_{j i}$ for all i and j, we have time-reversibility.
2. (a) We get

$$
\begin{array}{rll}
\pi(p \mid x) & \propto_{p} & \pi(x \mid p) \pi(p) \\
& \propto_{p} & \operatorname{Geometric}(x ; p) \cdot \operatorname{Beta}(p ; \alpha, \beta) \\
& \propto_{p} & p(1-p)^{x-1} p^{\alpha-1}(1-p)^{\beta-1} \\
& \propto_{p} & p^{\alpha+1-1}(1-p)^{\beta+x-1-1}
\end{array}
$$

Thus $p \mid x \sim \operatorname{Beta}(\alpha+1, \beta+x-1)$.
(b) We get

$$
\begin{aligned}
\pi(x) & =\frac{\pi(x \mid p) \pi(p)}{\pi(p \mid x)} \\
& \propto_{x} \\
& \frac{\operatorname{Geometric}(x ; p)}{\operatorname{Beta}(p ; \alpha+1, \beta+x-1)} \\
\propto_{x} & \frac{p(1-p)^{x-1}}{\frac{\Gamma(\alpha+1+\beta+x-1)}{\Gamma(\alpha+1) \Gamma(\beta+x-1)} p^{\alpha+1-1}(1-p)^{\beta+x-1-1}} \\
\propto_{x} & \frac{\Gamma(\beta+x-1)}{\Gamma(\beta+x+\alpha)}
\end{aligned}
$$

Thus $f(x)=\frac{\Gamma(\beta+x-1)}{\Gamma(\beta+x+\alpha)}$. When α is an integer, this corresponds to $f(x)=\frac{1}{(\beta+x-1)(\beta+x) \cdots(\beta+x+\alpha-1)}$.
3. (a) The fundamental matrix is

$$
F=(I-Q)^{-1}=(1-(1-p))^{-1}=p^{-1}=1 / p
$$

i.e., the 1×1 matrix with the single element $1 / p$.
(b) The expected number of steps until absorbtion can be found from the fundamental matrix, i.e., it is $1 / p$.
(c) Let X denote the number of steps until absorbtion. Then we can read from the definition of P that, for $k=1,2, \ldots$,

$$
\mathrm{P}(X=k)=p(1-p)^{k-1} .
$$

This means that $X \sim \operatorname{Geometric}(p)$. From the appendix we have that $\operatorname{Var}[X]=$ $(1-p) / p^{2}$, so this is the answer.
4. (a) The offspring distribution has expectation

$$
0 \cdot \frac{1}{8}+1 \cdot \frac{1}{2}+2 \cdot \frac{3}{8}=\frac{5}{4}
$$

Thus

$$
\mathrm{E}\left(Z_{5}\right)=\left(\frac{5}{4}\right)^{5}=\frac{3125}{1024}=3.051758
$$

(b) We get

$$
G(s)=\mathrm{E}\left(s^{X}\right)=\frac{1}{8}+\frac{1}{2} s+\frac{3}{8} s^{2}
$$

(c) We get

$$
\begin{array}{r}
G(s)=s \\
\frac{1}{8}+\frac{1}{2} s+\frac{3}{8} s^{2}=s \\
3 s^{2}-4 s+1=0 \\
(s-1)(3 s-1)=0
\end{array}
$$

Thus the smallest positive root of $G(s)=s$ is $1 / 3$, which is the probability of extinction.
5. The algorithm starts with selecting an initial real value $x^{(0)}$. Then, for $i=1,2, \ldots$, the algorithm generates $x^{(i)}$ as follows:

- Simulate a proposed value $y \sim \operatorname{Normal}\left(x^{(i-1)}, \sigma_{a}^{2}\right)$.
- Compute the acceptance probability:

$$
\begin{aligned}
p & =\min \left(1, \frac{\pi(y) q\left(x^{(i-1)} \mid y\right)}{\pi\left(x^{(i-1)}\right) q\left(y \mid x^{(i-1)}\right)}\right) \\
& =\min \left(1, \exp \left(-(y+\sin y)^{2}+\left(x^{(i-1)}+\sin x^{(i-1)}\right)^{2}\right)\right)
\end{aligned}
$$

NOTE: The quotient above is not $\frac{\pi(y) q\left(y \mid x^{(i-1)}\right)}{\pi\left(x^{i-1)}\right) q\left(x^{(i-1) \mid y)}\right.}$.

- With probability p, set $x^{(i)}=y$, otherwise, set $x^{(i)}=x^{(i-1)}$.

The distribution of the sequence $x^{(0)}, x^{(1)}, x^{(2)}, \ldots$ will now converge to a distribution with density $\pi(x)$.
6. For $i=1,2, \ldots$, let X_{i} be the holding time between arrival $i-1$ and arrival i. Then all the X_{i} are independent and $X_{i} \sim \operatorname{Exponential}(\lambda)$. Also $S_{n}=\sum_{i=1}^{n} X_{i}$ and $S_{m}-S_{n}=\sum_{i=n+1}^{m} X_{i}$.
(a) We get

$$
\begin{aligned}
\mathrm{E}\left(S_{m}-S_{n}\right) & =\mathrm{E}\left(\sum_{i=n+1}^{m} X_{i}\right)=\sum_{i=n+1}^{m} \mathrm{E}\left(X_{i}\right)=\frac{m-n}{\lambda} \\
\operatorname{var}\left(S_{m}-S_{n}\right) & =\operatorname{var}\left(\sum_{i=n+1}^{m} X_{i}\right)=\sum_{i=n+1}^{m} \operatorname{var}\left(X_{i}\right)=\frac{m-n}{\lambda^{2}} .
\end{aligned}
$$

(b) We get

$$
\begin{aligned}
\operatorname{corr}\left(S_{m}, S_{n}\right) & =\frac{\operatorname{cov}\left(S_{m}, S_{n}\right)}{\sqrt{\operatorname{var}\left(S_{m}\right) \cdot \operatorname{var}\left(S_{n}\right)}} \\
& =\frac{\operatorname{cov}\left(S_{n}+\sum_{i=n+1}^{m} X_{i}, S_{n}\right)}{\sqrt{\operatorname{var}\left(S_{m}\right) \cdot \operatorname{var}\left(S_{n}\right)}} \\
& =\frac{\operatorname{cov}\left(S_{n}, S_{n}\right)+\operatorname{cov}\left(\sum_{i=n+1}^{m} X_{i}, S_{n}\right)}{\sqrt{\operatorname{var}\left(S_{m}\right) \cdot \operatorname{var}\left(S_{n}\right)}} \\
& =\frac{\operatorname{cov}\left(S_{n}, S_{n}\right)}{\sqrt{\operatorname{var}\left(S_{m}\right) \cdot \operatorname{var}\left(S_{n}\right)}} \\
& =\frac{\sqrt{\operatorname{var}\left(S_{n}\right)}}{\sqrt{\operatorname{var}\left(S_{m}\right)}} \\
& =\sqrt{\frac{n / \lambda^{2}}{m / \lambda^{2}}}=\sqrt{\frac{n}{m}} .
\end{aligned}
$$

7. (a) Ordering the states of the hair salon as
i. No customers.
ii. Only A working.
iii. Only B working.
iv. Both A and B working but no-one waiting.
v. Both A and B working and one person waiting.
we get (using hours as the unit of time)

$$
Q=\left[\begin{array}{ccccc}
-3 & 0 & 3 & 0 & 0 \\
3 & -6 & 0 & 3 & 0 \\
2 & 0 & -5 & 3 & 0 \\
0 & 2 & 3 & -8 & 3 \\
0 & 0 & 0 & 5 & -5
\end{array}\right]
$$

(b) Let $v=\left(v_{1}, v_{2}, \ldots, v_{5}\right)$ be the stationary distribution for the process. Then the answer to the question is given by v_{2}. We know that $v Q=0$ and that $\sum_{i=1}^{5} v_{i}=1$. These equations represent 6 equations for the 5 unknown components of v. The equations are

$$
\begin{align*}
-3 v_{1}+3 v_{2}+2 v_{3} & =0 \tag{1}\\
-6 v_{2}+2 v_{4} & =0 \tag{2}\\
3 v_{1}-5 v_{3}+3 v_{4} & =0 \tag{3}\\
3 v_{2}+3 v_{3}-8 v_{4}+5 v_{5} & =0 \tag{4}\\
3 v_{4}-5 v_{5} & =0 \tag{5}\\
v_{1}+v_{2}+v_{3}+v_{4}+v_{5} & =1 \tag{6}
\end{align*}
$$

To find v_{2} we need to solve this system. We may in fact remove any of the equations (1) through (5).
8. From the definition of the exponential matrix and using $A=S D S^{-1}$, we get

$$
e^{A}=S e^{D} S^{-1}
$$

Thus

$$
\begin{aligned}
\operatorname{det}\left(e^{A}\right) & =\operatorname{det}\left(S e^{D} S^{-1}\right)=\operatorname{det}(S) \operatorname{det}\left(e^{D}\right) \operatorname{det}\left(S^{-1}\right) \\
& =\operatorname{det}(S) \operatorname{det}\left[\begin{array}{ccc}
e^{1} & 0 & 0 \\
0 & e^{1 / 2} & 0 \\
0 & 0 & e^{1 / 3}
\end{array}\right] \operatorname{det}(S)^{-1} \\
& =e^{1} e^{1 / 2} e^{1 / 3}=e^{11 / 6}=6.254701 .
\end{aligned}
$$

