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1. (a) We get
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(b) For any random walk on a weighted undirected graph, the stationary distribution can
be read off the graph. Note that the sum of all weights is 10. Thus

1+2 2+1+1+2 1+1+2 1+1+2 142
2-10° 2-10 > 2.10 7 2-10 '2-10
(0.15,0.3,0.2,0.2,0.15)

(c) Letv be the probability vector representing the stationary distribution. Then the chain
is time-reversible if and only if, for all 7 and j,

V,'P,'j = Viji.

Let w;; denote the weight on the line connecting state i and state j. Then, for the
random walk, we have
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As w;; = wj; for all i and j, we have time-reversibility.



2. (a) We get
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Thus p | x ~ Beta(e + 1,8+ x — 1).

(b) We get
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Thus f(x) = E((g:;:é; When « is an integer, this corresponds to f(x) =

3. (a) The fundamental matrix is

F=(I-Q)'=(0-0-p)'=p'=1/p

i.e., the 1 X 1 matrix with the single element 1/p.

(b) The expected number of steps until absorbtion can be found from the fundamental
matrix, i.e., itis 1/p.

(c) Let X denote the number of steps until absorbtion. Then we can read from the defi-
nition of P that, fork=1,2,...,

P(X =k) = p(1 - p) .

This means that X ~ Geometric(p). From the appendix we have that Var [X] =
(1 — p)/p?, so this is the answer.

4. (a) The offspring distribution has expectation
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(b) We get

1 1 3
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(c) We get
G(s) = s
1+1 +32 3
g 2s 8S = s

3 —4s+1 = 0
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Thus the smallest positive root of G(s) = s is 1/3, which is the probability of extinc-
tion.

5. The algorithm starts with selecting an initial real value ). Then, fori = 1,2,...,, the
algorithm generates x” as follows:

e Simulate a proposed value y ~ Normal(x~V, o2).

e Compute the acceptance probability:
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e With probability p, set x' = y, otherwise, set x = x(1,

The distribution of the sequence x@, x, x| ... will now converge to a distribution with
density m(x).

6. Fori=1,2,...,let X; be the holding time between arrival i — 1 and arrival i. Then all the
X; are independent and X; ~ Exponential(1). Also S, =Y, X;and S, - S, = X, Xi.

(a) We get

E(S, —S,) = E[Zm:Xi - Zm:E(X,-):m_n

var(S,, — S, = V&I‘[Z




(b) We get
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(a) Ordering the states of the hair salon as

1. No customers.
ii. Only A working.
iii. Only B working.
iv. Both A and B working but no-one waiting.
v. Both A and B working and one person waiting.

we get (using hours as the unit of time)

-3 0 3 0 O
3 -6 0 3 O
o=12 0 -5 3 0
0O 2 3 -8 3
O 0 O 5 -5
(b) Letv = (v, vs,...,vs) be the stationary distribution for the process. Then the answer

to the question is given by v,. We know that vQ = 0 and that Zle v; = 1. These
equations represent 6 equations for the 5 unknown components of v. The equations

are
=3vi+3vm+2v; = 0 (D)
—6v, +2v4, = 0 2)
3vi=5v3+3vy = 0 3)
vy +3v3 =8y +5vs = 0 @)
3vy—5vs = 0 (5)
VitV +vs+va+vs = |1 (6)



To find v, we need to solve this system. We may in fact remove any of the equations
(1) through (5).

. From the definition of the exponential matrix and using A = SDS ™!, we get

ed = SePSs!

Thus
det(e?) = det(SePS™") = det(S) det(eP) det(S )
el 0 0
= det(S)det|0 €2 0 |det(S)!
0 0 ¢

= ele!?e!? = ¢!V% = 6.254701.



