
MVE550 2019 Lecture 13

Petter Mostad

Chalmers University

December 17, 2019

1 / 14



Overview

I Definition of standard Brownian motion.

I Simulation of Brownian motion.

I Computing with Brownian motion.

I Connection to random walks.

I Gaussian processes.

I First hitting time.

I Maximum of Brownian motion.

I Zeros of Brownian motion.
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Continuous-time continuous state space processes

I Having looked at
I Discrete-time discrete state space processes.
I Discrete-time continuous state space processes (e.g., some MCMC

examples).
I Continuous-time discrete state space processes (e.g., Poisson

processes and more generally continuous-time Markov chains).

we now look at continuous-time continuous state space processes.

I We will look at two examples:
I Brownian motion.
I More generally, Gaussian processes.

3 / 14



(Standard) Brownian motion

Standard Brownian motion is a continuous-time stochastic process
{Bt}t≥0 with the following defining properties:

1. B0 = 0.

2. For t > 0, Bt ∼ Normal(0, t) (so the variance is t).

3. For s, t > 0, Bt+s − Bs ∼ Normal(0, t).

4. For 0 ≤ q < r ≤ s < t, Bt − Bs is independent from Br − Bq.

5. The function t 7→ Bt is continuous with probability 1.
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Simulation of Brownian motion

I Given time points t1 < t2 < · · · < tn, we can write

Bti = Bti−1 + (Bti − Bti−1) = Bti−1 + Zi

where Zi ∼ Normal(0, ti − ti−1).

I Writing t0 = 0, we get

Btn =
n∑

i=1

Zi .

I A good way to simulate the path t 7→ Bt on t ∈ [0, a] is to set
ti = ai/n, simulate independently

Zi ∼ Normal(0, a/n)

and compute

Bti =
i∑

j=1

Zj .

I Note that we can also write Zi =
√

a/nYi , where Yi ∼ Normal(0, 1).
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Nowhere differentiable paths

I We have seen in our simulations that paths of Brownian motion are
“jagged”.

I We have also seen that this quality is unchanged if we change the
scale, i.e., look at smaller intervals.

I Using these observations as starting points, one may show that the
path (i.e., the function t 7→ Bt) of a Brownian motion is nowehere
differentiable.

6 / 14



Computing with Brownian motion

I Show that B1 + B3 + 2B7 ∼ Normal(0, 50).

I Show that P(B2 > 0 | B1 = 1) = 0.8413.

I Show that Cov(Bs ,Bt) = min{s, t}.
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Connection to random walks

I We saw above how Bt can be expressed as a large sum of
independent normal random variables.

I If we replace the random variables with others which also have zero
expectation and the same variance, we get (approximately) the same
result (remember the Central Limit Theorem)!

I If we multiply the number of variables with k and scale the output
with 1/

√
k, the result is (more or less) unchanged.

I One can use this effect to study the limiting behaviour of a random
walk with a Brownian motion: When k →∞ the two processes are
the same. Results for Brownian motion may be easier to compute.

I This is called the invariance principle.
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Remember: The multivariate normal distribution

I Definition (one of many): A set of random variables X1, . . . ,Xk has
a multivariate normal distribution if, for all real a1, . . . , ak ,
a1X1 + · · ·+ akXk is normally distributed.

I It is completely determined by the expectation vector
µ = (E(X1), . . . ,E(Xk)) and the (k × k) covariance matrix Σ, where
Σij = Cov(Xi ,Xj).

I The joint density function on the vector x = (x1, . . . , xk) is

π(x) =
1

|2πΣ|1/2
exp

(
−1

2
(x − µ)TΣ−1(x − µ)

)
.

where |2πΣ| is the determinant of the matrix 2πΣ.

I All marginal distributions and all conditional distributions are also
multivariate normal.
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Gaussian processes

I A Gaussian process is a continuous-time stochastic process {Xt}t≥0

with the property that for all n ≥ 1 and 0 ≤ t1 < t2 < · · · < tn,
X1, . . . ,Xn has a multivariate normal distribution.

I Thus, a Gaussian process is completely determined by its mean
function E(Xt) and its covariance function Cov(Xs ,Xt).

I Gaussian processes are extremely versatile as models. One may
generalize for example so that the index set the t’s belong to is Rn.
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Brownian motion and Gaussian processes

I Brownian motion is a Gaussian process, as we can show that any
a1Bt1 + · · ·+ akBtk is normally distributed.

I A Gaussian process {Xt}t≥0 is Brownian motion if it fulfills

1. X0 = 0.
2. E(Xt) = 0 for all t.
3. Cov(Xs ,Xt) = min{s, t} for all s, t.
4. The function t 7→ Xt is a continuous with probability 1.

I It is mostly easy to show that the following tranformations of a
Brownian motion {Bt}t≥0 are Brownian motions (show that they are
Gaussian processes fulfilling the criteria above):

I {−Bt}t≥0.
I (Bt+s − Bs)t≥0 for any s ≥ 0.

I

{
1√
a
Bat

}
t≥0

for any a > 0.

I The process {Xt}t≥0 where X0 = 0 and Xt = tB1/t for t > 0.

I The process Xt = x + Bt where Bt is Brownian motion and x is
some real number is called “Brownian motion started at x”.
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First Hitting Time

I The first hitting time Ta is defined as Ta = min{t : Bt = a}.
I It can be shown that Bt+Ta − a is Brownian motion (i.e., that Ta is

a “stopping time”).

I It follows that (for a > 0)

Pr (Bt > a | Ta < t) = Pr (Bt−Ta > 0) =
1

2
.

I We get that (for a > 0)

Pr (Ta < t) = 2 Pr (Bt > a)

I We get that the density on t ∈ (0,∞) is given (for a 6= 0) by

π(t) =
|a|√
2πt3

exp

(
−a2

2t

)
.

I This means that t ∼ Inverse-Gamma
(

1
2 ,

a2

2

)
, i.e.,

1
t ∼ Gamma

(
1
2 ,

a2

2

)
.
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Maximum of Brownian motion

I Define Mt = max0≤s≤t Bs .

I We may compute (using previous overhead) for a > 0

Pr (Mt > a) = Pr (Ta < t) = 2 Pr (Bt > a) = Pr (|Bt | > a)

I Thus Mt has the same distribution as |Bt |, the absolute value of Bt .

I Example: Find t such that Pr (Mt ≤ 4) = 0.9.
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Zeros of Brownian motion

I Theorem: The probability that Brownian motion has at least one
zero in (r , t), with 0 ≤ r < t, is

zr ,t =
2

π
arccos

(√
r

t

)
.

I Proof uses the distribution of Mt .

I The probability can be written 1 - pbeta(r/t, 0.5, 0.5).

I Let Lt be the last zero in (0, t). Then

P(Lt ≤ x) = 1− zx,t =
2

π
arcsin

(√
x

t

)
.

which can be computed as pbeta(x/t, 0.5, 0.5).

I In other words, the last zero is distributed so that x/t ∼ Beta( 1
2 ,

1
2 ).
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