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Overview

Definition of standard Brownian motion.
Simulation of Brownian motion.
Computing with Brownian motion.
Connection to random walks.

Gaussian processes.

First hitting time.

Maximum of Brownian motion.
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Zeros of Brownian motion.
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Continuous-time continuous state space processes

» Having looked at
» Discrete-time discrete state space processes.
> Discrete-time continuous state space processes (e.g., some MCMC
examples).
» Continuous-time discrete state space processes (e.g., Poisson
processes and more generally continuous-time Markov chains).
we now look at continuous-time continuous state space processes.
» We will look at two examples:

> Brownian motion.
» More generally, Gaussian processes.
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(Standard) Brownian motion

Standard Brownian motion is a continuous-time stochastic process
{B:}+>0 with the following defining properties:

1.

AR A

By =0.

For t > 0, B; ~ Normal(0, t) (so the variance is t).

For s,t > 0, Byys — Bs ~ Normal(0, t).
For0<g<r<s<t, By — Bs is independent from B, — B,.
The function t — B; is continuous with probability 1.
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Simulation of Brownian motion

» Given time points t; < tp < --- < t,, we can write
Bl‘f = Bti—l + (Bti - Bti—l) = Bti—l + Z

where Z; ~ NormaI(O, t; — t,',l).
» Writing to = 0, we get

> A good way to simulate the path t — B; on t € [0, 3] is to set
t; = ai/n, simulate independently

Z; ~ Normal(0, a/n)

and compute
i
B,=>_ Z.
j=1

» Note that we can also write Z; = y/a/nY;, where Y; ~ Normal(0, 1).
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Nowhere differentiable paths

» We have seen in our simulations that paths of Brownian motion are
“jagged"” .

> We have also seen that this quality is unchanged if we change the
scale, i.e., look at smaller intervals.

» Using these observations as starting points, one may show that the
path (i.e., the function t — B;) of a Brownian motion is nowehere
differentiable.
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Computing with Brownian motion

» Show that B; + Bs + 2B; ~ Normal(0, 50).
» Show that P(B, > 0| B; = 1) = 0.8413.
» Show that Cov(Bs, B;) = min{s, t}.
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Connection to random walks

> We saw above how B; can be expressed as a large sum of
independent normal random variables.

> If we replace the random variables with others which also have zero
expectation and the same variance, we get (approximately) the same
result (remember the Central Limit Theorem)!

> If we multiply the number of variables with k and scale the output
with 1/v/k, the result is (more or less) unchanged.

» One can use this effect to study the limiting behaviour of a random
walk with a Brownian motion: When k — oo the two processes are
the same. Results for Brownian motion may be easier to compute.

» This is called the invariance principle.
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Remember: The multivariate normal distribution

» Definition (one of many): A set of random variables X, ..., Xx has
a multivariate normal distribution if, for all real a1, ..., ak,
a1 Xy + -+ - + ak X is normally distributed.

> It is completely determined by the expectation vector
w=(E(X1),...,E(Xk)) and the (k x k) covariance matrix X, where
Z,‘j = COV(X;,)(j).

» The joint density function on the vector x = (xg,...,Xxx) is

m(x) = |277;|1/2 exp <—;(X — )T (x - u)) .

where |27X| is the determinant of the matrix 27 X.

» All marginal distributions and all conditional distributions are also
multivariate normal.
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Gaussian processes

> A Gaussian process is a continuous-time stochastic process {X:}+>0
with the property that foralln>1and 0 < t; <th < --- < tp,
X1, ..., X, has a multivariate normal distribution.

» Thus, a Gaussian process is completely determined by its mean
function E(X;) and its covariance function Cov(Xs, X;).

» Gaussian processes are extremely versatile as models. One may
generalize for example so that the index set the t's belong to is R".
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Brownian motion and Gaussian processes

» Brownian motion is a Gaussian process, as we can show that any
a1By + -+ + ak By, is normally distributed.
> A Gaussian process {X;}:>o is Brownian motion if it fulfills
1. Xo=0.
2. E(X¢) =0 for all t.
3. Cov(Xs, X¢) = min{s, t} for all s, t.
4. The function t — X; is a continuous with probability 1.
> It is mostly easy to show that the following tranformations of a
Brownian motion {B;};>o are Brownian motions (show that they are
Gaussian processes fulfilling the criteria above):
> {—B:}ezo.
> (Biys — Bs)i>o for any s > 0.

v

{%Bat} for any a > 0.
>0
> The process {X:}:>0 where Xo = 0 and X; = tB; for t > 0.

» The process X; = x + B; where B; is Brownian motion and x is
some real number is called “Brownian motion started at x".
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First Hitting Time

» The first hitting time T, is defined as T, = min{t : B; = a}.

> It can be shown that B, 1, — a is Brownian motion (i.e., that T, is
a “stopping time").

> It follows that (for a > 0)

1
Pr(Bi>a|T,<t)=Pr(Bi—1, >0) = 5
> We get that (for a > 0)
Pr(T, <t)=2Pr(B; > a)

» We get that the density on t € (0,00) is given (for a # 0) by

(0= oo (-2

7(t) = xp [ —— ).
V23 2t

» This means that t ~ Inverse-Gamma (%, 32), ie.

2
1 1 2
+~Gamma (3,5 ).

272
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Maximum of Brownian motion

v

Define M; = maxo<s<¢ Bs.

v

We may compute (using previous overhead) for a > 0

Pr(My > a) =Pr (T, <t)=2Pr(B; > a) =Pr(|B] > a)

v

Thus M; has the same distribution as |B;|, the absolute value of B;.
Example: Find t such that Pr(M; < 4) =0.9.

v
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Zeros of Brownian motion

» Theorem: The probability that Brownian motion has at least one
zero in (r,t), with 0 < r < t, is

2 r
Z, + = — arccos -].
’ ™ t

» Proof uses the distribution of M;.
» The probability can be written 1 - pbeta(r/t, 0.5, 0.5).
> Let L; be the last zero in (0,t). Then

2 X
P(Li<x)=1—-2z,=— i - .
(L < x) Zyet 7Tarcsm <\/:>

which can be computed as pbeta(x/t, 0.5, 0.5).

> In other words, the last zero is distributed so that x/t ~ Beta(3, 3).
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