MVE550 2019 Lecture 13

Petter Mostad

Chalmers University

December 17, 2019

Overview

- Definition of standard Brownian motion.
- Simulation of Brownian motion.
- Computing with Brownian motion.
- Connection to random walks.
- Gaussian processes.
- First hitting time.
- Maximum of Brownian motion.
- Zeros of Brownian motion.

Continuous-time continuous state space processes

- Having looked at
- Discrete-time discrete state space processes.
- Discrete-time continuous state space processes (e.g., some MCMC examples).
- Continuous-time discrete state space processes (e.g., Poisson processes and more generally continuous-time Markov chains).
we now look at continuous-time continuous state space processes.
- We will look at two examples:
- Brownian motion.
- More generally, Gaussian processes.

(Standard) Brownian motion

Standard Brownian motion is a continuous-time stochastic process $\left\{B_{t}\right\}_{t \geq 0}$ with the following defining properties:

1. $B_{0}=0$.
2. For $t>0, B_{t} \sim \operatorname{Normal}(0, t)$ (so the variance is t).
3. For $s, t>0, B_{t+s}-B_{s} \sim \operatorname{Normal}(0, t)$.
4. For $0 \leq q<r \leq s<t, B_{t}-B_{s}$ is independent from $B_{r}-B_{q}$.
5. The function $t \mapsto B_{t}$ is continuous with probability 1 .

Simulation of Brownian motion

- Given time points $t_{1}<t_{2}<\cdots<t_{n}$, we can write

$$
B_{t_{i}}=B_{t_{i-1}}+\left(B_{t_{i}}-B_{t_{i-1}}\right)=B_{t_{i-1}}+Z_{i}
$$

where $Z_{i} \sim \operatorname{Normal}\left(0, t_{i}-t_{i-1}\right)$.

- Writing $t_{0}=0$, we get

$$
B_{t_{n}}=\sum_{i=1}^{n} Z_{i}
$$

- A good way to simulate the path $t \mapsto B_{t}$ on $t \in[0, a]$ is to set $t_{i}=a i / n$, simulate independently

$$
Z_{i} \sim \operatorname{Normal}(0, a / n)
$$

and compute

$$
B_{t_{i}}=\sum_{j=1}^{i} Z_{j}
$$

- Note that we can also write $Z_{i}=\sqrt{a / n} Y_{i}$, where $Y_{i} \sim \operatorname{Normal}(0,1)$.

Nowhere differentiable paths

- We have seen in our simulations that paths of Brownian motion are "jagged".
- We have also seen that this quality is unchanged if we change the scale, i.e., look at smaller intervals.
- Using these observations as starting points, one may show that the path (i.e., the function $t \mapsto B_{t}$) of a Brownian motion is nowehere differentiable.

Computing with Brownian motion

- Show that $B_{1}+B_{3}+2 B_{7} \sim \operatorname{Normal}(0,50)$.
- Show that $P\left(B_{2}>0 \mid B_{1}=1\right)=0.8413$.
- Show that $\operatorname{Cov}\left(B_{s}, B_{t}\right)=\min \{s, t\}$.

Connection to random walks

- We saw above how B_{t} can be expressed as a large sum of independent normal random variables.
- If we replace the random variables with others which also have zero expectation and the same variance, we get (approximately) the same result (remember the Central Limit Theorem)!
- If we multiply the number of variables with k and scale the output with $1 / \sqrt{k}$, the result is (more or less) unchanged.
- One can use this effect to study the limiting behaviour of a random walk with a Brownian motion: When $k \rightarrow \infty$ the two processes are the same. Results for Brownian motion may be easier to compute.
- This is called the invariance principle.

Remember: The multivariate normal distribution

- Definition (one of many): A set of random variables X_{1}, \ldots, X_{k} has a multivariate normal distribution if, for all real a_{1}, \ldots, a_{k}, $a_{1} X_{1}+\cdots+a_{k} X_{k}$ is normally distributed.
- It is completely determined by the expectation vector $\mu=\left(\mathrm{E}\left(X_{1}\right), \ldots, \mathrm{E}\left(X_{k}\right)\right)$ and the $(k \times k)$ covariance matrix Σ, where $\Sigma_{i j}=\operatorname{Cov}\left(X_{i}, X_{j}\right)$.
- The joint density function on the vector $x=\left(x_{1}, \ldots, x_{k}\right)$ is

$$
\pi(x)=\frac{1}{|2 \pi \Sigma|^{1 / 2}} \exp \left(-\frac{1}{2}(x-\mu)^{T} \Sigma^{-1}(x-\mu)\right) .
$$

where $|2 \pi \Sigma|$ is the determinant of the matrix $2 \pi \Sigma$.

- All marginal distributions and all conditional distributions are also multivariate normal.

Gaussian processes

- A Gaussian process is a continuous-time stochastic process $\left\{X_{t}\right\}_{t \geq 0}$ with the property that for all $n \geq 1$ and $0 \leq t_{1}<t_{2}<\cdots<t_{n}$, X_{1}, \ldots, X_{n} has a multivariate normal distribution.
- Thus, a Gaussian process is completely determined by its mean function $\mathrm{E}\left(X_{t}\right)$ and its covariance function $\operatorname{Cov}\left(X_{s}, X_{t}\right)$.
- Gaussian processes are extremely versatile as models. One may generalize for example so that the index set the t 's belong to is \mathbb{R}^{n}.

Brownian motion and Gaussian processes

- Brownian motion is a Gaussian process, as we can show that any $a_{1} B_{t_{1}}+\cdots+a_{k} B_{t_{k}}$ is normally distributed.
- A Gaussian process $\left\{X_{t}\right\}_{t \geq 0}$ is Brownian motion if it fulfills

1. $X_{0}=0$.
2. $\mathrm{E}\left(X_{t}\right)=0$ for all t.
3. $\operatorname{Cov}\left(X_{s}, X_{t}\right)=\min \{s, t\}$ for all s, t.
4. The function $t \mapsto X_{t}$ is a continuous with probability 1 .

- It is mostly easy to show that the following tranformations of a Brownian motion $\left\{B_{t}\right\}_{t \geq 0}$ are Brownian motions (show that they are Gaussian processes fulfilling the criteria above):
- $\left\{-B_{t}\right\}_{t \geq 0}$.
- $\left(B_{t+s}-B_{s}\right)_{t \geq 0}$ for any $s \geq 0$.
- $\left\{\frac{1}{\sqrt{2}} B_{a t}\right\}_{t \geq 0}$ for any $a>0$.
- The process $\left\{X_{t}\right\}_{t \geq 0}$ where $X_{0}=0$ and $X_{t}=t B_{1 / t}$ for $t>0$.
- The process $X_{t}=x+B_{t}$ where B_{t} is Brownian motion and x is some real number is called "Brownian motion started at x ".

First Hitting Time

- The first hitting time T_{a} is defined as $T_{a}=\min \left\{t: B_{t}=a\right\}$.
- It can be shown that $B_{t+T_{a}}-a$ is Brownian motion (i.e., that T_{a} is a "stopping time").
- It follows that (for a>0)

$$
\operatorname{Pr}\left(B_{t}>a \mid T_{a}<t\right)=\operatorname{Pr}\left(B_{t-T_{a}}>0\right)=\frac{1}{2} .
$$

- We get that (for $a>0$)

$$
\operatorname{Pr}\left(T_{a}<t\right)=2 \operatorname{Pr}\left(B_{t}>a\right)
$$

- We get that the density on $t \in(0, \infty)$ is given (for $a \neq 0$) by

$$
\pi(t)=\frac{|a|}{\sqrt{2 \pi t^{3}}} \exp \left(-\frac{a^{2}}{2 t}\right) .
$$

- This means that $t \sim$ Inverse-Gamma $\left(\frac{1}{2}, \frac{a^{2}}{2}\right)$, i.e., $\frac{1}{t} \sim \operatorname{Gamma}\left(\frac{1}{2}, \frac{a^{2}}{2}\right)$.

Maximum of Brownian motion

- Define $M_{t}=\max _{0 \leq s \leq t} B_{s}$.
- We may compute (using previous overhead) for $a>0$

$$
\operatorname{Pr}\left(M_{t}>a\right)=\operatorname{Pr}\left(T_{a}<t\right)=2 \operatorname{Pr}\left(B_{t}>a\right)=\operatorname{Pr}\left(\left|B_{t}\right|>a\right)
$$

- Thus M_{t} has the same distribution as $\left|B_{t}\right|$, the absolute value of B_{t}.
- Example: Find t such that $\operatorname{Pr}\left(M_{t} \leq 4\right)=0.9$.

Zeros of Brownian motion

- Theorem: The probability that Brownian motion has at least one zero in (r, t), with $0 \leq r<t$, is

$$
z_{r, t}=\frac{2}{\pi} \arccos \left(\sqrt{\frac{r}{t}}\right) .
$$

- Proof uses the distribution of M_{t}.
- The probability can be written 1 - pbeta(r/t, 0.5, 0.5).
- Let L_{t} be the last zero in $(0, t)$. Then

$$
P\left(L_{t} \leq x\right)=1-z_{x, t}=\frac{2}{\pi} \arcsin \left(\sqrt{\frac{x}{t}}\right) .
$$

which can be computed as pbeta ($\mathrm{x} / \mathrm{t}, 0.5,0.5$).

- In other words, the last zero is distributed so that $x / t \sim \operatorname{Beta}\left(\frac{1}{2}, \frac{1}{2}\right)$.

