MVE550 2019 Lecture 14

Petter Mostad

Chalmers University
December 20, 2019

Overview

- Stuff we did not cover last time:
- Finish: First Hitting Time
- Maximum of Brownian motion
- Zeros of Brownian motion
- Variations of Brownian motion.
- Martingales.
- Geometric Brownian motion. Stock options.
- A short review of the course (with a view to the exam)
- A very short discussion about / evaluation of the course.

First Hitting Time

- The first hitting time T_{a} is defined as $T_{a}=\min \left\{t: B_{t}=a\right\}$.
- It can be shown that $B_{t+T_{a}}-a$ is Brownian motion (i.e., that T_{a} is a "stopping time").
- It follows that (for a>0)

$$
\operatorname{Pr}\left(B_{t}>a \mid T_{a}<t\right)=\operatorname{Pr}\left(B_{t-T_{a}}>0\right)=\frac{1}{2} .
$$

- We get that (for $a>0$)

$$
\operatorname{Pr}\left(T_{a}<t\right)=2 \operatorname{Pr}\left(B_{t}>a\right)
$$

- We get that the density on $t \in(0, \infty)$ is given (for $a \neq 0$) by

$$
\pi(t)=\frac{|a|}{\sqrt{2 \pi t^{3}}} \exp \left(-\frac{a^{2}}{2 t}\right) .
$$

- This means that $t \sim$ Inverse-Gamma $\left(\frac{1}{2}, \frac{a^{2}}{2}\right)$, i.e., $\frac{1}{t} \sim \operatorname{Gamma}\left(\frac{1}{2}, \frac{a^{2}}{2}\right)$.

Maximum of Brownian motion

- Define $M_{t}=\max _{0 \leq s \leq t} B_{s}$.
- We may compute (using previous overhead) for $a>0$

$$
\operatorname{Pr}\left(M_{t}>a\right)=\operatorname{Pr}\left(T_{a}<t\right)=2 \operatorname{Pr}\left(B_{t}>a\right)=\operatorname{Pr}\left(\left|B_{t}\right|>a\right)
$$

- Thus M_{t} has the same distribution as $\left|B_{t}\right|$, the absolute value of B_{t}.
- Example: Find t such that $\operatorname{Pr}\left(M_{t} \leq 4\right)=0.9$.

Zeros of Brownian motion

- Theorem: The probability that Brownian motion has at least one zero in (r, t), with $0 \leq r<t$, is

$$
z_{r, t}=\frac{2}{\pi} \arccos \left(\sqrt{\frac{r}{t}}\right) .
$$

- Proof uses the distribution of M_{t}.
- The probability can be written $1-\operatorname{pbeta}(r / t, 0.5,0.5)$.
- Let L_{t} be the last zero in $(0, t)$. Then

$$
P\left(L_{t} \leq x\right)=1-z_{x, t}=\frac{2}{\pi} \arcsin \left(\sqrt{\frac{x}{t}}\right) .
$$

which can be computed as pbeta ($\mathrm{x} / \mathrm{t}, 0.5,0.5$).

- In other words, the last zero is distributed so that $x / t \sim \operatorname{Beta}\left(\frac{1}{2}, \frac{1}{2}\right)$.

Brownian motion with a drift, Brownian bridge

- For real μ and $\sigma>0$ define the Gaussian process X_{t} as

$$
X_{t}=\mu t+\sigma B_{t}
$$

This is Brownian motion with a drift, and is often a more useful model than standard Brownian motion.

- Define a Gaussian process X_{t} by conditioning Brownian motion B_{t} on $B_{1}=0$. Then X_{t} is a Brownian bridge.
- Results for multivariate normal distributions can be used to derive properties, such as $\operatorname{Cov}\left(X_{s}, X_{t}\right)=\min (s, t)-s t$.
- In fact, a Brownian bridge can be expressed as $B_{t}-t B_{1}$, which makes it easy to simulate.

Geometric Brownian motion

- The stochastic process

$$
G_{t}=G_{0} e^{\mu t+\sigma B_{t}}
$$

where $G_{0}>0$ is called geometric Brownian motion with drift parameter μ and variance σ^{2}.

- $\log \left(G_{t}\right)$ is a Gaussian process with expectation $\log \left(G_{0}\right)+\mu t$ and variance $t \sigma^{2}$.
- One can show that $E\left(G_{t}\right)=G_{0} e^{t\left(\mu+\sigma^{2} / 2\right)}$ and $\operatorname{Var}\left(G_{t}\right)=G_{0}^{2} e^{2 t\left(\mu+\sigma^{2} / 2\right)}\left(e^{t \sigma^{2}}-1\right)$.
- Natural model for things that develop by multiplication of random independent factors, rather than addition of random independent increments. Example: Stock prices.
- Option: The right (but not obligation) to buy specific stock at a fixed future time at a fixed price.
- To compute the value of an option: Using a geometric Brownian motion model, calculate the expected value of the stock at the future date conditional on the value being above the agreed price.

Martingales

- A stochastic process $\left(Y_{t}\right)_{t \geq 0}$ is a martingale if for $t \geq 0$
- $\mathrm{E}\left(Y_{t} \mid Y_{r}, 0 \leq r \leq s\right)=Y_{s}$ for $0 \leq s \leq t$.
- $\mathrm{E}\left(\left|Y_{t}\right|\right) \leq \infty$.
- $\left(Y_{t}\right)_{t \geq 0}$ is a martingale with respec to $\left(X_{t}\right)_{t \geq 0}$ if for all $t \geq 0$
- $\mathrm{E}\left(Y_{t} \mid X_{r}, 0 \leq r \leq s\right)=Y_{s}$ for $0 \leq s \leq t$.
- $\mathrm{E}\left(\left|Y_{t}\right|\right) \leq \infty$.
- Brownian motion is a martingale.
- Example: If $G_{t}=G_{0} e^{\mu t+\sigma B_{t}}$ is geometric Brownian motion, then

$$
e^{-\left(\mu+\sigma^{2} / 2\right) t} G_{t}
$$

is a martingale with respect to standard Brownian motion.

The Black-Scholes formula for option pricing

- An important application of Geometric Brownian motion models.
- Based on assuming that the rate r of depreciation of money ("risk free investment") r is equal to $\mu+\sigma^{2} / 2$, so that $e^{-r t} G_{t}$ is a martingale for a stock.
- Use the previously mentioned way of computing the value of a stock option, adjusted to a present value using $e^{-r t}$.

