MVE550 2019 Lecture 14

Petter Mostad

Chalmers University

December 20, 2019

Stuff we did not cover last time:

- Finish: First Hitting Time
- Maximum of Brownian motion
- Zeros of Brownian motion
- Variations of Brownian motion.
- Martingales.
- Geometric Brownian motion. Stock options.
- A short review of the course (with a view to the exam)
- A very short discussion about / evaluation of the course.

First Hitting Time

- The first hitting time T_a is defined as $T_a = \min\{t : B_t = a\}$.
- ▶ It can be shown that $B_{t+T_a} a$ is Brownian motion (i.e., that T_a is a "stopping time").
- It follows that (for a > 0)

$$\Pr\left(B_t > a \mid T_a < t\right) = \Pr\left(B_{t-T_a} > 0\right) = \frac{1}{2}.$$

▶ We get that (for *a* > 0)

$$\Pr\left(T_{a} < t\right) = 2\Pr\left(B_{t} > a\right)$$

▶ We get that the density on $t \in (0,\infty)$ is given (for $a \neq 0$) by

$$\pi(t) = \frac{|\mathbf{a}|}{\sqrt{2\pi t^3}} \exp\left(-\frac{\mathbf{a}^2}{2t}\right).$$

► This means that $t \sim \text{Inverse-Gamma}\left(\frac{1}{2}, \frac{a^2}{2}\right)$, i.e., $\frac{1}{t} \sim \text{Gamma}\left(\frac{1}{2}, \frac{a^2}{2}\right)$.

- Define $M_t = \max_{0 \le s \le t} B_s$.
- We may compute (using previous overhead) for a > 0

$$\Pr(M_t > a) = \Pr(T_a < t) = 2\Pr(B_t > a) = \Pr(|B_t| > a)$$

► Thus M_t has the same distribution as |B_t|, the absolute value of B_t.
 ► Example: Find t such that Pr (M_t ≤ 4) = 0.9.

Zeros of Brownian motion

► Theorem: The probability that Brownian motion has at least one zero in (r, t), with 0 ≤ r < t, is</p>

$$z_{r,t} = rac{2}{\pi} \arccos\left(\sqrt{rac{r}{t}}
ight).$$

- Proof uses the distribution of M_t.
- The probability can be written 1 pbeta(r/t, 0.5, 0.5).
- Let L_t be the last zero in (0, t). Then

$$P(L_t \leq x) = 1 - z_{x,t} = \frac{2}{\pi} \arcsin\left(\sqrt{\frac{x}{t}}\right).$$

which can be computed as pbeta(x/t, 0.5, 0.5).

▶ In other words, the last zero is distributed so that $x/t \sim \text{Beta}(\frac{1}{2}, \frac{1}{2})$.

▶ For real μ and σ > 0 define the Gaussian process X_t as

$$X_t = \mu t + \sigma B_t$$

This is *Brownian motion with a drift*, and is often a more useful model than standard Brownian motion.

- Define a Gaussian process X_t by conditioning Brownian motion B_t on B₁ = 0. Then X_t is a Brownian bridge.
- ▶ Results for multivariate normal distributions can be used to derive properties, such as Cov(X_s, X_t) = min(s, t) - st.
- ► In fact, a Brownian bridge can be expressed as B_t tB₁, which makes it easy to simulate.

Geometric Brownian motion

The stochastic process

$$G_t = G_0 e^{\mu t + \sigma B_t}$$

where $G_0 > 0$ is called *geometric Brownian motion* with drift parameter μ and variance σ^2 .

- log(G_t) is a Gaussian process with expectation log(G₀) + µt and variance tσ².
- One can show that $E(G_t) = G_0 e^{t(\mu + \sigma^2/2)}$ and $Var(G_t) = G_0^2 e^{2t(\mu + \sigma^2/2)} (e^{t\sigma^2} 1)$.
- Natural model for things that develop by multiplication of random independent factors, rather than addition of random independent increments. Example: Stock prices.
- Option: The right (but not obligation) to buy specific stock at a fixed future time at a fixed price.
- To compute the value of an option: Using a geometric Brownian motion model, calculate the expected value of the stock at the future date conditional on the value being above the agreed price.

• A stochastic process $(Y_t)_{t\geq 0}$ is a *martingale* if for $t\geq 0$

- $E(Y_t \mid Y_r, 0 \le r \le s) = Y_s$ for $0 \le s \le t$.
- $\mathsf{E}(|Y_t|) \leq \infty$.
- $(Y_t)_{t\geq 0}$ is a martingale with respec to $(X_t)_{t\geq 0}$ if for all $t\geq 0$
 - $E(Y_t \mid X_r, 0 \le r \le s) = Y_s$ for $0 \le s \le t$.
 - $\mathsf{E}(|Y_t|) \leq \infty$.
- Brownian motion is a martingale.
- Example: If $G_t = G_0 e^{\mu t + \sigma B_t}$ is geometric Brownian motion, then

$$e^{-(\mu+\sigma^2/2)t}G_t$$

is a martingale with respect to standard Brownian motion.

- > An important application of Geometric Brownian motion models.
- Based on assuming that the rate r of depreciation of money ("risk free investment") r is equal to μ + σ²/2, so that e^{-rt}G_t is a martingale for a stock.
- Use the previously mentioned way of computing the value of a stock option, adjusted to a present value using e^{-rt} .