

# Course-PM 2019 ACE085 Water systems and modelling (7.5 hp)

# Course purpose

The aim of the course is to provide students with an understanding of problem solving and modelling in the field of water systems.

# Learning objectives:

- Understand the hydraulic, hydrodynamic and pollutant transport processes in natural and constructed water systems
- Distinguish between different models, considering both simple and advanced models
- Be able to select and use an appropriate model for a given analysis to assess the quantity and quality of water, including model calibration, validation and uncertainty
- Evaluate appropriate input values for the model parameters of the models considered, and to appreciate the sensitivity of the simulation results to the selected parameter values
- Write a scientific paper
- Carry out a literature review
- Assess and give constructive feedback on other projects group's work:
  - o a. Critically evaluate used methods with consideration to scientific trustworthiness
  - o b. Interpret and assess the quality of the results
  - c. Evaluate whether research has been carried out in a trustworthy and defensible manner

# Contact details

Course is offered by the department of Architecture and Civil Engineering

Examiner:

• Mia Bondelind, mia.bondelind@chalmers.se, 031 – 772 21 51

#### Teachers:

- Oskar Modin, <u>oskar.modin@chalmers.se</u>
- Kathleen Murphy, <u>murphyk@chalmers.se</u>
- Ekaterina Sokolova, <u>ekaterina.sokolova@chalmers.se</u>

Please use email to contact the teachers.

# Course design

The course consists of several lectures and exercises, one individual assignment and one group project.

#### Lectures and exercises

Lectures and exercises cover central topics in the course. Exercises illustrate how various models can be used to model water systems. Lectures and exercises will give support to both the group work and the individual assignment. The exercises are solved in groups of two students. The exercises are graded pass or fail. Support to solve the exercise is given during the scheduled sessions.

| Exercise |                                              | Program   | Deadline |  |
|----------|----------------------------------------------|-----------|----------|--|
| Ex1      | Numerical modelling                          | Matlab    |          |  |
|          | Report handed in. Instructions in a separate |           | 13/9     |  |
|          | document.                                    |           |          |  |
|          |                                              |           |          |  |
| Ex2a&b   | Ex2a: MIKE model                             | MIKE 3 FM |          |  |
|          | Ex2b: MIKE model                             | MIKE 3 FM |          |  |
|          | Report handed in. Instructions in a separate |           | 20/9     |  |
|          | document.                                    |           |          |  |
|          |                                              |           |          |  |
| Ex3      | Wastewater process modelling                 | Matlab/   |          |  |
|          |                                              | Excel     |          |  |
|          | Report handed in. Instructions in a separate |           | 4/10     |  |
|          | document.                                    |           |          |  |
|          |                                              |           | 1        |  |
| Ex4      | Statistics - exploratory data analysis       | Matlab    |          |  |
|          | Report handed in. Instructions in a separate |           | 11/10    |  |
|          | document.                                    |           |          |  |
|          |                                              |           |          |  |
| Ex5      | DHI                                          | MIKE21    |          |  |
|          | Mandatory attendance                         |           | 18/10    |  |

#### Individual assignment

The assignment will be sent to 'Urkund' (Plagiarism control). The assignment is graded (Fail, 3, 4, 5). Write 2500 words (not included references) and use at least 10 different references.

Formulate a hypothesis to examine and write a reflective assignment according to the instructions below:

- Identify one problem that can be solved/addressed with digitalisation and formulate your hypothesis
- Describe briefly the background to the identified/selected problem
- Describe how digitalisation can help address/solve the selected problem
- Reflect on the advantages and limitations of the suggested approach
- Discuss the ethical issues that need to be considered

| Mandatory Tasks              | Deadlines                             |
|------------------------------|---------------------------------------|
| Submit individual assignment | At 18.00, 10 <sup>th</sup> of October |

#### Group project

The group project is carried out in teacher assigned groups of 3-4 students. See separate document for further information on the group project.

You are expected to:

- Organise, plan and manage the project work load according to the tasks and the members of the group
- Collaborate professionally according to the project group's needs of structured management and task distribution

The group project will be sent to Urkund. The group project is graded (Fail, 3, 4, 5).

| Mandatory Tasks                        | Deadlines                               |  |  |
|----------------------------------------|-----------------------------------------|--|--|
| Submit paper (Send paper to reviewers) | At 18.00, 16 <sup>th</sup> of October   |  |  |
| Send reviewed paper back to authors    | At 10.00, 22 <sup>nd</sup> of October   |  |  |
| Presentation of results                | At 10 – 12, 22 <sup>nd</sup> of October |  |  |
| Hand in final paper                    | At 18.00 25 <sup>th</sup> of October    |  |  |

#### **Computer Software**

We will use Matlab, Excel, MIKE21 and MIKE 3 FM in the course.

# Course literature

The course literature consists of documents and scientific articles. It can be found on Canvas.

## Examination

Written individual assignment (graded). Computer exercises (Pass/Fail). Project work is reported in a written scientific paper (graded). Perform a clear oral presentation of the project result that is well-suited to its intended audience. Assess and give constructive feedback to other projects group's work and scientific paper.

| W1   | Time  |      |                                                         | Teacher |
|------|-------|------|---------------------------------------------------------|---------|
| 3/9  | 8-10  | Le   | Introduction and start of group work                    | MB/ES   |
| 3/9  | 10-12 | Le   | Transport in fluids, partial differential equations and | MB      |
|      |       |      | numerical solutions                                     |         |
| 4/9  | 8-10  | Le   | Academic writing, research ethics and group work        | MB      |
| 6/9  | 8-10  | Le   | Transport in fluids, partial differential equations and | MB      |
|      |       |      | numerical solutions                                     |         |
|      | 10-12 | Ex1  | Numerical modelling                                     | MB      |
|      |       |      |                                                         |         |
| W2   |       |      |                                                         |         |
| 10/9 | 8-10  | Le   | Hydrodynamic modelling                                  | ES      |
|      | 10-12 | Ex2a | Hydrodynamic modelling, MIKE                            | ES      |
| 11/9 | 8-10  | GW   | GW consultation – help with model set-up in MIKE        | ES/MB   |
| 13/9 | 8-10  | Le   | Water quality modelling                                 | ES      |

## Course schedule

|       | 10-12 | Ex2b | Water quality modelling, MIKE                              | ES    |
|-------|-------|------|------------------------------------------------------------|-------|
|       |       | •    |                                                            |       |
| W3    |       |      |                                                            |       |
| 17/9  | 8-10  | Le   | Wastewater process modelling                               | OM    |
| 17/9  | 10-11 | GW   | Discussion on individual assignments                       | MB    |
|       | 11-12 |      | Independent GW without supervision                         |       |
| 18/9  | 8-10  | Ex3  | Wastewater process modelling                               | OM    |
| 20/9  | 8-10  | Ex3  | Wastewater process modelling                               | OM    |
|       | •     | -    |                                                            |       |
| W4    |       |      |                                                            |       |
| 24/9  | 8-10  | Le   | Dag Wendelin, AI and Big Data                              | DW    |
| 24/9  | 10-12 | GW   | GW consultation help with MIKE-modelling                   | ES/MB |
| 25/9  | 8-10  | Le   | Göteborg kretslopp o vatten                                |       |
| 27/9  | 8-10  | Ex3  | Wastewater process modelling                               | OM    |
|       |       |      |                                                            |       |
| W5    |       |      |                                                            |       |
| 1/10  | 8-10  | Le   | Statistics - exploratory data analysis                     | КМ    |
| 1/10  | 10-12 | GW   | GW consultation help with MIKE-modelling                   | ES/MB |
| 2/10  | 8-10  | Le   | Statistics - exploratory data analysis                     | КМ    |
| 4/10  | 8-12  | Ex4  | Statistics - exploratory data analysis                     | КМ    |
|       |       |      |                                                            |       |
| W6    |       |      |                                                            |       |
| 8/10  | 8-10  | Le   | Giving feedback and reviewing a paper                      | MB    |
| 8/10  | 10-12 | GW   | GW consultation – writing paper discussions                | MB    |
|       | -     | _    | -                                                          |       |
| W7    |       |      |                                                            |       |
| 15/10 | 8-10  | Le   | DHI lecture                                                |       |
|       | 10-12 | GW   | GW consultation, final questions, help with MIKE-modelling | MB/ES |
| 16/10 | 8-10  | Le   | DHI lecture                                                |       |
| 18/10 | 8-12  | Ex 5 | DHI exercise – mandatory attendance!                       |       |
|       |       |      |                                                            |       |
| W8    |       |      |                                                            |       |
| 22/10 | 10-12 | Le   | Presentations – mandatory attendance!                      | MB/ES |
| 25/10 | 18.00 |      | Hand in of group project                                   |       |