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Theory	Questions	
 

The first part of the written exam consists of two theory questions. One of these theory questions 
will be selected from the following list. To help you get started solving the theory questions, we have 
provided solutions to T1 and T2. Note that the first part of the written exam is a closed book exam, 
and no aids are thus permitted in this part. 

T1	–	Definitions	of	relative	velocities	and	angles	
Derive a relation between the velocity components, the absolute inflow angle 𝛼 and the relative 
inflow angle 𝛽.  

Solution:  

The relative velocity vector is defined as the vector subtraction of the blade velocity vector from the 
absolute velocity vector 

𝒘 = 𝒄 − 𝑼 

This relation may also be written in terms of its vector components as follows 

𝑤) = 	 𝑐) 

𝑤, = 	 𝑐,  

𝑤- = 𝑐- − 𝑈 (1) 

Note that the blade only moves in the circumferential direction and 𝑼 therefore only has a tangential 
velocity component. It is also important to note that we make no assumptions on the sign of the 
different vector components in the above expression. In other words, we may have that 𝑐- < 0 for 
example. Let us now define the meridional velocity as the velocity in the meridional plane (also 
known as the axial-radial plane). From Figure 1 (a) it can be seen that the meridional velocity 
(denoted 𝑐4.) may be calculated as follows 

𝑐4 = 5𝑐)6 + 𝑐,6 

The absolute flow angle is defined as the angle between the absolute velocity vector and the 
meridional velocity (see Figure 1 (c)) 

tan 𝛼 =
𝑐-
𝑐4

(2) 

The relative flow angle is further defined as the angle between the relative velocity vector and the 
meridional velocity (see Figure 1 (c)): 

tan 𝛽 =
𝑤-
𝑐4

(3) 

By combining (1), (2) and (3) one finally obtains the sought relation 



TME210 – Turbomachinery - Fall 2019 
 

tan 𝛽 = 	 tan𝛼 −	
𝑈
𝑐4

 

The above expressions are defined for a cylindrical coordinate system. It is important to note that the 
book often uses a different sign convention that ensures that properties such as circumferential 
velocity and flow angles remain positive, see p. 4 in Dixon and Hall.  

 

Figure 1: Coordinate system for a general turbomachine. 

T2	–	Rothalpy	
Show that the rothalpy (𝐼) is constant throughout a turbomachine.  

Solution: 

According to the course literature it is permissible to assume that gravitational effects can be 
neglected for most turbomachines. The literature also states that the flow through most 
turbomachines can be considered adiabatic. Under these assumptions, the first law of 
thermodynamics may be written as follows 

−𝑊̇) = 	 𝑚̇	(	ℎB6 − ℎBC	) (4) 

Here, subscripts 1 and 2 respectively denote the inlet and outlet of the control volume. Let us take 
this control volume to be an axi-symmetric streamtube that passes over a turbomachinery blade. A 
streamtube is aligned with the meridional velocity of the flow, and the fluid can thus only enter to 
the left and leave to the right. The left boundary thus becomes the inlet and the right boundary the 
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outlet (and we denote these boundaries with subscripts 1 and 2 respectively). An illustration of a 
stream surface (upper or lower boundary of our streamtube) is shown in Figure 2. The rate at which a 
turbomachinery blade adds work to the fluid inside the control volume is further 

−𝑊̇) = 𝜏FΩ	 = 𝑚̇(𝑟6𝑐-6 − 𝑟C𝑐-C)Ω = 	 𝑚̇(𝑈6𝑐-6 − 𝑈C𝑐-C) (5) 

The first equality in the above expression follows from the fact that the torque is defined as the force 
on the blade times the radius of the blade. Thus, the work done by the blade (𝐹𝑜𝑟𝑐𝑒 ∗ 𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦) 
becomes 𝜏FΩ since the velocity of the blade equals the radius of the blade times the rotational speed 
of the blade. The second equality in the above expression follows form the conservation of angular 
momentum (𝑇𝑜𝑟𝑞𝑢𝑒 = 𝑅𝑎𝑡𝑒	𝑜𝑓	𝐶ℎ𝑎𝑛𝑔𝑒	𝑖𝑛	𝐴𝑛𝑔𝑢𝑙𝑎𝑟	𝑀𝑜𝑚𝑒𝑛𝑡𝑢𝑚). Finally, the third equality in the 
above expression is obtained by multiplying the rotational speed with the radius to obtain the speed 
of the blade. We may now equate (4) and (5) to obtain 

ℎB6 − ℎBC = 	𝑈6𝑐-6 − 𝑈C𝑐-C (6) 

This expression may also be written as 

ΔℎB = Δ(𝑈𝑐-) 

Let us now introduce the rothalpy as  

𝐼 = ℎB − 𝑈𝑐- 

By rearranging (6) one obtains  

ℎBC −	𝑈C𝑐-C = 	ℎB6 − 	𝑈6𝑐-6 

Or in other words,  

𝐼C = 𝐼6 

This proves the desired result. 

 

 

Figure 2: Flow along axi-symmetric stream surface inside a generalized turbomachine. 

T3	
Set 𝑐- = 𝑤- + 𝑈 and re-write the rothalpy in terms of the relative stagnation enthalpy and the blade 
speed, that is derive equation (1.21b) from (1.20b). How does Δ𝐼 = 𝐼6 − 𝐼C, with 𝐼 as defined by 
(1.21b) simplify over a rotor if the flow occurs on a cylindrical stream surface? 
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T4	
Derive equation (1.39):  

𝑚̇`𝐶a𝑇B
𝐴b𝑝B

= 	
𝛾

`𝛾 − 1
𝑀	 e1 +	

𝛾 − 1
2

𝑀6f
g hiC
6(hgC)

 

T5	–	Non-dimensional	relationships	–hydraulic	case	
Assume that the following functional relationships can be used to express the performance of a 
hydraulic turbomachine 

𝑔𝐻 = 𝑓C e𝑄,𝑁, 𝐷, 𝜌, 𝜇, 𝑒,
𝑙C
𝐷
,
𝑙6
𝐷
,…f 

𝜂 = 𝑓6 e𝑄,𝑁, 𝐷, 𝜌, 𝜇, 𝑒,
𝑙C
𝐷
,
𝑙6
𝐷
,…f 

𝑃 = 𝑓t e𝑄,𝑁, 𝐷, 𝜌, 𝜇, 𝑒,
𝑙C
𝐷
,
𝑙6
𝐷
,…f 

Based on these relations, derive the following expressions 

𝜓 =	
𝑔𝐻

(𝑁𝐷)6
≈ 𝑓w e

𝑄
𝑁𝐷tf

 

𝜂 = 	
𝜌𝑄𝑔𝐻
𝑃

≈ 𝑓x e
𝑄
𝑁𝐷tf

 

𝑃y = 	
𝑃

𝜌𝑁t𝐷x
≈ 𝑓z e

𝑄
𝑁𝐷tf

 

Clearly state the assumptions under which the above expressions are valid. See lecture 2.  

T6	–	Zweifel	number	
Derive the Zweifel number in terms of pitch (𝑠), axial chord (𝑏) and flow angles, that is derive 
equation (3.51). 

T7	–	Normal	stage	
Derive equation (4.14) for an axial flow turbine stage 

𝜓 = 2(1 − 𝑅 + 𝜙 tan𝛼C) 
 
Clearly state your assumptions. Based on this expression, how should you design a turbine stage with 
a high specific power output?  

T8	–	Turbine	styles	
Show that a turbine design with 𝑅 = 0.5 results in symmetric blading, and that a turbine design with 
𝑅 = 0 results in equal relative inlet and outlet angles for the rotor.  
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T9	–	Stage	loading	for	compressor	
Derive equation (5.17b) starting from the basic velocity triangles. Clearly state your assumptions. 

T10	–	Compressor	losses	
Which loss sources exist in compressors? Make a rough sketch of how they typically vary along the 
radius of a high speed compressor (see Lecture 5) 

T11	–	Radial	equilibrium	equation	
Derive the equation (6.6a): 

𝑑ℎB
𝑑𝑟

− 𝑇
𝑑𝑠
𝑑𝑟

= 𝑐)
𝑑𝑐)
𝑑𝑟

+	
𝑐-
𝑟
𝑑(𝑟𝑐-	)
𝑑𝑟

 

State your assumptions clearly. 

T12	–	Direct	problem	–	constant	α	design	
Derive equation (6.22): 

𝑐
𝑐4

= 	e
𝑟
𝑟4
f
g���� �

 

 By starting from 

𝑑ℎB
𝑑𝑟

− 𝑇
𝑑𝑠
𝑑𝑟

= 𝑐)
𝑑𝑐)
𝑑𝑟

+	
𝑐-
𝑟
𝑑(𝑟𝑐-	)
𝑑𝑟

 

Clearly state under which assumptions (6.22) is valid. 

T13	–	Performance	of	centrifugal	compressors	
Show that for a centrifugal compressor you can estimate the pressure ratio as: 

𝑝Bt
𝑝BC

= (1 + (𝛾 − 1)𝜂�𝜎(1 − 𝜙6 tan𝛽6� )𝑀�
6)

h
hgC 

Start from equation (1.18b).  

T14		–	Steam	turbines	
Define the isentropic degree of reaction 𝑅� applicable to an impulse/reaction turbine (not the Curtis 
turbine case). 

T15		–	Steam	turbines	
Use the concept of density ratio, blade root stress, and flow coefficient to motivate why a typical 
steam turbine configuration may use a single flow HPT, a double flow IPT and a twin double LPT as 
shown in Figure 3. 
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Figure 3: Typical configuration for a 600-800MW output: One single flow HPT, one double flow IPT and two double flow 
LPT. 

In other words, why does the plant layout in Figure 3 make sense if you take into consideration 
design constraints arising from thermodynamics, solid mechanics and fluid dynamics? 

T16		–	Wind	turbines	
Derive the Betz limit by establishing an expression for the power coefficient 𝐶a (see Lecture 11) and 
differentiate on it with respect to the velocity ratio 𝑐)t 𝑐)C⁄  (you may of course also follow the book 
which differentiate with respect to 𝑎�). You may use the Rankine-Froude theorem without deriving it. 
What is the interpretation of the limit that you establish? 


