Matematisk Statistik och Disktret Matematik, MVE055/MSG810, HT19

Föreläsning 3

Nancy Abdallah

Chalmers - Göteborgs Universitet

September 9, 2019

Continuous Random Variables

- A continuous random variable can take all the values in an interval of real numbers (or all real values).
- If X is a continuous random variable P(X = x) = 0 and $P(a \le x \le b) \ge 0$, for all $a, b \in \mathbb{R}$.
- For every continuous random variable there exists a function f(x) such that

$$P(a \le x \le b) = \int_a^b f(x) dx$$

f(x) is called a **density function** (sv. täthetsfunktion).

If X is a continuous random variable with density function f(x), then

$$P(a \le x \le b) = P(a < x \le b) = P(a \le x < b) = P(a < x < b)$$

- A function f(x) is a density function for a continuous random variable if and only if
 - (i) $f(x) \ge 0$ for all $x \in \mathbb{R}$, and

$$\int_{-\infty}^{+\infty} f(x) = 1$$

■ The cumulative distribution function F(x) is defined by

$$F(x) = P(X \le x) = \int_{-\infty}^{x} f(t)dt$$

The distribution function of a continuous random variable is continuous.

■ At every point x where f(x) is continuous,

$$F'(x) = f(x)$$

Show that the function

$$f(x) = \begin{cases} \frac{1}{b-a} & \text{if } a < x < b \\ 0 & \text{otherwise} \end{cases}$$

is a density function.

Solution:

 $f(x) \ge 0$ for all $x \in \mathbb{R}$ and

$$\int_{-\infty}^{+\infty} f(t)dt = \int_{a}^{b} \frac{1}{b-a}dt = \frac{b-a}{b-a} = 1$$

Therefore f(x) is a density function. The random variable whose density function is given above is said to have a **uniform distribution** (sv. likformig fördelning).

Let X be a continuous random variable with density function

$$f(x) = \begin{cases} 12.5x - 1.25 & if \ 0.1 \le x \le 0.5 \\ 0 & otherwise \end{cases}$$

Find the cumulative distribution function for X and compute $P(0.3 \le X \le 0.6)$.

Solution:

$$F(x) = \int_{-\infty}^{x} f(t)dt = \begin{cases} 0 & om \ x < 0.1 \\ \int_{0.1}^{x} (12.5t - 1.25)dt & om \ 0.1 \le x < 0.5 \\ 1 & om \ x > 0.5 \end{cases}$$

Therefore,

$$F(x) = \begin{cases} 0 & om \ x < 0.1 \\ 6.25x^2 - 1.25x + 0.0625 & om \ 0.1 \le x < 0.5 \\ 1 & om \ x > 0.5 \end{cases}$$

We can use F(x) to compute $P(a \le X \le b)$.

$$P(0.3 \le X \le 0.6) = F(0.6) - P(0.3) = 1 - 0.25 = 0.75.$$

Or, without using F(x),

$$P(0.3 \le X \le 0.6) = \int_{0.3}^{0.6} f(x)dx = \int_{0.3}^{0.5} (12.5x - 1.25)dx$$
$$= [12.5 \frac{x^2}{2} - 1.25x]_{0.3}^{0.5} = 0.75$$

Expected value, Variance, Standard deviation

Let X be a continuous random variable with density function f(x).

■ The expected value of X is given by

$$E[X] = \int_{-\infty}^{+\infty} x f(x) dx.$$

■ In general, if H(X) is a random variable, then the expected value of H(X) is given by

$$E[H(X)] = \int_{-\infty}^{+\infty} H(x)f(x)dx$$

■ The variance and the standard deviation are defined in the same way as for discrete random variables, i.e. $Var[x] = E[X^2] - E[X]^2$, and $\sigma = \sqrt{Var[x]}$.

Let X be a continuous random variable with density function

$$f(x) = \begin{cases} 12.5x - 1.25 & if \ 0.1 \le x \le 0.5 \\ 0 & otherwise \end{cases}$$

The expected value for X is

$$\mu = E[X] = \int_{-\infty}^{\infty} f(x)dx = \int_{0.1}^{0.5} x(12.5x - 1.25)$$
$$= \left[\frac{12.5x^3}{3} - \frac{1.25x^2}{2} \right]_{0.1}^{0.5}$$
$$= 0.3667$$

The rules for the expected value and the variance of a continuous random variable are the same as those for a discrete random variable. That is, for two random variables X and Y and a constant c,

- E[c] = c
- E[cX] = cE[X]
- $\blacksquare E[X+Y] = E[X] + E[Y]$
- Var[c] = 0
- $Var[cX] = c^2 Var[X]$
- If X and Y are independent then Var[X + Y] = Var[X] + Var[Y]

Normal distribution

A random variable with density function

$$f(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

where $\sigma > 0$ and $x, \mu \in \mathbb{R}$, i said to have a normal distribution with parameters μ and σ .

- Notation: $X \sim N(\mu, \sigma^2)$.
- \blacksquare $E[X] = \mu$ and $Var[X] = \sigma^2$.

Graph of normally distributed random variables

variability.

FIGURE 4.6.4 Three normal distributions with different standard deviations but the same mean.

Standard Normal distribution

If $X \sim N(0, 1)$, X is said to have a standard normal distribution, and its density function $f(x) = \frac{1}{\sqrt{2\pi}}e^{-\frac{x^2}{2}}$ is given in the graph below.

Remark: A standard normal distribution is usually denoted by Z instead of X and it's graph is symmetric with respect to the vertical line $z = \mu$.

Let $Z \sim N(0, 1)$. To compute P(a < Z < b) where a and b are two real numbers (that can be infinite), we use Table V s.697-698 of the cumulative distribution function F(x).

Z	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
:										
1.2	0.8849	0.8869	0.8888	0.8907	0.8925	0.8944	0.8962	0.8980	0.8997	0.9015

Examples using the table above:

$$P(Z \le 1.24) = 0.8925$$

 $P(Z > 1.2) = 1 - P(Z \le 1.2) = 1 - 0.8849 = 0.1151$
 $P(Z \le -1.2) = P(Z \ge 1.2) = P(Z > 1.2) = 0.1151$

Theorem

Suppose X is normally distributed with mean μ and standard deviation σ . The variable $\frac{X-\mu}{\sigma}$ is standard normal.

Example

Let $X \in N(17, 5)$ and suppose we want to find $P(X \le 20)$. Let $Z = (X - 17)/\sqrt{5}$. Z is standard normal.

$$P(X \le 20) = P\left(\frac{X - 17}{\sqrt{5}} \le \frac{20 - 17}{\sqrt{5}}\right) = P(Z \le 1.34)$$

= $F(1.34) = 0.9099$

For which value of x is
$$P(X > x) = 0.6$$
?
 $P\left(\frac{X-17}{\sqrt{5}} > \frac{x-17}{\sqrt{5}}\right) = P\left(z > \frac{x-17}{\sqrt{5}}\right) = 0.6$
 $\Rightarrow P\left(z < \frac{x-17}{\sqrt{5}}\right) = 1 - 0.6 = 0.4 \Rightarrow \frac{x-17}{\sqrt{5}} \approx -0.255$
Hence $x \approx -0.255\sqrt{5} + 17 = 16.43$

Normal approximation to the binomial distribution

Theorem

Let $X \in Bin(n, p)$. If $[p \le 0.5 \text{ and } np > 5]$ or [p > 0.5 and n(1-p) > 5], then X is approximately normally distributed with mean np and variance np(1-p).

Remark

Notice that a binomial distribution is discrete and a normal distribution is continuous. Therefore, for more precision

$$P(X \le x) \approx P(Y \le x + \frac{1}{2})$$

and

$$P(X < x) \approx P(Y \le x - \frac{1}{2}).$$

Transformation av kontinuerliga s.v.

Suppose that X is a continuous random variable with density function f_X and assume that the variable Y is defined such that h(Y) = X where h is strictly monotonic and differentiable function. Then

$$f_Y(y) = f_X(h(y))|h'(y)|$$

- **Example:** If X = aY + b then $f_Y(y) = f_X(ay + b)|a|$.
- Example: If $X \in N(\mu, \sigma^2)$ and $Y = \frac{X \mu}{\sigma}$ then $X = \sigma Y + \mu$ and

$$f_{Y}(y) = \frac{1}{\sqrt{2\pi\sigma^{2}}} \exp\left(-\frac{1}{2\sigma^{2}}((\sigma y + \mu) - \mu)^{2}\right) \sigma$$
$$= \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{y^{2}}{2}\right)$$