MVE560 Architectural Geometry, Lecture 1

Klas Modin
(slides by Mårten
Wadenbäck)

Mathematical Sciences

CHALMERS

10th September 2019

Outline

Cartesian Coordinates

Some Geometric Primitives

Cylindrical and Spherical Coordinates

The Cartesian Coordinate System

- The 'usual' coordinate system we use most of the time in \mathbb{R}^{n}
- Named after French philosopher René Descartes (1596-1650)
- Orthogonal/perpendicular coordinate axes the x-axis and the y-axis (and sometimes the z-axis)
- The origin is a special 'reference point' with

Image source: Wikipedia coordinates $(0,0)$ (or $(0,0,0)$ if in 3D)

- May be used for both points and vectors

The Cartesian Coordinate System - Illustration

Vectors

Vectors live in a vector space V (in our case typically $V=\mathbb{R}^{2}$ or $V=\mathbb{R}^{3}$), equipped with the operations addition and scaling:

A vector is best thought of as motion or a direction.

Vectors in Cartesian Coordinates

In Cartesian coordinates, vector addition and scaling works as follows:

$$
\left(x_{1}, y_{1}, z_{1}\right)+\left(x_{2}, y_{2}, z_{2}\right)=\left(x_{1}+x_{2}, y_{1}+y_{2}, z_{1}+z_{2}\right)
$$

and

$$
\lambda(x, y, z)=(\lambda x, \lambda y, \lambda z)
$$

The length, or norm, of a vector $\boldsymbol{v}=(x, y, z)$ is given by the Pythagorean theorem:

$$
\|\boldsymbol{v}\|=\sqrt{x^{2}+y^{2}+z^{2}}
$$

Points and Vectors

Both vectors and points are often represented using coordinates, e.g. (x, y, z), but they are conceptually very different!

Points and Vectors

Both vectors and points are often represented using coordinates, e.g. (x, y, z), but they are conceptually very different!

- A point has only a location, a vector has no location

Points and Vectors

Both vectors and points are often represented using coordinates, e.g. (x, y, z), but they are conceptually very different!

- A point has only a location, a vector has no location
- $[$ vector $]+[$ vector $]=[$ vector $]$, and $[$ vector $]-[$ vector $]=[$ vector $]$

Points and Vectors

Both vectors and points are often represented using coordinates, e.g. (x, y, z), but they are conceptually very different!

- A point has only a location, a vector has no location
- $[$ vector $]+[$ vector $]=[$ vector $]$, and $[$ vector $]-[$ vector $]=[$ vector $]$
- $[$ point $]-[$ point $]=[$ vector $]$, but $[$ point $]+[$ point $]$ is undefined!

Points and Vectors

Both vectors and points are often represented using coordinates, e.g. (x, y, z), but they are conceptually very different!

- A point has only a location, a vector has no location
- $[$ vector $]+[$ vector $]=[$ vector $]$, and $[$ vector $]-[$ vector $]=[$ vector $]$
- $[$ point $]-[$ point $]=[$ vector $]$, but $[$ point $]+[$ point $]$ is undefined!
- $[$ point $]+[$ vector $]=[$ point $]$

Points and Vectors

Both vectors and points are often represented using coordinates, e.g. (x, y, z), but they are conceptually very different!

- A point has only a location, a vector has no location
- $[$ vector $]+[$ vector $]=[$ vector $]$, and $[$ vector $]-[$ vector $]=[$ vector $]$
- $[$ point $]-[$ point $]=[$ vector $]$, but $[$ point $]+[$ point $]$ is undefined!
- $[$ point $]+[$ vector $]=[$ point $]$
- ...

A line ℓ consists of all points which can be reached by starting out in a point \boldsymbol{p}_{0} and going in the direction given by a vector $\boldsymbol{v} \neq \mathbf{0}$:

$$
\ell: \boldsymbol{p}(\lambda)=\boldsymbol{p}_{0}+\lambda \boldsymbol{v}
$$

There exists exactly one line through two distinct points \boldsymbol{p}_{1} and \boldsymbol{p}_{2} :

$$
\ell: \boldsymbol{p}(\lambda)=\boldsymbol{p}_{1}+\lambda\left(\boldsymbol{p}_{2}-\boldsymbol{p}_{1}\right)
$$

Lines

A line ℓ consists of all points which can be reached by starting out in a point \boldsymbol{p}_{0} and going in the direction given by a vector $\boldsymbol{v} \neq \mathbf{0}$:

$$
\ell: \boldsymbol{p}(\lambda)=\boldsymbol{p}_{0}+\lambda \boldsymbol{v}
$$

There exists exactly one line through two distinct points p_{1} and p_{2} :

$$
\ell: \boldsymbol{p}(\lambda)=\boldsymbol{p}_{1}+\lambda\left(\boldsymbol{p}_{2}-\boldsymbol{p}_{1}\right) .
$$

The line segment between \boldsymbol{p}_{1} and \boldsymbol{p}_{2} is given by

$$
\ell: \boldsymbol{p}(\lambda)=\boldsymbol{p}_{1}+\lambda\left(\boldsymbol{p}_{2}-\boldsymbol{p}_{1}\right), \quad 0 \leq \lambda \leq 1 .
$$

Triangles (and Other Polygons)

An n-sided polygon is a planar object consisting of vertices (corners) which are connected in a particular order by edges (line segments):

Triangle

Convex polygon

Non-convex polygon

A polygon is called convex if it has no inward 'dents'.

Triangles (and Other Polygons)

An n-sided polygon is a planar object consisting of vertices (corners) which are connected in a particular order by edges (line segments):

Triangle

Convex polygon

Non-convex polygon

A polygon is called convex if it has no inward 'dents'. Triangles are always convex and planar, and are therefore the polygon most often used to construct things!

Triangle Meshes

- A triangle mesh is a surface consisting of a number of triangles which are joined along their edges.
- With sufficiently many and sufficiently small triangles, triangular meshes can approximate most shapes very well!

Representing Triangle Meshes

A triangle mesh is often represented using a vertex list

$$
V=\left[\begin{array}{llll}
x_{1} & x_{2} & \cdots & x_{6} \\
y_{1} & y_{2} & \cdots & y_{6} \\
z_{1} & z_{2} & \cdots & z_{6}
\end{array}\right]
$$

and a triangle list

$$
T=\left[\begin{array}{llll}
1 & 2 & 2 & 4 \\
2 & 4 & 5 & 6 \\
3 & 5 & 3 & 5
\end{array}\right],
$$

where the indices of the vertices are entered anticlockwise.

The Platonic Solids

- The five Platonic solids shown are the only convex solids whose faces are regular polygons
- Many fascinating properties, i.e. symmetries, relations, ...

Sutton, Platonic \& Archimedean Solids, 2002.

Cylindrical Coordinates

Cylindrical coordinates (r, φ, z) are related to Cartesian coordinates as

$$
\left\{\begin{array}{l}
x=r \cos \varphi \\
y=r \sin \varphi \\
z=z
\end{array}\right.
$$

Cylindrical Coordinates

Cylindrical coordinates (r, φ, z) are related to Cartesian coordinates as

$$
\left\{\begin{array}{l}
x=r \cos \varphi \\
y=r \sin \varphi \\
z=z
\end{array}\right.
$$

Cylindrical coordinates are very useful for describing various kinds of rotational symmetries:

Image source: Pottmann et al.

Spherical Coordinates

Spherical coordinates (r, φ, θ) are related to Cartesian coordinates as

$$
\left\{\begin{array}{l}
x=r \cos \varphi \cos \theta \\
y=r \sin \varphi \cos \theta \\
z=r \sin \theta
\end{array}\right.
$$

Image source: Pottmann et al.

Spherical Coordinates

Spherical coordinates (r, φ, θ) are related to Cartesian coordinates as

$$
\left\{\begin{array}{l}
x=r \cos \varphi \cos \theta \\
y=r \sin \varphi \cos \theta \\
z=r \sin \theta
\end{array}\right.
$$

Spherical coordinates are useful for 'placing' things in space, e.g. positioning other geometric primitives.

Image source: Pottmann et al.

