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Union, Intersection, and Difference

It is often useful to think in terms of the common mathematical
set operations:

union: A ∪ B = {x : x ∈ A or x ∈ B} A B

intersection: A ∩ B = {x : x ∈ A and x ∈ B} A B

difference: A \ B = {x : x ∈ A and x /∈ B} A B

complement: A∗ = {x : x /∈ A}
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Union, Intersection, and Difference (contd.)

Image source: Pottmann et al.
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Union, Intersection, and Difference (contd.)

Mathematically, set operations have many useful properties, e.g.
• A ∪ B = B ∪ A and A ∩ B = B ∩ A (commutativity)
• A ∩ (B ∩ C) = (A ∩ B) ∩ C and A ∪ (B ∪ C) = (A ∪ B) ∪ C

(associativity)
• A \ B = A ∩ B∗

• A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C) (distributivity)
• (A ∪ B)∗ = A∗ ∩ B∗ (De Morgan)
• …

• Look up or think through when you need them!
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Union, Intersection, and Difference (contd.)

Mathematically, set operations have many useful properties, e.g.
• A ∪ B = B ∪ A and A ∩ B = B ∩ A (commutativity)
• A ∩ (B ∩ C) = (A ∩ B) ∩ C and A ∪ (B ∪ C) = (A ∪ B) ∪ C

(associativity)
• A \ B = A ∩ B∗

• A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C) (distributivity)
• (A ∪ B)∗ = A∗ ∩ B∗ (De Morgan)
• …
• Look up or think through when you need them!
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Implementing Set Operations

Set operations for solids are straightforward, but we represent our
geometry as surfaces! To obtain the expected result for surfaces,
we must

• find the intersection curve(s) of the surfaces,
• split the surfaces along the intersection curves,
• decide which parts to save and which parts to delete, and
• join the remaining parts along the intersection curves.
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Offset Curves

An offset curve to a curve c(t) = (x(t), y(t)) is a (usually
two-branched) curve ‘parallel’ to c(t).
Mathematically, the offset curve is given by cd(t) = c(t) ± dn(t),
where n(t) is the unit normal at c(t) and d is the offset distance.

Since n(t) = (−y′(t),x′(t))√
x′(t)2+y′(t)2 ,

cd(t) = c(t) ± d · (−y′(t), x′(t))√
x′(t)2 + y′(t)2
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Offset Curves

An offset curve to a curve c(t) = (x(t), y(t)) is a (usually
two-branched) curve ‘parallel’ to c(t).
Mathematically, the offset curve is given by cd(t) = c(t) ± dn(t),
where n(t) is the unit normal at c(t) and d is the offset distance.
Since n(t) = (−y′(t),x′(t))√

x′(t)2+y′(t)2 ,

cd(t) = c(t) ± d · (−y′(t), x′(t))√
x′(t)2 + y′(t)2
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Offset Curves (Examples)

Image source: Pottmann et al.
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Offset Surfaces

The 3D counterpart to an offset curve is an offset surface.
If S(u, v) is a parametrisation of the surface and n(u, v) is the
unit normal at (u, v), the offset surface is given by

Sd(u, v) = S(u, v) ± dn(u, v).

Here, n(u, v) may be computed as n(u, v) = S′
u(u,v)×S′

v(u,v)
∥S′

u(u,v)×S′
v(u,v)∥ .
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Implementing Offset Surfaces

When computing offset surfaces to meshes, keep in mind that:
• meshes are not differentiable in most places, so we need to

find the normal in some other way
• the offset surface may intersect itself — we may have to find

intersections, delete parts, etc.
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Slice Deformations in General

Slice deformations work by slicing an object up into infinitely thin
parallel slices, and then transforming each entire slice in some way.

It is most convenient to express slice deformations with slices
parallel to e.g. the xy-plane. We need to define what our three
coordinate axes for the transformation are, and then perform the
operation in this coordinate frame.

One way is to specify a rotation matrix R (new directions of the
three coordinate axes) and a point p0 (new origin). Then the
transform-local coordinates of x will be

xlocal = R⊺(x − p0).
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Twisting

By slicing an object into (infinitely)
many thin slices parallel to a fixed base
plane, and then rotating each slice
about a fixed axis orthogonal to the
base plane, we obtain the twist
deformation.

Typically, the amount each slice is
rotated varies linearly along the axis, i.e.

α(z) = αmax · z − zmin
zmax − zmin

,

where zmax is the largest ‘z-value’ of the
object, and zmin is the smallest, but
other choices of α(z) are also possible.
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Tapering

The tapering deformation scales each
slice some prescribed amount along two
perpendicular directions in the slice
plane.

The most common variant is the linear
tapering, where the two scaling factors
are proportional to the height above the
base plane.

To specify a linear tapering, we select
the two desired maximum scale factors
(along with the new origin p0 and a
rotation matrix R).
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Shearing

The shear deformation applies a
translation in each slice plane.

For a shearing, we need to specify by a
complete coordinate frame and a
parametric curve [0, 1] 7→ R3:

c(t) = (cx(t), cy(t), 0), t ∈ [0, 1].

The shear transformation will then be

x 7→ x + c(t),

where t = z − zmin
zmax − zmin

.
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