Statistical methods in Data Science and AI

DAT405, 2019/2020, Module 3-4. Marina Axelson-Fisk

CHALMERS

UNIVERSITY OF TECHNOLOGY

Module 3.1: Bayesian statistics

CHALMERS

Probability theory and statistics

- a quick refresher

Sample space, events and random experiments

- A random experiment is a process that produces random outcomes.
- The sample space is the set of all possible outcomes in an experiment.
- An event is the outcome, or a subset of possible outcomes, of an experiment.

CHALMERS

Example: roll a die

- Sample space: $S=\{1,2, \ldots, 6\}=6$ outcomes
- Events:
- "At least 3" $=\{\mathbf{3}, 4,5,6\}$
- "Six" $=\{6\}$
- "Odd" $=\{1,3,5\}$
- Probabilities
$P($ at least 3$)=4 / 6$

$$
\begin{aligned}
& P(\text { six })=1 / 6 \\
& P(\text { odd })=3 / 6
\end{aligned}
$$

Venn diagrams of set operations

Union: $A \cup B$

S

Intersection: $A \cap B$

S

Mutually exclusive: $A \cap B=\phi$

CHALMERS

UNIVERSITY OF TECHNOLOGY

Conditional probability

- The conditional probability of an event A given the knowledge that event B occurred

$$
P(A \mid B)=\frac{P(A \cap B)}{P(B)}=\frac{P(A, B)}{P(B)}
$$

- Note also

$$
P(A, B)=P(A \mid B) P(B)=P(B \mid A) P(A)
$$

CHALMERS

UNIVERSITY OF TECHNOLOGY

Mutually exclusive and exhaustive events

Events $E_{1}, E_{2}, \ldots, E_{n}$ are

- mutually exclusive if they cannot occur simultaneously

$$
E_{i} \cap E_{j}=\phi, i \neq j
$$

- exhaustive if they cover the sample space

$$
E_{1} \cup E_{2} \cup \cdots \cup E_{n}=\bigcup_{i=1}^{n} E_{i}=S
$$

Sample space S

CHALMERS

UNIVERSITY OF TECHNOLOGY

Total law of probability

- For mutually exclusive and exhaustive events $E_{1}, E_{2}, \ldots, E_{n}$ we get for any other event B

$$
P(B)=\sum_{i=1}^{n} P\left(B \mid E_{i}\right)
$$

CHALMERS

UNIVERSITY OF TECHNOLOGY

Bayes' rule

- Bayes' rule

$$
P(A \mid B)=\frac{P(B \mid A) P(A)}{P(B)}
$$

- For mutually exclusive and exhaustive events
$E_{1}, E_{2}, \ldots, E_{n}$ we get

$$
P(A \mid B)=\frac{P(B \mid A) P(A)}{P(B)}=\frac{P(B \mid A) P(A)}{\sum_{i=1}^{n} P\left(B \mid E_{i}\right)}
$$

CHALMERS

UNIVERSITY OF TECHNOLOGY

Example

- Assume that 0.0015 individuals in our population has a certain disease D.
- When testing for the disease
- an ill person always tests positive
- a healthy person tests positive with probability 0.0002

- Given that you tested positive, what is the probability that you have the disease?

CHALMERS

UNIVERSITY OF TECHNOLOGY

Example (cont.)

Bayes' rule: $\quad \boldsymbol{P}($ ill $\mid+)=\frac{\boldsymbol{P}(+\mid \mathrm{ill}) \boldsymbol{P}(\mathrm{ill})}{\boldsymbol{P}(+)}$

- We have
- $P($ ill $)=0.0015$ and $P($ healthy $)=1-0.0015=0.9985$
- $P(+\mid$ ill $)=1, P(+\mid$ healthy $)=0.002$
- The denominator

- $\boldsymbol{P}(+)=\boldsymbol{P}(+\mid \mathrm{ill}) \boldsymbol{P}($ ill $)+\boldsymbol{P}(+\mid$ healthy $) \boldsymbol{P}($ healthy $)$

$$
\boldsymbol{P}(\text { ill } \mid+)=\frac{\boldsymbol{P}(+\mid \mathrm{ill}) \boldsymbol{P}(\text { ill })}{\boldsymbol{P}(+)}=\frac{1 \cdot 0.0015}{1 \cdot 0.0015+0.002 \cdot 0.9985}=\mathbf{0 . 4 3}
$$

Random variables and probability distributions

- A random variable is a function of the outcomes in a random experiment.
- Assumes values according to a probability distribution.
- Discrete r.v.: finite or countable number of values,
- Continuous r.v: takes all real values in

$$
\begin{gathered}
P(X=a)=0 \\
P(a \leq X \leq b)=\int_{a}^{b} f(x) d x
\end{gathered}
$$

CHALMERS

UNIVERSITY OF TECHNOLOGY

Probability distributions

- Typically depend on one or more parameters
- Common discrete distributions
- Uniform: $\boldsymbol{U}(\boldsymbol{a}, \boldsymbol{b})$
- Binomial: Bin(n,p)
- Geometric: Geo(p)
- Hypergeometric: HGeo(N,K,n)
- Poisson: Poi(λ)
- Negative binomial: $N B(r, p)$

CHALMERS

UNIVERSITY OF TECHNOLOGY

Probability distributions

- Common continuous distributions
- Uniform: $\boldsymbol{U}[a, b]$
- Normal (Gaussian): $N\left(\mu, \sigma^{2}\right)$
- Student's t: \boldsymbol{t}_{n-1}
- Exponential: $\operatorname{Exp}(\lambda)$
- Chi-square: χ_{n-1}^{2}
- Beta: Beta (α, β)

CHALMERS

Statistical inference

Estimation and analysis of these parameters in random samples to draw conclusions of the underlying population.

Two main paradigms:

- Frequentism
- Bayesianism

Classical or frequentist probability theory:

- Probabilities are frequencies of random repeatable experiments
- Probabilities quantify variability.
- Parameters are (unknown) constants.

Bayesian probability theory:

- Probabilities correspond to reasonable expectation of an event.
- Probabilities quantify uncertainty.
- Unknown parameters are treated as random variables.

CHALMERS

UNIVERSITY OF TECHNOLOGY

DID THE SUN JUST EXPLODE?
 (TSS NGIT, SO WERE NOT SURE.)

FREQUENTIST STATISTCIAN:

BAYESIAN STATISTCAN:

Bayes' rule interpretation

We have prior information $P(A)$ of event A, and then update the posterior probability $P(A \mid B)$ as more information/data B is achieved.

CHALMERS

UNIVERSITY OF TECHNOLOGY

Example

Random number $p \in(0,1)$
Random numbers $q_{1}, q_{2}, q_{3}, \ldots$

- If $q_{i}<p$ Alice wins
- If $q_{i}>p$ Bob wins

First to 6 wins the game.

Only the scores are visible!

Example

What is the probability that Alice wins?

CHALMERS

UNIVERSITY OF TECHNOLOGY

Example

- Alice • Bob • 5 3

For known p :

- $P(\mathrm{Bob})=(1-p)^{3}$
- $P($ Alice $)=1-P($ Bob $)$
$p=0.5 \Rightarrow P($ Alice $)=7 / 8$

Example

Frequentists approach (ML):
$\widehat{\boldsymbol{p}}=5 / 8 \Rightarrow P($ Alice $) \approx 0.95$

Fair odds: 19:1

CHALMERS

UNIVERSITY OF TECHNOLOGY

Example

- Bayesian approach
- Consider \boldsymbol{p} a random variable.
- Let $D=\left\{n_{A}=5, n_{B}=3\right\}$ denote our observed data
- The expected probability that Bob wins is given by

$$
E_{B}=\int_{0}^{1}(1-p)^{3} P(p \mid D) d p
$$

- Bayes' rule
likelihood

$$
P(p \mid D)=\frac{P(D \mid p) P(p)}{P(D)}=\frac{P(D \mid p) P(p)}{\int_{0}^{1} P\left(D \mid p^{\prime}\right) P\left(p^{\prime}\right) d p^{\prime}}
$$

CHALMERS

UNIVERSITY OF TECHNOLOGY

Example

- The likelihood $P(D \mid p)$:
- Let $X=$ the number of times Alice wins out of 8
- Probability of winning $=p$

$$
\boldsymbol{X} \sim \operatorname{Bin}\left(\boldsymbol{n}_{\boldsymbol{A}}, \boldsymbol{p}\right)
$$

- The likelihood of observing our data, given p becomes

$$
P(X=5)=\binom{8}{5} p^{5}(1-p)^{3}
$$

CHALMERS

UNIVERSITY OF TECHNOLOGY

Example

- The prior $\boldsymbol{P}(\boldsymbol{p})$:
- Assume $p \sim U(0,1) \Rightarrow P(p)=$ constant

$$
\begin{aligned}
& E_{B}=\int_{0}^{1}(1-p)^{3} P(D \mid p) d p=\frac{\int_{0}^{1} p^{5}(1-p)^{6} d p}{\int_{0}^{1} p^{5}(1-p)^{3} d p}=1 / 11 \\
& E_{A}=1-1 / 11=10 / 11
\end{aligned}
$$

Beta-integral: $\int_{0}^{1} p^{m-1}(1-p)^{n-1} d p=\frac{\Gamma(m) \Gamma(n)}{\Gamma(n+m)}, \Gamma(n)=(n-1)$!

CHALMERS

UNIVERSITY OF TECHNOLOGY
Example
Alice

- Alice • Bob •

Frequentist approach

- $P($ Alice $) \approx 0.95$
- Fair odds: 19:1

Bayesian approach

- $P($ Alice $) \approx 0.91$
- Fair odds: 10:1

Simulation confirms Bayesian computation!

Bayesianism versus frequentism

What is the probability of an event?

- Frequentists: the relative frequency of the event in a large number of trials.
- Bayesians: a reasonable expectation, quantifying personal beliefs and prior knowledge, and including the degrees of certainty in these beliefs.

CHALMERS

Bayesianism versus frequentism

Frequentists:

- A distribution parameter θ is an (unknown) constant.
- $P(\theta=a)=$? becomes meaningsless.
- The density of a random variable X : $f_{\theta}(X)$

Bayesians:

- An unknown parameter θ is treated as a random variable.
- The density of a random variable X is a conditional probability: $\boldsymbol{f}(\boldsymbol{X} \mid \boldsymbol{\theta})$

CHALMERS

UNIVERSITY OF TECHNOLOGY

The likelihood function

The likelihood function introduces a third view

- The density of X as a function of $\theta: L_{x}(\theta)$
- Same thing, different names

$$
L_{\theta}(x)=f_{\theta}(x)=f(x \mid \theta)
$$

- But with Bayesian statistics we can use Bayes' theorem on θ

$$
f(\theta \mid x)=\frac{f(x, \theta)}{f(x)}=\frac{f(x \mid \theta) f(\theta)}{\int f\left(x \mid \theta^{\prime}\right) f\left(\theta^{\prime}\right) d \theta^{\prime}}
$$

Bayesianism versus frequentism

Frequentists:

- X is random, but θ is not.

Bayesians:

- θ is random, but after having seen data, x is not

Frequentism versus Bayesianism

Frequentism	Bayesianism
+ Objective	+ More natural
+ Trade of between errors	+ Logically rigourous
+ Design controls bias	+ Can explore different priors
+ Long prosperous history	+ Data can be added
- p-value depends on design	- Prior is subjective
- Ad-hoc notions of "data more	- Assigning probabilities to
extreme"	hypotheses
- Fully specified designs ahead	

The effect of different priors

Bayesian feature: different priors will give different posteriors

CHALMERS

Example

- Alice has moved to a new city
- She takes the bus to work
- Out of 5 attempts:
- 2 got her to the right place
- 3 forced her to walk another 20 min

What is the proportion of "good" buses for her to take?

CHALMERS

Example

Let $\theta=$ the fraction of "good" buses.

- Prior $\boldsymbol{f}(\boldsymbol{\theta})$: Uniform $(\mathbf{0}, \mathbf{1})$

Let $X=$ the number of good buses of n

- Likelihood $f(x \mid \theta): \operatorname{Bin}(n, \theta)$

Observed data:

- $\widehat{\theta}=2 / 5=0.4$

Parameter update, given observed data

- Posterior \propto likelihood \times prior
- $f(\theta \mid x) \propto f(x \mid \theta) f(\theta)$

CHALMERS

UNIVERSITY OF TECHNOLOGY

Example

Assume for simplicity $\boldsymbol{\theta} \in\{\mathbf{0 . 0 , 0 . 1}, \mathbf{0} .2, \ldots, \mathbf{0 . 9}, \mathbf{1 . 0}\}=$ 11 values

θ-values	prior	likelihood	prior \times likelihood	posterior
0	0.0909	0	0	0
0.1	0.0909	0.0729	0.0066	0.0437
0.2	0.0909	0.2048	0.0186	0.1229
0.3	0.0909	0.3087	0.0281	0.1852
0.4	0.0909	0.3456	0.0314	0.2074
0.5	0.0909	0.3125	0.0284	0.1875
0.6	0.0909	0.2304	0.0209	0.1383
0.7	0.0909	0.1323	0.0120	0.0794
0.8	0.0909	0.0512	0.0047	0.0307
0.9	0.0909	0.0081	0.0007	0.0049
1	0.0909	0	0	0
Totals:	1		0.1515	1

CHALMERS

Example

We can predict new values

$$
\begin{aligned}
& P(\operatorname{good} \text { bus tomorrow } \mid x)= \\
& =\sum_{\theta} P(\operatorname{good} \text { bus tomorrow } \mid \theta, x) p(\theta \mid x) \\
& =\sum_{\theta} \theta \cdot p(\theta \mid x) \\
& =0.429
\end{aligned}
$$

CHALMERS

The effect of different priors

- Prior 1: $\boldsymbol{U}(\mathbf{0}, 1)$
- $\boldsymbol{p}(\boldsymbol{\theta})=$ const
- Prior 2:
- $p(\theta) \propto \theta^{-\frac{1}{2}}(1-\theta)^{-\frac{1}{2}}$
- more weight on extreme values
- Prior 3:
- $p(\theta) \propto \theta^{\mathbf{1 0 0}}(1-\theta)^{\mathbf{1 0 0}}$
- most weight in the centre $\theta=0.5$

CHALMERS

The effect of different priors

- Prior 1: $\boldsymbol{U}(\mathbf{0}, 1)$
- $\boldsymbol{p}(\boldsymbol{\theta})=$ const
$\sim \operatorname{Beta}(1,1)$
- Prior 2:

- $p(\theta) \propto \theta^{-\frac{1}{2}}(1-\theta)^{-\frac{1}{2}}$
- more weight on extreme values
$\sim \operatorname{Beta}\left(\frac{1}{2}, \frac{1}{2}\right)$
- Prior 3:
- $p(\theta) \propto \theta^{100}(1-\theta)^{100}$
$\sim \operatorname{Beta}(101,101)$
- most weight around $\theta=0.5$

The effect of different priors

- Prior 1: $\operatorname{Beta}(\mathbf{1}, \mathbf{1})$
- Prior 2: Beta $\left(\frac{1}{2}, \frac{1}{2}\right)$
- Prior 3: $\operatorname{Beta}(101,101)$
- Posterior 1: $\operatorname{Beta}(3,4)$
- Posterior 2: $\operatorname{Beta}(2.5,2.5)$
- Posterior 3: Beta $(103,104)$

```
Beta-prior + binomial likelihood }=>\mathrm{ Beta-posterior
Beta}(\boldsymbol{\alpha},\boldsymbol{\beta})+"x\mathrm{ of }\boldsymbol{n}\mathrm{ successes" }=>\operatorname{Beta}(\boldsymbol{\alpha}+\boldsymbol{x},\boldsymbol{\beta}+\boldsymbol{n}
```


CHALMERS

Example

- Prior 1: $P($ good bus tomorrow $\mid x) \approx 0.429$
- Prior 2: $P(\operatorname{good}$ bus tomorrow $\mid x) \approx 0.417$
- Prior 3: $\mathbf{P}($ good bus tomorrow $\mid x) \approx 0.498$

CHALMERS

The effect of different priors

- The more data, the less important the prior

CHALMERS

UNIVERSITY OF TECHNOLOGY

Conjugate priors

- We have a sample of observed data: x_{1}, \ldots, x_{n}
- We have a corresponding likelihood function (or samling distribution): $\boldsymbol{f}(\boldsymbol{x} \mid \boldsymbol{\theta})$
- A prior $f(\theta)$ is called a conjugate prior if the corresponding posterior $f(\theta \mid x)$ belongs to the same family of distributions.

Bayes' theorem:

$$
f(\theta \mid x)=\frac{f(x \mid \theta) f(\theta)}{f(x)}
$$

Conjugate priors

Likelihood	Parameter	Prior	Posterior
Bernoulli			
Binomial		Beta	Beta
Geometric			
Negative binomial			
Exponential	λ		Gamma

CHALMERS

UNIVERSITY OF TECHNOLOGY

Conjugate priors

- Conjugacy is mutual, e.g.

Dirichlet \propto Multinomial \times Dirichlet
Multinomial \propto Dirichlet \times Multinomial

Bayes' theorem:

$$
f(\theta \mid x)=\frac{f(x \mid \theta) f(\theta)}{f(x)}
$$

CHALMERS

UNIVERSITY OF TECHNOLOGY

The exponential family of distributions

- The exponential family of distributions over x, given parameters η, takes the form

$$
f(\boldsymbol{x} \mid \boldsymbol{\eta})=h(\boldsymbol{x}) g(\boldsymbol{\eta}) \exp \left\{\boldsymbol{\eta}^{\mathrm{T}} u(\boldsymbol{x})\right\}
$$

- The function $u(x)$ is called a sufficient statistic for η, i.e. it contains all information needed to estimate η.
- All members of the exponential family has conjugate priors.
- Products of exponential family members also have conjugate priors.

CHALMERS

Example: the Bernoulli distribution

$$
\begin{array}{rlrl}
f(x \mid p) & =p^{x}(1-p)^{1-x} & & f(\boldsymbol{x} \mid \boldsymbol{\eta})=h(\boldsymbol{x}) g(\boldsymbol{\eta}) \exp \left\{\boldsymbol{\eta}^{\mathrm{T}} u(\boldsymbol{x})\right\} \\
& =\exp \left\{\ln \left(p^{x}(1-p)^{1-x}\right\}\right. & \\
& =\exp \{x \ln p+(1-x) \ln (1-p)\} & & \\
& =\exp \left\{x \ln \left(\frac{p}{1-p}\right)+\ln (1-p)\right\} & \text { substitute }\left[\eta=\ln \left(\frac{p}{1-p}\right)\right] \\
& =\exp \left\{x \eta-\ln \left(1+e^{\eta}\right)\right\} &
\end{array}
$$

Examples of exponential family members

- Bernoulli
- Geometric
- Gamma
- Exponential
- Poisson
- Beta
- Normal
- Beta
- Dirichlet
- Chi-squared

Also:

- Binomial, with fixed number of trials
- Multinomial, with fixed number of trials
- Negative binomial, with fixed number of failures

Uninformative priors

- When nothing is known, we may want to play equal weights to all parameter values
\Rightarrow Uniform distribution
+ Gives the same parameter estimate as Maximum Likelihood
- Not invariant under parameterization

$$
X \sim U[a, b], Y=f(X) \nRightarrow Y \sim U[f(a), f(b)]
$$

\Rightarrow Large variation in posterior

CHALMERS

Jeffrey's prior

- Uninformative prior
- Invariant under transformation
- Given by

$$
\boldsymbol{p}(\boldsymbol{\theta}) \propto \sqrt{\operatorname{det}(\mathcal{J}(\boldsymbol{\theta}))}
$$

where $\mathcal{J}(\theta)$ is the Fisher information

$$
\mathcal{J}(\theta)=-E_{\theta}\left[\frac{d^{2} \log f(X \mid \theta)}{d \theta^{2}}\right]
$$

Flat prior

CHALMERS

Fisher information

- For a random variable X with density $f(x \mid \theta)$:

The Fisher information =
$=$ "information content of X in terms of estimating θ "

CHALMERS

UNIVERSITY OF TECHNOLOGY

Example: Jeffrey's prior

Let $X \sim \operatorname{Bin}(\boldsymbol{n}, \boldsymbol{p})$. We want a prior for \boldsymbol{p}.

$$
\begin{aligned}
& f(x \mid p)=\binom{n}{x} p^{x}(1-p)^{n-x} \\
& \log f(x \mid p)=x \log p+(n-x) \log (1-p) \\
& \frac{d}{d p} \log f(x \mid p)=\frac{x}{p}-\frac{n-x}{1-p} \\
& \frac{d^{2}}{d p^{2}} \log f(x \mid p)=-\frac{x}{p^{2}}-\frac{n-x}{(1-p)^{2}} \\
& \mathcal{J}(p)=-E_{p}\left[\frac{d^{2}}{d p^{2}} \log f(x \mid p)\right]=-\frac{n p}{p^{2}}-\frac{n-n p}{(1-p)^{2}}=\frac{n}{p(1-p)}
\end{aligned}
$$

$$
E_{p}[X]=n p
$$

CHALMERS

UNIVERSITY OF TECHNOLOGY

Example: Jeffrey's prior

$$
f(p) \propto \sqrt{\mathcal{J}(p)} \propto p^{-1 / 2}(1-p)^{-1 / 2} \sim \operatorname{Beta}\left(\frac{1}{2}, \frac{1}{2}\right)
$$

Note: Jeffrey's prior is generally not conjugate.

Flat prior

CHALMERS

Reference priors

- Maximize the distance between the prior and the posterior
- Kullback-Leibler divergence
- Hellinger distance

Inference in classical statistic

Based on a sample x_{1}, \ldots, x_{n} from some density $f_{\theta}(x)$.
Parameter estimation
Estimate the parameter θ using Maximum Likelihood

$$
\widehat{\theta}=\operatorname{argmax}_{\theta} \log L_{\theta}\left(x_{1}, \ldots, x_{n}\right)
$$

Confidence intervals
A 95\% confidence interval for θ is an interval $\left(\theta^{\text {lo }}, \theta^{\text {up }}\right)$ such that

$$
P\left(\theta^{\mathrm{lo}} \leq \theta \leq \theta^{\text {up }}\right)=0.95 .
$$

Note: $\theta^{\text {lo }}$ and $\theta^{\text {up }}$ are random variables, not θ.

Inference in classical statistic

Based on a sample x_{1}, \ldots, x_{n} from some density $f_{\theta}(x)$.
Hypothesis testing
We want to test the hypothesis

$$
\begin{aligned}
& \boldsymbol{H}_{0}: \boldsymbol{\theta}=\boldsymbol{\theta}_{\mathbf{0}} \\
& \boldsymbol{H}_{1}: \boldsymbol{\theta} \neq \boldsymbol{\theta}_{\mathbf{0}}
\end{aligned}
$$

using som test statistic T (function of the sample). We reject H_{0} on 5% significance level if $\widehat{\boldsymbol{\theta}} \geq \boldsymbol{\theta}^{\text {up }}$ or $\widehat{\boldsymbol{\theta}} \leq \boldsymbol{\theta}^{\text {lo }}$ where again

$$
P\left(\theta^{\mathrm{lo}} \leq \boldsymbol{\theta} \leq \boldsymbol{\theta}^{\text {up }}\right)=\mathbf{0 . 9 5}
$$

Bayesian inference: parameter estimation

Based on a sample $D=\left\{x_{1}, \ldots, x_{n}\right\}$ from some density $f(x \mid \theta)$.
Parameter estimation
The most likely estimate of θ is the maximum of the posterior

$$
\widehat{\boldsymbol{\theta}}=\operatorname{argmax}_{\boldsymbol{\theta}} \boldsymbol{P}(\boldsymbol{\theta} \mid \boldsymbol{D})
$$

Note: if the prior $\mathbf{P}(\boldsymbol{\theta})$ is the uniform distribution, then this estimate is the same as the Maximum Likelihood estimate.

Bayesian inference: credible intervals

Based on a sample $D=\left\{x_{1}, \ldots, x_{n}\right\}$ from some density $f(x \mid \theta)$.
Credible intervals
A 95\% credible interval for $\boldsymbol{\theta}$ is an interval ($\left.\boldsymbol{\theta}^{\text {lo }}, \boldsymbol{\theta}^{\text {up }}\right)$ such that the posterior

$$
\begin{gathered}
P\left(\theta^{\mathrm{lo}} \leq \theta \leq \theta^{\mathrm{up}} \mid D\right)=0.95 \\
\int_{\theta}^{\theta^{\mathrm{up}}} p(\theta \mid D) d \theta=0.95
\end{gathered}
$$

Note: Now $\boldsymbol{\theta}$ is a random variable with prior $\mathbf{P}(\boldsymbol{\theta})$.

CHALMERS

UNIVERSITY OF TECHNOLOGY

Bayesian inference: credible intervals

However, the credible interval is not unique. We need additional conditions.
For an ($1-\alpha$)-interval

- Equal-tailed interval (ETI)

$$
P\left(\theta \leq \theta^{\mathrm{lo}} \mid D\right)=P\left(\theta \geq \theta^{\text {up }}\right)=\alpha / 2
$$

CHALMERS

UNIVERSITY OF TECHNOLOGY

Bayesian inference: credible intervals

However, the credible interval is not unique. We need additional conditions.
For an ($1-\alpha$)-interval

- Equal-tailed interval (ETI)

$$
P\left(\theta \leq \theta^{\mathrm{lo}} \mid D\right)=P\left(\theta \geq \theta^{\text {up }}\right)=\alpha / 2
$$

- Highest density interval (HDI)

$$
\begin{aligned}
& \mathcal{C}=\{\theta: p(\theta \mid D) \geq k\} \text { where } \\
& \int_{\theta: p(\theta \mid D) \geq k} p(\theta \mid D) d \theta=1-\alpha
\end{aligned}
$$

Confidence intervals vs credible intervals

- A 95\% credible interval contains the true value $\boldsymbol{\theta}$ with probability 95%.
- i.e. based on data there is a 95% probability that the interval contains $\boldsymbol{\theta}$
- Statement after data is collected
- A 95\% confidence interval contains the true value of $\boldsymbol{\theta} 95 \%$ of the time.
- i.e. 95% of the samples we draw will cover the true value of $\boldsymbol{\theta}$
- Statement before data is collected

Bayesian inference: hypothesis testing

Bayes factor

We want to test the hypothesis

$$
\begin{aligned}
& H_{0}: \theta=\theta_{0} \\
& H_{1}: \theta \neq \theta_{0}
\end{aligned}
$$

The Bayes factor is the ratio of the posteriors

$$
\frac{P\left(H_{1} \mid D\right)}{P\left(H_{0} \mid D\right)}=\frac{P\left(D \mid H_{1}\right)}{P\left(D \mid H_{0}\right)}, \frac{P\left(H_{1}\right)}{P\left(H_{0}\right)}
$$

Summary

- Bayesianism versus frequentism
- The choice of priors
- Conjugate priors
- Uninformative priors

- Jeffrey's prior
- Reference priors
- Exponential family
- Frequentist versus Bayesian inference
- Parameter estimation
- Confidence intervals - credible intervals
- Hypothesis testing - Bayes factor

