

# Statistical methods in Data Science and Al

Marina Axelson-Fisk

Xxx, 2019



# Module 3.2: Graphical models

### CHALMERS

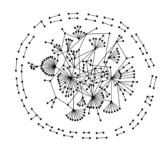
### **Graphical models**



Social networks



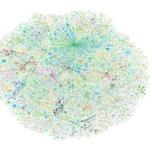
Economic networks



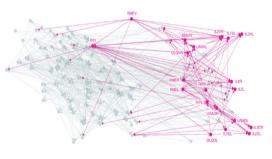
**Biomedical networks** 



Information networks



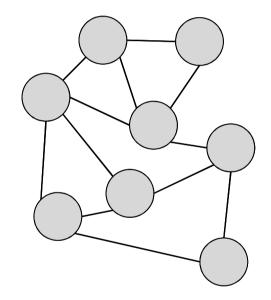
Network of neurons



Internet

# **Graphical models**

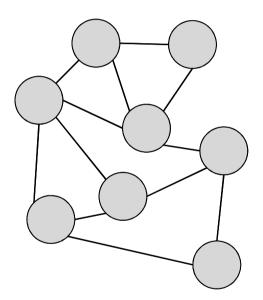
- Diagrammatic representations of various connections and dependencies
- Informative visualization of the structure
- Efficient computer algorithms acting directly on the graph model



# **Graphical models**

Three main objectives:

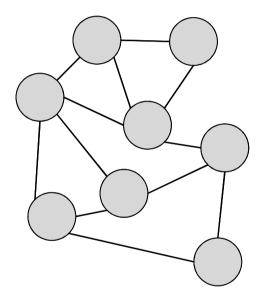
- Representation
  - model structure
- Inference
  - queries to ask using model
- Learning
  - fit model to observed data



### **Graphical models: some basics**

#### A simple graph G = (V, E) consists of

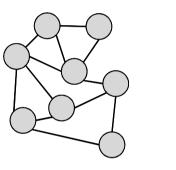
- A set V of vertices or nodes
- A set *E* of *edges* or *links*

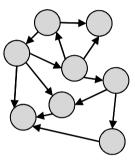


# **Graphical models: some basics**

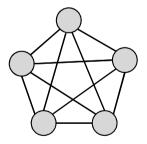
### The graph can be

- directed or
- undirected





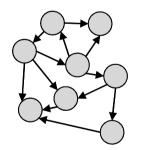
A *complete graph* has a connection between every pair of vertices



# **Graphical models: some basics**

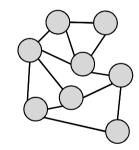
### **Directed**

- Directional links (with arrows)
- Indicating conditional dependence



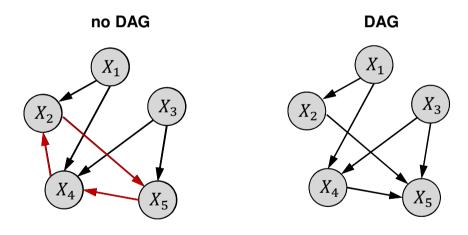
#### **Undirected**

- Links without arrows
- Indicating relationships (correlation)



# **Directed acyclic graphs (DAGs)**

- Contains no cycles/loops.
- Topological ordering of nodes



# **Directed acyclic graphs (DAGs)**

• The *parents* of a node are the nodes with links into it.

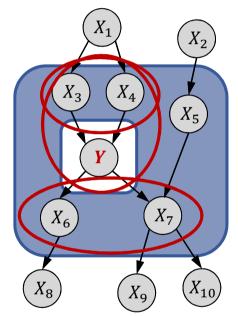
 $\operatorname{pa}(Y) = \{X_3, X_4\}$ 

• The *children* of a node are the nodes with links to them from that node.

 $ch(Y) = \{X_6, X_7\}$ 

- The *family* of a node is itself and its parents.
- The *Markov blanket* of a node is its parents, its children, and its children's parents (excluding itself).

 $Markov blanket(Y) = \{X_3, X_4, \dots, X_7\}$ 

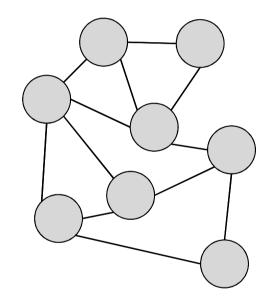


### CHALMERS

# **Probabilistic graphical models**

### A simple graph G = (V, E) consists of

- A set V of vertices or nodes
- A set *E* of *edges* or *links*
- Graph: represents the joint distribution of the random variables
- Vertices: random variables
- Edges: probabilistic relationships



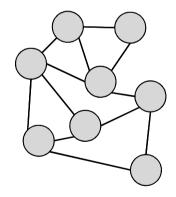
# **Examples of graphical models**

### **Directed**

- Naïve Bayes
- Bayesian networks
- Markov chains
- Neural networks

### **Undirected**

- Markov random fields
- Conditional random fields



# **Chain rule for DAGs**

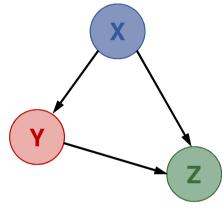
- Random variables: *X*, *Y*, *Z*
- Chain rule

P(X, Y, Z) = P(X|Y, Z)P(Y, Z)= P(X|Y, Z)P(Y|Z)P(Z)

• In general, for any  $X_1, X_2, \dots, X_n$ 

$$P(X_1, X_2, ..., X_n) = = P(X_1 | X_2, ..., X_n) P(X_2 | X_3, ..., X_n) \cdots P(X_{n-1} | X_n) P(X_n)$$

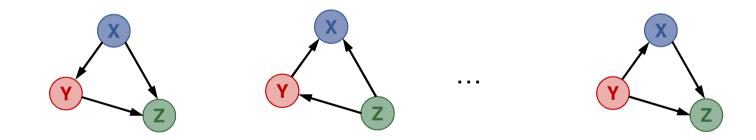




### **Chain rule for DAGs**

• Note: The factorization is not unique:  $P(X, Y, Z) = P(X|Y, Z)P(Y|Z)P(Z) = P(Z|X, Y)P(Y|X)P(X) = \cdots$ 

In total n! = 6 different graph representations.



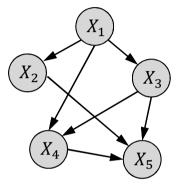
Can you figure out their structures and factorizations?

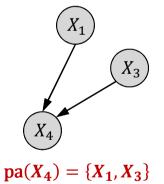
9/23/2019

# **Chain rule for DAGs**

- Can deduce probabilistic model from graph  $P(X_1, X_2, \dots, X_5)$   $= P(X_1)P(X_3)P(X_2|X_1)P(X_4|X_1, X_3)P(X_5|X_2, X_3, X_4)$
- A link going from  $X_1 \rightarrow X_2$  means that  $X_1$  is a *parent node* of  $X_2$ .
- The probability of each node X<sub>i</sub> is conditioned only on its parents pa(X<sub>i</sub>)

$$P(X_1, \dots, X_n) = \prod_{i=1}^n P(X_i | \operatorname{pa}(X_i))$$





- We have N = 1000 fruits with possible class labels
  - Banana
  - Orange
  - Other
- Three possible features
  - Long
  - Sweet
  - Yellow
- Objective: predict the class label for a given fruit where only the three features are known



- Labels  $\{Y_1, Y_2, Y_3\} = \{banana, orange, other\}$
- Features:  $\{X_1, X_2, X_3\} = \{\text{long, sweet, yellow}\}$  where
  - $X_1^{(i)} = \begin{cases} 1 & \text{if fruit } i \text{ is long} \\ 0 & \text{otherwise} \end{cases}$
- Objective: determine label  $Y^*$  for a new fruit with data  $X_1^*, X_2^*, X_3^*$ .



- General model:  $p_{\theta}(y, x_1, ..., x_K)$
- Has 2<sup>*K*+1</sup> possible states!
- Often  $K \gg 3$ .
- Exponential-sized problem.
- Reduce the size through simplifying assumptions!



# Naïve Bayes: a motivating example

• Assumption: X<sub>k</sub> and X<sub>m</sub> are *conditionally independent* given Y

 $P(X_k, X_m | Y) = P(X_k | Y) P(X_m | Y)$  for  $k \neq m$ 

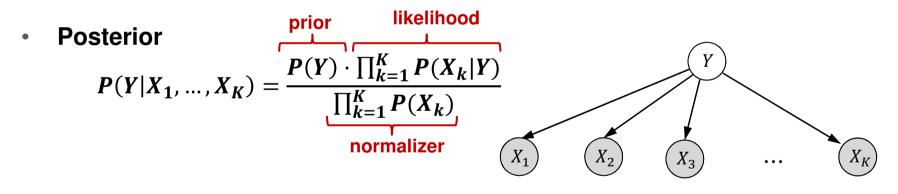
- May not be true for all applications.
- But if true for *most* pairs, then it might still be ok.
- This is referred to as the *Naïve Bayes assumtion*.



### Naïve Bayes: general description

- Class label *Y* and feature vector  $(X_1, ..., X_k)$
- The Naïve Bayes assumption

$$P(Y, X_1, X_2, \dots X_K) = P(Y) \prod_{k=1}^K P(X_k | Y)$$



| Label  | Long | Not<br>long | Sweet | Not<br>sweet | Yellow | Not<br>yellow | Total |
|--------|------|-------------|-------|--------------|--------|---------------|-------|
| Banana | 400  | 100         | 350   | 150          | 450    | 50            | 500   |
| Orange | 0    | 300         | 150   | 150          | 300    | 0             | 300   |
| Other  | 100  | 200         | 150   | 50           | 50     | 150           | 200   |
| Total  | 500  | 500         | 650   | 350          | 800    | 200           | 1000  |

- Potential queries
  - What is the probability of it being a banana given the features long, sweet and yellow?

# Naïve Bayes: a motivating example

**Step 1:** Compute the prior probabilities P(Y) for each fruit label

- from prior information
- or from training data

$$P(Y = banana) = 500/1000 = 0.5$$

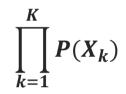
$$P(Y = \text{orange}) = 300/1000 = 0.3$$

$$P(Y = other) = 200/1000 = 0.2$$

| Label  | Total |
|--------|-------|
| Banana | 500   |
| Orange | 300   |
| Other  | 200   |
| Total  | 1000  |

# Naïve Bayes: a motivating example

#### **Step 2**: Compute the denominator



$$P(X_1 = \text{long}) = 500/1000 = 0.5$$

$$P(X_2 = \text{sweet}) = 650/1000 = 0.65$$

$$P(X_3 = \text{yellow}) = 800/1000 = 0.8$$

| Label  | Long | Sweet | Yellow | Total |  |
|--------|------|-------|--------|-------|--|
| Banana | 400  | 350   | 450    | 500   |  |
| Orange | 0    | 150   | 300    | 300   |  |
| Other  | 100  | 150   | 50     | 200   |  |
| Total  | 500  | 650   | 800    | 1000  |  |

# Naïve Bayes: a motivating example

### Step 3: Compute the likelihood

$$\prod_{k=1}^{K} P(X_k|Y) = \prod_{k=1}^{K} \frac{\#\{\text{fruits with label } Y \text{ and feature } X_k\}}{\#\{\text{fruits with label } Y\}}$$

$$P(X_1 = \text{long}|\text{banana}) = 400/500 = 0.8$$

$$P(X_2 = \text{sweet}|\text{banana}) = 350/500 = 0.7$$

$$P(X_3 = \text{yellow}|\text{banana}) = 450/500 = 0.9$$

| Label  | Long | Sweet | Yellow | Total |
|--------|------|-------|--------|-------|
| Banana | 400  | 350   | 450    | 500   |

# Naïve Bayes: a motivating example

Given that the fruit is long, sweet, and yellow, what is the probability it is a banana?

P(banana|long, sweet, yellow) =  $= \frac{P(\text{banana})P(\text{long}|\text{banana})P(\text{sweet}|\text{banana})P(\text{yellow}|\text{banana})}{P(\text{long})P(\text{sweet})P(\text{yellow})}$   $= \frac{0.5 \cdot 0.8 \cdot 0.7 \cdot 0.9}{0.5 \cdot 0.65 \cdot 0.8} = 0.969$ 



### CHALMERS

# Naïve Bayes: a motivating example

Step 4: Given that the fruit is long, sweet, and yellow, what is the *most likely label*?

**P**(banana|long, sweet, yellow)

 $\propto P(\text{banana})P(\text{long | banana})P(\text{sweet | banana})P(\text{yellow | banana})$ 

 $= 0.5 \cdot 0.8 \cdot 0.7 \cdot 0.9 = 0.252$ 

 $P(\text{orange} | \text{long}, \text{sweet}, \text{yellow}) \propto 0 \text{ because } P(\text{long} | \text{orange}) = 0$ 

 $P(\text{other }|\text{long, sweet, yellow}) \propto 0.01875$ 

The fruit is most likely a banana!

### Laplace smoothing

| Label  | Long | Not<br>long | Sweet | Not<br>sweet | Yellow | Not<br>yellow | Total |
|--------|------|-------------|-------|--------------|--------|---------------|-------|
| Banana | 400  | 100         | 350   | 150          | 450    | 50            | 500   |
| Orange | 0    | 300         | 150   | 150          | 300    | 0             | 300   |
| Other  | 100  | 200         | 150   | 50           | 50     | 150           | 200   |
| Total  | 500  | 500         | 650   | 350          | 800    | 200           | 1000  |

- Could be the *true* frequency in the population
- Could be due to a small sample

# Laplace smoothing

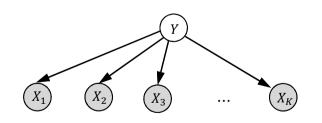
A simple way to avoid zero-frequencies is to add on *pseudo-counts* to all counts.

$$\prod_{k=1}^{K} P(X_k|Y) = \prod_{k=1}^{K} \frac{\#\{\text{label } Y, \text{feature } X_k\} + \alpha}{N + K \cdot \alpha}$$

For binary features  $X_k \in \{0, 1\}$ 

$$P(X_k|Y) = \frac{\#\{\text{label } Y, \text{ feature } X_k\} + \alpha}{N + 2 \cdot K \cdot \alpha}$$

Add-one smoothing:  $\alpha = 1$ 



9/23/2019

### CHALMERS

### Laplace smoothing

| Label  | Long | Not<br>long | Sweet | Not<br>sweet | Yellow | Not<br>yellow | Total |
|--------|------|-------------|-------|--------------|--------|---------------|-------|
| Banana | 401  | 101         | 351   | 151          | 451    | 51            | 502   |
| Orange |      | 301         | 151   | 151          | 301    |               | 302   |
| Other  | 101  | 201         | 151   | 51           | 51     | 151           | 202   |
| Total  | 503  | 503         | 653   | 353          | 803    | 203           | 1006  |

Total number of pseudo-counts:  $2 \cdot K = 2 \cdot 3 = 6$ 

### Naïve Bayes: Maximum Likelihood estimation (MLE)

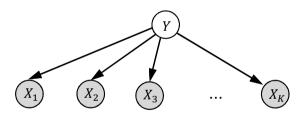
20

**Maximum Likelihood estimation** 

$$\widehat{Y} = \arg\max_{Y} P(X_1, \dots, X_n | Y) = \arg\max_{Y} \prod_{i=1}^n P(X_i | Y)$$

Maximize likelihood function

$$\frac{\partial \mathcal{L}}{\partial Y} = 0$$
 where  $\mathcal{L}(X|Y) = \sum_{i=1}^{n} \log P(X_i|Y)$ 



Fruit example:  $\{Y_1, Y_2, Y_3\} = \{P(banana), P(orange), P(other)\}$ 

9/23/2019

### Naïve Bayes: Maximum A Posteriori (MAP) estimation

Similar to MLE, but now we have a prior  $P(\theta)$ 

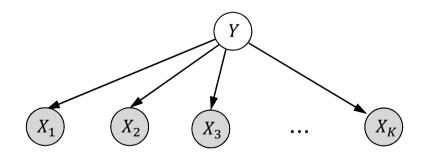
Maximum A Posteriori (MAP) estimation

$$\widehat{\theta} = \arg \max_{\theta} P(\theta | X_1, \dots, X_n) = \arg \max_{\theta} \frac{P(X_1, \dots, X_n | \theta) P(\theta)}{P(X_1, \dots, X_n)}$$
  
Since  $P(X_1, \dots, X_n)$  is constant, we can ignore it.  
$$\widehat{\theta} = \arg \max_{\theta} P(X_1, \dots, X_n | \theta) P(\theta)$$
  
Maximize the posterior  
$$\frac{\partial \mathcal{L}}{\partial \theta} = 0 \text{ where } \mathcal{L}(X_1, \dots, X_n | \theta) = \sum_{i=1}^n \log P(X_i | \theta) + \log P(\theta)$$

9/23/2019

### **Naïve Bayes: parameter estimation**

- When  $P(\theta)$  is uniform MLE and MAP are equivalent.
- When the dataset increases, MLE and MAP converge.
- The more data the less influence of the prior.

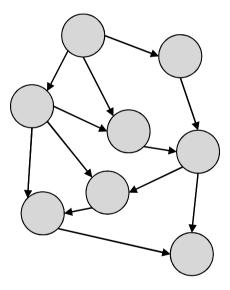


### **Bayesian networks (belief networks)**

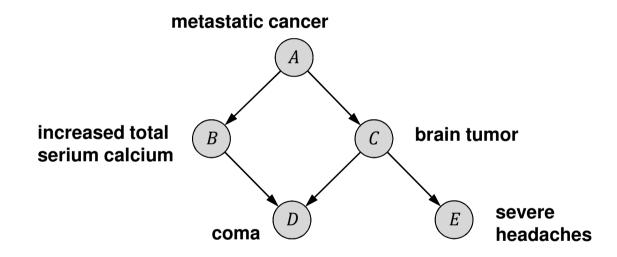
- Directed graph: G = (V, E)
- A random variable  $X_i$  for each node  $i \in V$
- A conditional probability  $P(X_i | pa(X_i))$  for  $i \in V$ .
- Resulting in a distribution of the form

$$P(X_1, \dots, X_D) = \prod_{i=1}^{D} P(X_i | \operatorname{pa}(X_i))$$

where  $pa(X_i)$  are the *parental* nodes of  $X_i$ .

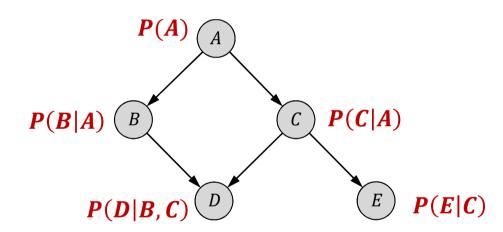


### **Bayesian networks: an example**

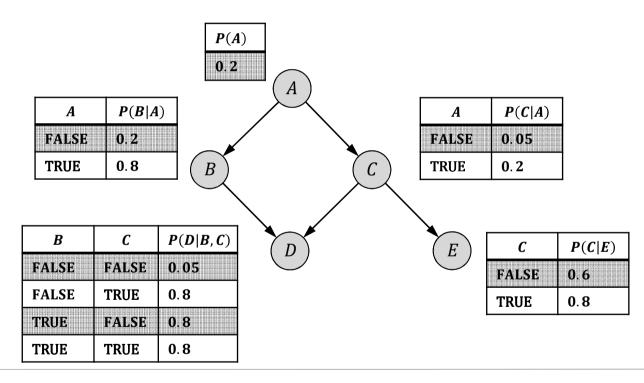




### **Bayesian networks: an example**



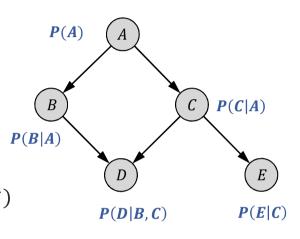
### **Bayesian networks: an example**



## **Bayesian networks: an example**

Now we can compute the joint probability for any combination of interest

 $P(A^+, B^-, C^+, D^-, E^+) =$ =  $P(A^+)P(B^-|A^+)P(C^+|A^-)P(D^-|B^-, C^+)P(E^+|C^+)$ =  $P(A^+)(1 - P(B^+|A^+))P(C^+|A^-)(1 - P(D^+|B^-, C^+))P(E^+|C^+)$ =  $\cdots = 0.00128$ 

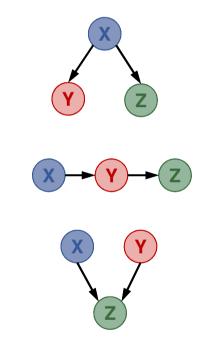


However: this needs to be put in relation to all other value combinations ( $2^5 = 32$  joint probabilities)...

### **Dependency structures in Bayesian networks**

Consider a graph *G* with nodes  $V = \{X, Y, Z\}$ 

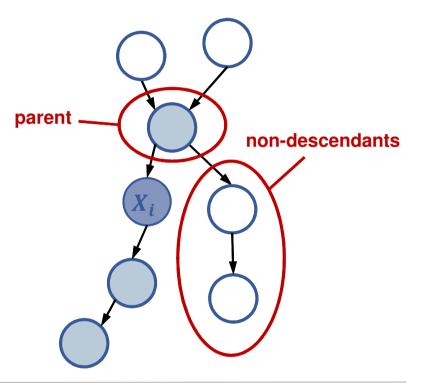
- Common cause: if  $Y \leftarrow X \rightarrow Z$  then Y and Z are conditionally independent given  $X \Rightarrow Y \perp Z \mid X$
- *Cascade*: if  $X \to Y \to Z$  then  $X \perp Z \mid Y$
- Common effect (V-structure, explaining away): if X → Z ← Y then X ⊥ Y if Z is unobserved, but not otherwise.



### **Dependency structures in Bayesian networks**

### Local Markov property:

In a DAG with variables  $X_1, ..., X_n$ : each node  $X_i$  is independent of its nondescendants given its parents.

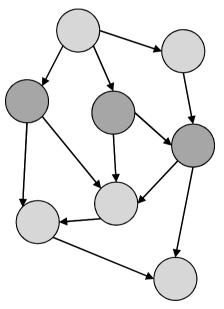


# **D-separation in directed graphs**

*Informally*: two sets of nodes  $Q, W \subset V$  are *d-separated* by a third set  $O \subset V$  if they are only connected via O.

*In practice*: two variables (nodes) *X* and *Y* are *dseparated* with respect to a set of variables *Z*, if they are conditionally independent, given *Z* 

P(X,Y|Z) = P(X|Z)P(Y|Z)

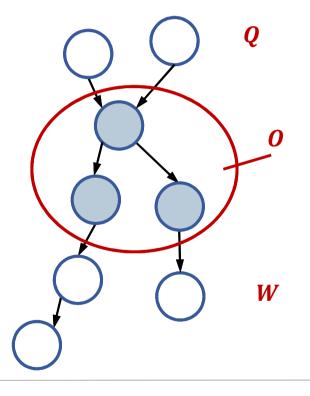


### **Dependency structures in Bayesian networks**

### **Global Markov property:**

A DAG with variables  $X_1, ..., X_n$  satisfies the *global Markov property* if, for any subset of variables Q, W, O such that O separates Q from W, then

P(Q,W|O) = P(Q|O)P(W|O)

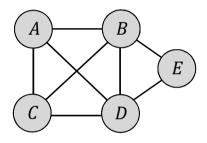


# **Undirected graphs**

- In undirected graphs the links have no direction, and no causal inference can be made.
- A graph is *fully connected* if there is a link between every pair of nodes.
- The *neighbors* of a node are the nodes directly connected to it

 $ne(E) = \{B, D\}$ 

• Neighboring nodes represent *correlated* variables.



# **Undirected graphs: cliques**

A *clique* is a fully connected subset of (at least two) nodes.

e.g.  $C = \{B, C, D\}$  is one clique

Can you see how many cliques there are?

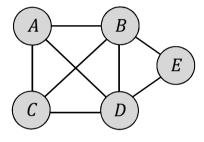
A *maximal clique* is a clique that is not contained in a larger clique.

 $C_1 = \{A, B, C, D\}, \qquad C_2 = \{B, D, E\}$ 

### **Cliques represent**

- variables that are all dependent on one another.
- variable structure cannot be reduced further without loss of information.

9/23/2019



### CHALMERS

# Markov random fields (MRFs, Markov networks)

### Markov random field:

• probability distribution over variables  $X_1, X_2, ..., X_n$ represented by an *undirected* graph

$$P(X_1, \dots, X_n) = \frac{1}{Z} \prod_{c \in \mathcal{C}} \phi_c(X_c)$$

where

- *C* = the set of *cliques* (fully connected subgraphs)
- $\phi_c$  = a *factor function* defined over the clique *c*
- *Z* = normalizing *partition* function

# **MRF Markov properties**

For an undirected graph G = (V, E) of random variables  $X_1, X_2, ..., X_n$ :

- Pairwise Markov property: Any two non-adjacent variables X<sub>i</sub>, X<sub>j</sub> are conditionally independent given all other variables
- Local Markov property: A variable X<sub>i</sub> is conditionally independent of all other variables, given its neighbors
- *Global Markov property*: any two subsets *X<sub>A</sub>*, *X<sub>B</sub>* conditionally independnt given a separating subset

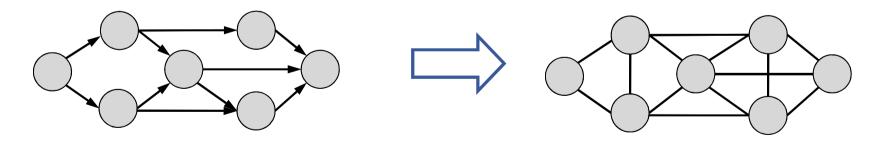
## **MRFs versus Bayesian networks**

### **MRFs**

- + can be applied to problems without clear direction in variable dependencies
- + Can express certain dependencies that Bayesian networks cannot (converse is also true)
- The normalization constant *Z* is NP-hard in the general case
- More difficult to interpret
- More difficult to generate data from

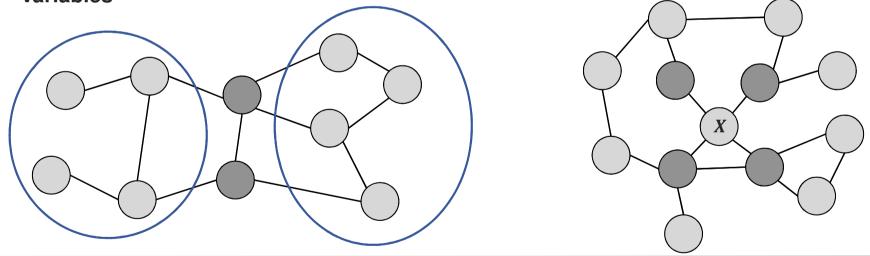
### **Moralization**

- A Bayesian network is a special case of Markov networks.
- A Bayesian network can always be converted to a Markov network
  - take the directed Bayesian network graph G
  - remove edge direction
  - add side edges between all parents



### **Independencies in Markov networks**

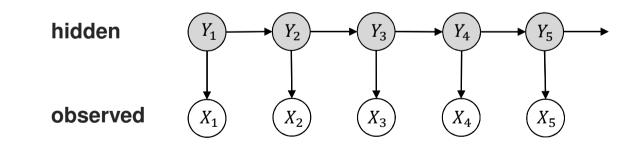
- Variables X and Y are dependent if they are connected by a path of unobserved variables.
- If all neighbors of *X* are observed then *X* is independent of all other variables



## **Conditional random fields (CRFs)**

**Discriminative** Markov random fields applied to model a conditional probability distribution

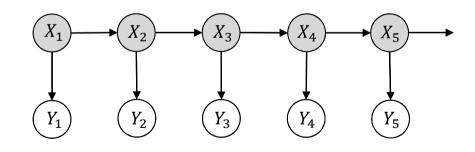
$$P(Y = y | X = x) = \frac{1}{Z(x)} \prod_{c \in \mathcal{C}} \phi_c(x_c, y_c)$$



# **Conditional random fields (CRFs)**

In classification, *X* could be a features vector and *Y* the class label, and the goal is to infer a label given the features using MAP inference

$$\widehat{\mathbf{y}} = \arg\max_{\mathbf{y}} \phi(\mathbf{y}_1, \mathbf{x}_1) \prod_{i=1}^n \phi(\mathbf{y}_{i-1}, \mathbf{y}_i) \phi(\mathbf{y}_i, \mathbf{x}_i)$$



### CHALMERS

## Inference in graphical models

Given a graphical model, we want to answer questions of interest.

• *Marginal inference*: what is the marginal probability of a given variable *Y* in our graph, summing out the rest?

$$P(Y = y) = \sum_{x_1} \sum_{x_2} \cdots \sum_{x_n} P(Y = y, X_1 = x_1, X_2 = x_2, \dots, X_n = x_n)$$

• *Maximum a posteriori (MAP) inference*: what is the most likely assignment to the variables in the graph (possibly conditioned on data)?

$$\max_{x_1,\ldots,x_n} P(Y = y, X_1 = x_1, \ldots, X_n = x_n)$$

### Inference algorithms in graphical models

#### **Exact inference**

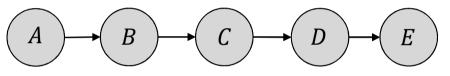
- Variable elimination
- Message passing/belief propagation
- Junction trees

#### **Approximative inference**

- Stochastic simulation
- Markov chain Monte Carlo (MCMC)
- Variational algorithms

### **Example: variable elimination in a chain graph**

Random variables: *A*, *B*, *C*, *D*, *E* 



each taking *n* possible values  $\Rightarrow$  joint probability has  $n^5$  possible values.

$$P(E = e) = \sum_{a,b,c,d} P(A = a, B = b, C = c, D = d, E = e)$$

i.e.  $O(n^4)$  operations.

### **Example: variable elimination in a chain graph**

Exploit the structure and perform summation "inside-out"

$$P(e) = \sum_{a,b,c,d} P(a,b,c,d,e) = \sum_{a,b,c,d} P(a)P(b|a)P(c|b)P(d|c)P(e|d)$$
$$= \sum_{b,c,d} P(c|b)P(d|c)P(e|d)\sum_{a} P(b|a)P(a) \qquad n \text{ operations}$$
$$= \sum_{b,c,d} P(c|b)P(d|c)P(e|d)P(b)$$
$$(A \rightarrow B \rightarrow C \rightarrow D \rightarrow E$$

## Example: variable elimination in a chain graph

Repeat the process  

$$P(e) = \sum_{b,c,d} P(c|b)P(d|c)P(e|d) P(b)$$

$$= \sum_{c,d} (d|c)P(e|d) \sum_{b} P(c|b)P(b) \qquad n \text{ operations}$$

$$= \sum_{c,d} P(d|c)P(e|d) P(c)$$

For *k* variables we perform  $O(kn^2)$  operations rather than  $O(n^5)$ .

Similar rearrangements can be done in undirected graphs.

9/23/2019

### Inference algorithms in graphical models

#### **Exact inference**

- Variable elimination
- Message passing/belief propagation
- Junction trees

#### **Approximative inference**

- Stochastic simulation
- Markov chain Monte Carlo (MCMC)
- Variational algorithms