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Graphical models

Social networks Economic networks Biomedical networks

Information networks Network of neurons Internet
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Graphical models

• Diagrammatic representations of various
connections and dependencies

• Informative visualization of the structure

• Efficient computer algorithms acting directly
on the graph model
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Graphical models

Three main objectives:

• Representation

• model structure

• Inference

• queries to ask using model

• Learning

• fit model to observed data
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Graphical models: some basics

A simple graph � � ��, �� consists of

• A set � of vertices or nodes

• A set � of edges or links
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Graphical models: some basics

The graph can be

• directed or

• undirected

A complete graph has a connection
between every pair of vertices
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Graphical models: some basics

Directed

• Directional links (with arrows)

• Indicating conditional
dependence

Undirected

• Links without arrows

• Indicating relationships 
(correlation)
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Directed acyclic graphs (DAGs)

• Contains no cycles/loops.

• Topological ordering of nodes

�	
�
 ��

�� �

�	
�
 ��

�� �

DAGno DAG

�	
�
 ��

�� �
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Directed acyclic graphs (DAGs)

• The parents of a node are the nodes with links into it.

papapapa � � ���, ���
• The children of a node are the nodes with links to 

them from that node.

chchchch � � ���, ���
• The family of a node is itself and its parents.

• The Markov blanket of a node is its parents, its
children, and its children’s parents (excluding itself).

MarkovMarkovMarkovMarkov				blanketblanketblanketblanket � � ��, ��, … , ��

�	

�� �� �

�&

�


�'

�( �) �	*

�



A simple graph � � ��, �� consists of

• A set � of vertices or nodes

• A set � of edges or links

• Graph: represents the joint distribution of the 
random variables

• Vertices: random variables

• Edges: probabilistic relationships
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Probabilistic graphical models
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Examples of graphical models

Directed

• Naïve Bayes

• Bayesian networks

• Markov chains

• Neural networks

Undirected

• Markov random fields

• Conditional random fields
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Chain rule for DAGs

• Random variables: �, �, +
• Chain rule

, �, �, + � , � �, + , �, +
																				� , � �, + , � + ,�+�

• In general, for any �-, �., … , �/
, �-, �., … , �/ �
														� , �- �., …�/ , �. ��, … , �/ ⋯, �/1- �/ ,��/�

X

Y

Z
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Chain rule for DAGs

• Note: The factorization is not unique:

, �, �, + � , � �, + , � + , + � , + �, � , � � , � � ⋯

In total n! = 6 different graph representations.

X

Y

Z

X

Y
Z

…

X

Y
Z

Can you figure out their structures and factorizations? 
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Chain rule for DAGs

• Can deduce probabilistic model from graph

, �-, �., … , �2� , �- , �� , �. �- , �� �-, �� ,��2|�., ��, ���
• A link going from �- → �. means that �- is a parent

node of �..

• The probability of each node �5	is conditioned only
on its parents papapapa��5�

, �-, … , �/ � 6, �5 papapapa��5�
/

57-

�	
��

��
papapapa �� � �-, ��

�	
�
 ��

�� �
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Naïve Bayes: a motivating example

• We have 8 � -999 fruits with possible class labels

• Banana

• Orange

• Other

• Three possible features

• Long

• Sweet

• Yellow

• Objective: predict the class label for a given fruit
where only the three features are known
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• Labels �-, �., �� � �bananabananabananabanana, orangeorangeorangeorange, otherotherotherother�
• Features: ��-, �., ��� � �longlonglonglong, sweetsweetsweetsweet, yellowyellowyellowyellow� where

�-
5 � >- ifififif				fruitfruitfruitfruit				5	isisisis				longlonglonglong

9 otherwiseotherwiseotherwiseotherwise								
• Objective: determine label �∗	for a new fruit with

data �-∗ , �.∗ , ��∗ .

Naïve Bayes: a motivating example
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• General model: CD E, F-, … , FG
• Has .GH- possible states!

• Often G ≫ �.

• Exponential-sized problem.

• Reduce the size through simplifying assumptions!

Naïve Bayes: a motivating example
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• Assumption: �J and �K are conditionally independent
given �

, �J, �K � � , �J � , �K � 	forforforfor	J L K
• May not be true for all applications.

• But if true for most pairs, then it might still be ok.

• This is referred to as the Naïve Bayes assumtion.

Naïve Bayes: a motivating example
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Naïve Bayes: general description

�	 �
 �� �M

N

⋯

• Class label � and feature vector ��-, … , �J�
• The Naïve Bayes assumption

, �,�-, �., …�G � , � ∏ ,��J|��GJ7-

• Posterior

, � �-, … , �G � , � ⋅ ∏ ,��J|��GJ7-
∏ ,��J�GJ7-

prior likelihood

normalizer
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Label Long
Not
long

Sweet
Not 

sweet
Yellow

Not 
yellow

Total

Banana 400 100 350 150 450 50 500

Orange 0 300 150 150 300 0 300

Other 100 200 150 50 50 150 200

Total 500 500 650 350 800 200 1000

• Potential queries
• What is the probability of it being a banana given the features long, sweet

and yellow?

Naïve Bayes: a motivating example
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Step 1: Compute the prior probabilities ,��� for each fruit
label

• from prior information

• or from training data

, � � bananabananabananabanana � 299/-999 � 9. 2
, � � orangeorangeorangeorange � �99/-999 � 9. �
, � � otherotherotherother � .99/-999 � 9. .

Label Total

Banana 500

Orange 300

Other 200

Total 1000

Naïve Bayes: a motivating example
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Step 2: Compute the denominator

6,��J�
G

J7-

, �- � longlonglonglong � 299/-999 � 9. 2
, �. � sweetsweetsweetsweet � �29/-999 � 9. �2
, �� � yellowyellowyellowyellow � S99/-999 � 9. S

Label Long Sweet Yellow Total

Banana 400 350 450 500

Orange 0 150 300 300

Other 100 150 50 200

Total 500 650 800 1000

Naïve Bayes: a motivating example
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Step 3: Compute the likelihood

6,��J|��
G

J7-
� 6#�fruitsfruitsfruitsfruits				withwithwithwith				labellabellabellabel	�				andandandand				featurefeaturefeaturefeature	�J�

#�#�#�#�fruitsfruitsfruitsfruits				withwithwithwith				labellabellabellabel	��
G

J7-
, �- � longlonglonglong|bananabananabananabanana � �99/299 � 9. S
, �. � sweet|bananasweet|bananasweet|bananasweet|banana � �29/299 � 9. �
, �� � yellowyellowyellowyellow|bananabananabananabanana � �29/299 � 9. V

Label Long Sweet Yellow Total

Banana 400 350 450 500

Naïve Bayes: a motivating example
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Given that the fruit is long, sweet, and yellow, what is the 
probability it is a banana?

, bananabananabananabanana longlonglonglong, sweetsweetsweetsweet, yellowyellowyellowyellow �

� , bananabananabananabanana , longlonglonglong bananabananabananabanana , sweetsweetsweetsweet bananabananabananabanana ,�yellowyellowyellowyellow|bananabananabananabanana�
, longlonglonglong , sweetsweetsweetsweet ,�yellowyellowyellowyellow�

� 9. 2 ⋅ 9. S ⋅ 9. � ⋅ 9. V
9. 2 ⋅ 9. �2 ⋅ 9. S � 9. V�V

Naïve Bayes: a motivating example
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Step 4: Given that the fruit is long, sweet, and yellow, what
is the most likely label?

, bananabananabananabanana longlonglonglong, sweetsweetsweetsweet, yellowyellowyellowyellow
∝ , bananabananabananabanana , longlonglonglong	 bananabananabananabanana , sweetsweetsweetsweet	 bananabananabananabanana ,�yellowyellowyellowyellow	|bananabananabananabanana�
� 9. 2 ⋅ 9. S ⋅ 9. � ⋅ 9. V � 9. .2.

, orangeorangeorangeorange				 longlonglonglong, sweetsweetsweetsweet, yellowyellowyellowyellow ∝ 9		becausebecausebecausebecause		, longlonglonglong orangeorangeorangeorange � 9
, otherotherotherother				 longlonglonglong, sweetsweetsweetsweet, yellowyellowyellowyellow ∝ 9. 9-S�2
The fruit is most likely a banana!

Naïve Bayes: a motivating example



Label Long
Not
long

Sweet
Not 

sweet
Yellow

Not 
yellow

Total

Banana 400 100 350 150 450 50 500

Orange 0 300 150 150 300 0 300

Other 100 200 150 50 50 150 200

Total 500 500 650 350 800 200 1000
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Laplace smoothing

• Could be the true frequency in the population

• Could be due to a small sample
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Laplace smoothing

A simple way to avoid zero-frequencies is to add on
pseudo-counts to all counts.

6,��J|��
G

J7-
� 6#�labellabellabellabel	�, featurefeaturefeaturefeature	�J� X Y

8 X G ⋅ Y
G

J7-

For binary features �J ∈ 9, -

, �J � � #�labellabellabellabel	�, featurefeaturefeaturefeature	�J� X Y
8 X . ⋅ G ⋅ Y

Add-one smoothing: Y � - �	 �
 �� �M

N

⋯
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Laplace smoothing

Total number of pseudo-counts: . ⋅ G � . ⋅ � � �

Label Long
Not
long

Sweet
Not 

sweet
Yellow

Not 
yellow

Total

Banana 401 101 351 151 451 51 502

Orange 1 301 151 151 301 1 302

Other 101 201 151 51 51 151 202

Total 503 503 653 353 803 203 1006
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Maximum Likelihood estimation

�[ � arg	max
�

, �-, … , �/ � � arg	max
�

6,��5|��
/

57-
Maximize likelihood function

^_
^� � 9		wherewherewherewhere		_ � � � `log,��5|��

/

57-

Fruit example: �-, �., �� � , bananabananabananabanana , , orangeorangeorangeorange , , otherotherotherother

Naïve Bayes: Maximum Likelihood estimation (MLE)

�	 �
 �� �M

N

⋯
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Similar to MLE, but now we have a prior P(D�
Maximum A Posteriori (MAP) estimation

D[ � arg	max
D

,�D|�-, … , �/� � arg	max
D

, �-, … , �/ D ,�D�
,��-, … , �/�

Since ,��-, … , �/� is constant, we can ignore it.

D[ � arg	max
D

, �-, … , �/ D ,�D�
Maximize the posterior

^_
^D � 9		wherewherewherewhere	_ �-, … , �/ D � `log, �5 D X log,�D�

/

57-

Naïve Bayes: Maximum A Posteriori (MAP) estimation

�	 �
 �� �M

N

⋯
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• When ,�D� is uniform MLE and MAP are equivalent.

• When the dataset increases, MLE and MAP converge.

• The more data the less influence of the prior.

Naïve Bayes: parameter estimation

�	 �
 �� �M

N

⋯
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Bayesian networks (belief networks)

• Directed graph: � � ��, ��
• A random variable �5 for each node 5 ∈ �
• A conditional probability ,��5|papapapa �5 � for 5 ∈ �.

• Resulting in a distribution of the form

, �-, … , �a � 6,��5|papapapa �5 �
a

57-
where papapapa��5� are the parental nodes of �5.
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Bayesian networks: an example

metastatic cancer

increased total
serium calcium

brain tumor

coma
severe
headaches

b

c d

e f
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Bayesian networks: an example

b

c d

e f

, g h , i h

, a g, i , � i

,�h�
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Bayesian networks: an example

, h
9. .

h , g h
jklmn 9. .
TRUETRUETRUETRUE 9. S

h , i h
jklmn 9. 92
TRUETRUETRUETRUE 9. .

b

c d

e fg i , a g, i
jklmn jklmn 9. 92
jklmn TRUETRUETRUETRUE 9. S
TRUETRUETRUETRUE jklmn 9. S
TRUETRUETRUETRUE TRUETRUETRUETRUE 9. S

i , i �
jklmn 9. �
TRUETRUETRUETRUE 9. S
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Bayesian networks: an example

Now we can compute the joint probability for any
combination of interest

, hH, g1, iH, a1, �H �
� , hH , g1 hH , iH h1 , a1 g1, iH , �H iH
� , hH - s , gH hH , iH h1 - s , aH g1, iH , �H iH
� ⋯ � 9. 99-.S

However: this needs to be put in relation to all other

value combinations (.2 � �. joint probabilities)…

b

c d

e f
, g h

, i h

, a g, i , � i

,�h�
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Dependency structures in Bayesian networks

Consider a graph � with nodes � � ��, �, +�
• Common cause: if � ← � → + then	� and + are 

conditionally independent given � ⇒ � v +	|	�

• Cascade: if � → � → + then � v +	|	�

• Common effect (V-structure, explaining away): if 
� → + ← � then � v � if + is unobserved, but not 
otherwise.

X

Y Z

X Y Z

X Y

Z
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Dependency structures in Bayesian networks

Local Markov property:

In a DAG with variables �-, … , �/: 

each node �5 is independent of its non-
descendants given its parents.

�5�5

non-descendants

parent
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D-separation in directed graphs

Informally: two sets of nodes w,x ⊂ � are d-separated
by a third set z ⊂ � if they are only connected via z.

In practice: two variables (nodes) � and � are d-
separated with respect to a set of variables +, if they
are conditionally independent, given +

, �, � + � , � + ,��|+�
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Dependency structures in Bayesian networks

Global Markov property:

A DAG with variables �-, … , �/ satisfies the 
global Markov property if, for any subset of 
variables w,x,z such that z separates w from 
x, then

, w,x z � , w z ,�x|z�
z

w

x
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Undirected graphs

• In undirected graphs the links have no direction, 
and no causal inference can be made.

• A graph is fully connected if there is a link between
every pair of nodes.

• The neighbors of a node are the nodes directly
connected to it

nenenene � � �g,a�
• Neighboring nodes represent correlated variables.

b c

d e
f
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Undirected graphs: cliques

A clique is a fully connected subset of (at least two) 
nodes.

e.g.e.g.e.g.e.g.	{ � g, i, a 	isisisis				oneoneoneone				cliquecliquecliqueclique
Can you see how many cliques there are?

A maximal clique is a clique that is not contained in a 
larger clique.

{- � h,g, i, a , {. � �g,a, ��
Cliques represent
• variables that are all dependent on one another.

• variable structure cannot be reduced further without loss of
information.

b c

d e
f
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Markov random fields (MRFs, Markov networks)

Markov random field:

• probability distribution over variables �-, �., … , �/
represented by an undirected graph

, �-, … , �/ � -
+6}~��~�

~∈�
where

• � = the set of cliques (fully connected subgraphs)

• }~ = a factor function defined over the clique ~
• + = normalizing partition function
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MRF Markov properties

For an undirected graph � � ��, �� of random variables
�-, �., … , �/: 

• Pairwise Markov property: Any two non-adjacent
variables �5, �� are conditionally independent given 

all other variables

• Local Markov property: A variable �5 is conditionally
independent of all other variables, given its
neighbors

• Global Markov property: any two subsets �h, �g
conditionally independnt given a separating subset
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MRFs versus Bayesian networks

MRFs

+ can be applied to problems without clear direction in 
variable dependencies

+ Can express certain dependencies that Bayesian
networks cannot (converse is also true)

- The normalization constant + is NP-hard in the 
general case

- More difficult to interpret

- More difficult to generate data from
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Moralization

• A Bayesian network is a special case of Markov networks.

• A Bayesian network can always be converted to a Markov 
network

• take the directed Bayesian network graph �
• remove edge direction

• add side edges between all parents
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Independencies in Markov networks

• Variables � and � are dependent if they are connected by a path of

unobserved variables. 

• If all neighbors of � are observed then � is independent of all other
variables

�
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Conditional random fields (CRFs)

Discriminative Markov random fields applied to model a conditional
probability distribution 

, � � E � � F � -
+�F�6}~�F~, E~�

~∈�

N	 N
 N� N� N

�	 �
 �� �� �

hidden

observed
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Conditional random fields (CRFs)

In classification, � could be a features vector and � the class label, 
and the goal is to infer a label given the features using MAP 
inference

E� � arg	max
E

} E-, F- 6} E51-, E5 }�E5, F5�
/

57-

�	 �
 �� �� �

N	 N
 N� N� N
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Inference in graphical models

Given a graphical model, we want to answer questions
of interest. 

• Marginal inference: what is the marginal probability of a 
given variable � in our graph, summing out the rest?

, � � E � ``⋯`, � � E, �- � F-, �. � F., … , �/ � F/
F/F.F-

• Maximum a posteriori (MAP) inference: what is the most
likely assignment to the variables in the graph (possibly
conditioned on data)?

maxF-,…,F/
, � � E,�- � F-, … , �/ � F/
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Inference algorithms in graphical models

Exact inference

• Variable elimination

• Message passing/belief propagation

• Junction trees

Approximative inference

• Stochastic simulation

• Markov chain Monte Carlo (MCMC)

• Variational algorithms
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Example: variable elimination in a chain graph

Random variables: h,g, i,a, �

each taking / possible values ⇒ joint probability has /2 possible
values.

, � � � � ` ,�h � �,g � �, i � ~,a � �, � � ��
�,�,~,�

i.e. z�/�� operations.

b c d e f
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Example: variable elimination in a chain graph

Exploit the structure and perform summation ”inside-out”

, � � ` , �, �, ~, �, �
�,�,~,�

� ` , � , � � , ~ � , � ~ ,��|��
�,�,~,�

� ` , ~ � , � ~ ,��|��
�,~,�

`, � � ,���
�

� ` , ~ � , � ~ , � �
�,~,�

,���

b c d e f

� operations
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Example: variable elimination in a chain graph

Repeat the process

, � � ` , ~ � , � ~ , � �
�,~,�

,���

� ` � ~ ,��|��
~,�

`, ~ � ,���
�

� `, � ~ , � �
~,�

,�~�

For J variables we perform z�J/.� operations rather than z�/2�.
Similar rearrangements can be done in undirected graphs.

b c d e f

� operations
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Inference algorithms in graphical models

Exact inference

• Variable elimination

• Message passing/belief propagation

• Junction trees

Approximative inference

• Stochastic simulation

• Markov chain Monte Carlo (MCMC)

• Variational algorithms


