

Statistical methods in Data Science and Al

Marina Axelson-Fisk

Xxx, 2019

Module 3.2: Graphical models

CHALMERS

Graphical models

Social networks

Economic networks

Biomedical networks

Information networks

Network of neurons

Internet

Graphical models

- Diagrammatic representations of various connections and dependencies
- Informative visualization of the structure
- Efficient computer algorithms acting directly on the graph model

Graphical models

Three main objectives:

- Representation
 - model structure
- Inference
 - queries to ask using model
- Learning
 - fit model to observed data

Graphical models: some basics

A simple graph G = (V, E) consists of

- A set V of vertices or nodes
- A set *E* of *edges* or *links*

Graphical models: some basics

The graph can be

- directed or
- undirected

A *complete graph* has a connection between every pair of vertices

Graphical models: some basics

Directed

- Directional links (with arrows)
- Indicating conditional dependence

Undirected

- Links without arrows
- Indicating relationships (correlation)

Directed acyclic graphs (DAGs)

- Contains no cycles/loops.
- Topological ordering of nodes

Directed acyclic graphs (DAGs)

• The *parents* of a node are the nodes with links into it.

 $\operatorname{pa}(Y) = \{X_3, X_4\}$

• The *children* of a node are the nodes with links to them from that node.

 $ch(Y) = \{X_6, X_7\}$

- The *family* of a node is itself and its parents.
- The *Markov blanket* of a node is its parents, its children, and its children's parents (excluding itself).

 $Markov blanket(Y) = \{X_3, X_4, \dots, X_7\}$

CHALMERS

Probabilistic graphical models

A simple graph G = (V, E) consists of

- A set V of vertices or nodes
- A set *E* of *edges* or *links*
- Graph: represents the joint distribution of the random variables
- Vertices: random variables
- Edges: probabilistic relationships

Examples of graphical models

Directed

- Naïve Bayes
- Bayesian networks
- Markov chains
- Neural networks

Undirected

- Markov random fields
- Conditional random fields

Chain rule for DAGs

- Random variables: *X*, *Y*, *Z*
- Chain rule

P(X, Y, Z) = P(X|Y, Z)P(Y, Z)= P(X|Y, Z)P(Y|Z)P(Z)

• In general, for any X_1, X_2, \dots, X_n

$$P(X_1, X_2, ..., X_n) = = P(X_1 | X_2, ..., X_n) P(X_2 | X_3, ..., X_n) \cdots P(X_{n-1} | X_n) P(X_n)$$

Chain rule for DAGs

• Note: The factorization is not unique: $P(X, Y, Z) = P(X|Y, Z)P(Y|Z)P(Z) = P(Z|X, Y)P(Y|X)P(X) = \cdots$

In total n! = 6 different graph representations.

Can you figure out their structures and factorizations?

9/23/2019

Chain rule for DAGs

- Can deduce probabilistic model from graph $P(X_1, X_2, \dots, X_5)$ $= P(X_1)P(X_3)P(X_2|X_1)P(X_4|X_1, X_3)P(X_5|X_2, X_3, X_4)$
- A link going from $X_1 \rightarrow X_2$ means that X_1 is a *parent node* of X_2 .
- The probability of each node X_i is conditioned only on its parents pa(X_i)

$$P(X_1, \dots, X_n) = \prod_{i=1}^n P(X_i | \operatorname{pa}(X_i))$$

- We have N = 1000 fruits with possible class labels
 - Banana
 - Orange
 - Other
- Three possible features
 - Long
 - Sweet
 - Yellow
- Objective: predict the class label for a given fruit where only the three features are known

- Labels $\{Y_1, Y_2, Y_3\} = \{banana, orange, other\}$
- Features: $\{X_1, X_2, X_3\} = \{\text{long, sweet, yellow}\}$ where
 - $X_1^{(i)} = \begin{cases} 1 & \text{if fruit } i \text{ is long} \\ 0 & \text{otherwise} \end{cases}$
- Objective: determine label Y^* for a new fruit with data X_1^*, X_2^*, X_3^* .

- General model: $p_{\theta}(y, x_1, ..., x_K)$
- Has 2^{*K*+1} possible states!
- Often $K \gg 3$.
- Exponential-sized problem.
- Reduce the size through simplifying assumptions!

Naïve Bayes: a motivating example

• Assumption: X_k and X_m are *conditionally independent* given Y

 $P(X_k, X_m | Y) = P(X_k | Y) P(X_m | Y)$ for $k \neq m$

- May not be true for all applications.
- But if true for *most* pairs, then it might still be ok.
- This is referred to as the *Naïve Bayes assumtion*.

Naïve Bayes: general description

- Class label *Y* and feature vector $(X_1, ..., X_k)$
- The Naïve Bayes assumption

$$P(Y, X_1, X_2, \dots X_K) = P(Y) \prod_{k=1}^K P(X_k | Y)$$

Label	Long	Not long	Sweet	Not sweet	Yellow	Not yellow	Total
Banana	400	100	350	150	450	50	500
Orange	0	300	150	150	300	0	300
Other	100	200	150	50	50	150	200
Total	500	500	650	350	800	200	1000

- Potential queries
 - What is the probability of it being a banana given the features long, sweet and yellow?

Naïve Bayes: a motivating example

Step 1: Compute the prior probabilities P(Y) for each fruit label

- from prior information
- or from training data

$$P(Y = banana) = 500/1000 = 0.5$$

$$P(Y = \text{orange}) = 300/1000 = 0.3$$

$$P(Y = other) = 200/1000 = 0.2$$

Label	Total
Banana	500
Orange	300
Other	200
Total	1000

Naïve Bayes: a motivating example

Step 2: Compute the denominator

$$P(X_1 = \text{long}) = 500/1000 = 0.5$$

$$P(X_2 = \text{sweet}) = 650/1000 = 0.65$$

$$P(X_3 = \text{yellow}) = 800/1000 = 0.8$$

Label	Long	Sweet	Yellow	Total	
Banana	400	350	450	500	
Orange	0	150	300	300	
Other	100	150	50	200	
Total	500	650	800	1000	

Naïve Bayes: a motivating example

Step 3: Compute the likelihood

$$\prod_{k=1}^{K} P(X_k|Y) = \prod_{k=1}^{K} \frac{\#\{\text{fruits with label } Y \text{ and feature } X_k\}}{\#\{\text{fruits with label } Y\}}$$

$$P(X_1 = \text{long}|\text{banana}) = 400/500 = 0.8$$

$$P(X_2 = \text{sweet}|\text{banana}) = 350/500 = 0.7$$

$$P(X_3 = \text{yellow}|\text{banana}) = 450/500 = 0.9$$

Label	Long	Sweet	Yellow	Total
Banana	400	350	450	500

Naïve Bayes: a motivating example

Given that the fruit is long, sweet, and yellow, what is the probability it is a banana?

P(banana|long, sweet, yellow) = $= \frac{P(\text{banana})P(\text{long}|\text{banana})P(\text{sweet}|\text{banana})P(\text{yellow}|\text{banana})}{P(\text{long})P(\text{sweet})P(\text{yellow})}$ $= \frac{0.5 \cdot 0.8 \cdot 0.7 \cdot 0.9}{0.5 \cdot 0.65 \cdot 0.8} = 0.969$

CHALMERS

Naïve Bayes: a motivating example

Step 4: Given that the fruit is long, sweet, and yellow, what is the *most likely label*?

P(banana|long, sweet, yellow)

 $\propto P(\text{banana})P(\text{long | banana})P(\text{sweet | banana})P(\text{yellow | banana})$

 $= 0.5 \cdot 0.8 \cdot 0.7 \cdot 0.9 = 0.252$

 $P(\text{orange} | \text{long}, \text{sweet}, \text{yellow}) \propto 0 \text{ because } P(\text{long} | \text{orange}) = 0$

 $P(\text{other }|\text{long, sweet, yellow}) \propto 0.01875$

The fruit is most likely a banana!

Laplace smoothing

Label	Long	Not long	Sweet	Not sweet	Yellow	Not yellow	Total
Banana	400	100	350	150	450	50	500
Orange	0	300	150	150	300	0	300
Other	100	200	150	50	50	150	200
Total	500	500	650	350	800	200	1000

- Could be the *true* frequency in the population
- Could be due to a small sample

Laplace smoothing

A simple way to avoid zero-frequencies is to add on *pseudo-counts* to all counts.

$$\prod_{k=1}^{K} P(X_k|Y) = \prod_{k=1}^{K} \frac{\#\{\text{label } Y, \text{feature } X_k\} + \alpha}{N + K \cdot \alpha}$$

For binary features $X_k \in \{0, 1\}$

$$P(X_k|Y) = \frac{\#\{\text{label } Y, \text{ feature } X_k\} + \alpha}{N + 2 \cdot K \cdot \alpha}$$

Add-one smoothing: $\alpha = 1$

9/23/2019

CHALMERS

Laplace smoothing

Label	Long	Not long	Sweet	Not sweet	Yellow	Not yellow	Total
Banana	401	101	351	151	451	51	502
Orange		301	151	151	301		302
Other	101	201	151	51	51	151	202
Total	503	503	653	353	803	203	1006

Total number of pseudo-counts: $2 \cdot K = 2 \cdot 3 = 6$

Naïve Bayes: Maximum Likelihood estimation (MLE)

20

Maximum Likelihood estimation

$$\widehat{Y} = \arg\max_{Y} P(X_1, \dots, X_n | Y) = \arg\max_{Y} \prod_{i=1}^n P(X_i | Y)$$

Maximize likelihood function

$$\frac{\partial \mathcal{L}}{\partial Y} = 0$$
 where $\mathcal{L}(X|Y) = \sum_{i=1}^{n} \log P(X_i|Y)$

Fruit example: $\{Y_1, Y_2, Y_3\} = \{P(banana), P(orange), P(other)\}$

9/23/2019

Naïve Bayes: Maximum A Posteriori (MAP) estimation

Similar to MLE, but now we have a prior $P(\theta)$

Maximum A Posteriori (MAP) estimation

$$\widehat{\theta} = \arg \max_{\theta} P(\theta | X_1, \dots, X_n) = \arg \max_{\theta} \frac{P(X_1, \dots, X_n | \theta) P(\theta)}{P(X_1, \dots, X_n)}$$

Since $P(X_1, \dots, X_n)$ is constant, we can ignore it.
$$\widehat{\theta} = \arg \max_{\theta} P(X_1, \dots, X_n | \theta) P(\theta)$$

Maximize the posterior
$$\frac{\partial \mathcal{L}}{\partial \theta} = 0 \text{ where } \mathcal{L}(X_1, \dots, X_n | \theta) = \sum_{i=1}^n \log P(X_i | \theta) + \log P(\theta)$$

9/23/2019

Naïve Bayes: parameter estimation

- When $P(\theta)$ is uniform MLE and MAP are equivalent.
- When the dataset increases, MLE and MAP converge.
- The more data the less influence of the prior.

Bayesian networks (belief networks)

- Directed graph: G = (V, E)
- A random variable X_i for each node $i \in V$
- A conditional probability $P(X_i | pa(X_i))$ for $i \in V$.
- Resulting in a distribution of the form

$$P(X_1, \dots, X_D) = \prod_{i=1}^{D} P(X_i | \operatorname{pa}(X_i))$$

where $pa(X_i)$ are the *parental* nodes of X_i .

Bayesian networks: an example

Bayesian networks: an example

Bayesian networks: an example

Bayesian networks: an example

Now we can compute the joint probability for any combination of interest

 $P(A^+, B^-, C^+, D^-, E^+) =$ = $P(A^+)P(B^-|A^+)P(C^+|A^-)P(D^-|B^-, C^+)P(E^+|C^+)$ = $P(A^+)(1 - P(B^+|A^+))P(C^+|A^-)(1 - P(D^+|B^-, C^+))P(E^+|C^+)$ = $\cdots = 0.00128$

However: this needs to be put in relation to all other value combinations ($2^5 = 32$ joint probabilities)...

Dependency structures in Bayesian networks

Consider a graph *G* with nodes $V = \{X, Y, Z\}$

- Common cause: if $Y \leftarrow X \rightarrow Z$ then Y and Z are conditionally independent given $X \Rightarrow Y \perp Z \mid X$
- *Cascade*: if $X \to Y \to Z$ then $X \perp Z \mid Y$
- Common effect (V-structure, explaining away): if X → Z ← Y then X ⊥ Y if Z is unobserved, but not otherwise.

Dependency structures in Bayesian networks

Local Markov property:

In a DAG with variables $X_1, ..., X_n$: each node X_i is independent of its nondescendants given its parents.

D-separation in directed graphs

Informally: two sets of nodes $Q, W \subset V$ are *d-separated* by a third set $O \subset V$ if they are only connected via O.

In practice: two variables (nodes) *X* and *Y* are *dseparated* with respect to a set of variables *Z*, if they are conditionally independent, given *Z*

P(X,Y|Z) = P(X|Z)P(Y|Z)

Dependency structures in Bayesian networks

Global Markov property:

A DAG with variables $X_1, ..., X_n$ satisfies the *global Markov property* if, for any subset of variables Q, W, O such that O separates Q from W, then

P(Q,W|O) = P(Q|O)P(W|O)

Undirected graphs

- In undirected graphs the links have no direction, and no causal inference can be made.
- A graph is *fully connected* if there is a link between every pair of nodes.
- The *neighbors* of a node are the nodes directly connected to it

 $ne(E) = \{B, D\}$

• Neighboring nodes represent *correlated* variables.

Undirected graphs: cliques

A *clique* is a fully connected subset of (at least two) nodes.

e.g. $C = \{B, C, D\}$ is one clique

Can you see how many cliques there are?

A *maximal clique* is a clique that is not contained in a larger clique.

 $C_1 = \{A, B, C, D\}, \qquad C_2 = \{B, D, E\}$

Cliques represent

- variables that are all dependent on one another.
- variable structure cannot be reduced further without loss of information.

9/23/2019

CHALMERS

Markov random fields (MRFs, Markov networks)

Markov random field:

• probability distribution over variables $X_1, X_2, ..., X_n$ represented by an *undirected* graph

$$P(X_1, \dots, X_n) = \frac{1}{Z} \prod_{c \in \mathcal{C}} \phi_c(X_c)$$

where

- *C* = the set of *cliques* (fully connected subgraphs)
- ϕ_c = a *factor function* defined over the clique *c*
- *Z* = normalizing *partition* function

MRF Markov properties

For an undirected graph G = (V, E) of random variables $X_1, X_2, ..., X_n$:

- Pairwise Markov property: Any two non-adjacent variables X_i, X_j are conditionally independent given all other variables
- Local Markov property: A variable X_i is conditionally independent of all other variables, given its neighbors
- *Global Markov property*: any two subsets *X_A*, *X_B* conditionally independnt given a separating subset

MRFs versus Bayesian networks

MRFs

- + can be applied to problems without clear direction in variable dependencies
- + Can express certain dependencies that Bayesian networks cannot (converse is also true)
- The normalization constant *Z* is NP-hard in the general case
- More difficult to interpret
- More difficult to generate data from

Moralization

- A Bayesian network is a special case of Markov networks.
- A Bayesian network can always be converted to a Markov network
 - take the directed Bayesian network graph G
 - remove edge direction
 - add side edges between all parents

Independencies in Markov networks

- Variables X and Y are dependent if they are connected by a path of unobserved variables.
- If all neighbors of *X* are observed then *X* is independent of all other variables

Conditional random fields (CRFs)

Discriminative Markov random fields applied to model a conditional probability distribution

$$P(Y = y | X = x) = \frac{1}{Z(x)} \prod_{c \in \mathcal{C}} \phi_c(x_c, y_c)$$

Conditional random fields (CRFs)

In classification, *X* could be a features vector and *Y* the class label, and the goal is to infer a label given the features using MAP inference

$$\widehat{\mathbf{y}} = \arg\max_{\mathbf{y}} \phi(\mathbf{y}_1, \mathbf{x}_1) \prod_{i=1}^n \phi(\mathbf{y}_{i-1}, \mathbf{y}_i) \phi(\mathbf{y}_i, \mathbf{x}_i)$$

CHALMERS

Inference in graphical models

Given a graphical model, we want to answer questions of interest.

• *Marginal inference*: what is the marginal probability of a given variable *Y* in our graph, summing out the rest?

$$P(Y = y) = \sum_{x_1} \sum_{x_2} \cdots \sum_{x_n} P(Y = y, X_1 = x_1, X_2 = x_2, \dots, X_n = x_n)$$

• *Maximum a posteriori (MAP) inference*: what is the most likely assignment to the variables in the graph (possibly conditioned on data)?

$$\max_{x_1,\ldots,x_n} P(Y = y, X_1 = x_1, \ldots, X_n = x_n)$$

Inference algorithms in graphical models

Exact inference

- Variable elimination
- Message passing/belief propagation
- Junction trees

Approximative inference

- Stochastic simulation
- Markov chain Monte Carlo (MCMC)
- Variational algorithms

Example: variable elimination in a chain graph

Random variables: *A*, *B*, *C*, *D*, *E*

each taking *n* possible values \Rightarrow joint probability has n^5 possible values.

$$P(E = e) = \sum_{a,b,c,d} P(A = a, B = b, C = c, D = d, E = e)$$

i.e. $O(n^4)$ operations.

Example: variable elimination in a chain graph

Exploit the structure and perform summation "inside-out"

$$P(e) = \sum_{a,b,c,d} P(a,b,c,d,e) = \sum_{a,b,c,d} P(a)P(b|a)P(c|b)P(d|c)P(e|d)$$
$$= \sum_{b,c,d} P(c|b)P(d|c)P(e|d)\sum_{a} P(b|a)P(a) \qquad n \text{ operations}$$
$$= \sum_{b,c,d} P(c|b)P(d|c)P(e|d)P(b)$$
$$(A \rightarrow B \rightarrow C \rightarrow D \rightarrow E$$

Example: variable elimination in a chain graph

Repeat the process

$$P(e) = \sum_{b,c,d} P(c|b)P(d|c)P(e|d) P(b)$$

$$= \sum_{c,d} (d|c)P(e|d) \sum_{b} P(c|b)P(b) \qquad n \text{ operations}$$

$$= \sum_{c,d} P(d|c)P(e|d) P(c)$$

For *k* variables we perform $O(kn^2)$ operations rather than $O(n^5)$.

Similar rearrangements can be done in undirected graphs.

9/23/2019

Inference algorithms in graphical models

Exact inference

- Variable elimination
- Message passing/belief propagation
- Junction trees

Approximative inference

- Stochastic simulation
- Markov chain Monte Carlo (MCMC)
- Variational algorithms