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Graphical models

Economic networks
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Graphical models

Diagrammatic representations of various
connections and dependencies

Informative visualization of the structure

Efficient computer algorithms acting directly
on the graph model
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Graphical models

Three main objectives:
*  Representation
- model structure
* Inference
« queries to ask using model
« Learning
- fit model to observed data
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Graphical models: some basics

A simple graph G = (V, E) consists of
 Aset V of vertices or nodes
 Aset E of edges or links
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Graphical models: some basics

The graph can be
« directed or
 undirected

A complete graph has a connection
between every pair of vertices
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Graphical models: some basics

Directed Undirected
* Directional links (with arrows) - Links without arrows
* Indicating conditional - Indicating relationships

dependence (correlation)
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Directed acyclic graphs (DAGs)

- Contains no cycles/loops.
- Topological ordering of nodes

no DAG DAG
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Directed acyclic graphs (DAGs)

The parents of a node are the nodes with links into it.

pa(Y) = {X3, X4}
The children of a node are the nodes with links to
them from that node.

ch(Y) = {Xe, X7}
The family of a node is itself and its parents.

The Markov blanket of a node is its parents, its
children, and its children’s parents (excluding itself).

Markov blanket(Y) = {X3, X4, ..., X7}




CHALMERS

Probabilistic graphical models

A simple graph G = (V, E) consists of
 Aset V of vertices or nodes
 Aset E of edges or links

- Graph: represents the joint distribution of the
random variables

- Vertices: random variables
- Edges: probabilistic relationships
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Examples of graphical models

Directed Undirected
- Naive Bayes - Markov random fields
- Bayesian networks - Conditional random fields

« Markov chains
 Neural networks
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Chain rule for DAGs

e Random variables: X,Y,Z

 Chain rule
P(X,Y,Z) = P(X|Y,Z)P(Y,2Z)
= P(X|Y,Z)P(Y|Z)P(Z)

* In general, for any X, X,, ..., X,

P(Xl,Xz, ...,Xn) -
= P(X1|X3, ... X )P(X2|X3, ..., Xp) - P(Xp—1| X)) P(X,)
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Chain rule for DAGs

* Note: The factorization is not unique:
P(X,Y,Z) = P(X|Y,Z)P(Y|2)P(Z) = P(Z|X,Y)P(Y|X)P(X) = -

In total n! = 6 different graph representations.

Can you figure out their structures and factorizations?
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Chain rule for DAGs )

Can deduce probabilistic model from graph @ ‘@

P(Xy, Xy, ..., Xs) "
= P(X1)P(X3)P(X2|X1)P(X4|X1, X3)P(X5|X2, X3, X4) @‘@

A link going from X; — X, means that X, is a parent

node of X,.
The probability of each node X; is conditioned only @
on its parents pa(X;
p paXy) (%)
P(Xy, .., Xy) = | | POXiIpax)
i=1 @

pa(Xy) = {X1, X3}
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Naive Bayes: a motivating example

We have N = 1000 fruits with possible class labels
Banana
Orange
Other
* Three possible features
Long
Sweet
Yellow

- Objective: predict the class label for a given fruit
where only the three features are known

/
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Naive Bayes: a motivating example

- Labels {Y{,Y,, Y3} = {banana, orange, other}

« Features: {X1, X5, X3} = {long, sweet, yellow} where
x® — {1 if fruit i is long
1 0 otherwise

* Objective: determine label Y* for a new fruit with
data X3, X5, X3.
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Naive Bayes: a motivating example

- General model: po(y, x4, ..., Xg)
- Has 2X*1 possible states!

« Often K > 3.
- Exponential-sized problem.
* Reduce the size through simplifying assumptions!

4
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Naive Bayes: a motivating example

Assumption: X, and X,,, are conditionally independent
givenY

P(X;, X, |Y) = P(X|Y)P(X,,|Y) for k + m

May not be true for all applications.
But if true for most pairs, then it might still be ok.

This is referred to as the Naive Bayes assumtion.
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Naive Bayes: general description

- Class label Y and feature vector (X4, ..., Xy)
- The Naive Bayes assumption
P(Y,X1,X3,..Xg) = P(Y) [Tj=1 P(X|Y)

prior likelihood
A |

 Posterior

P - T, P(X,IY)
P(Y|(X4, .., Xr) =
( | 1 K) ‘l—llk(zlp(Xk),

Y
normalizer
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Naive Bayes: a motivating example

Label Long I'::::; Sweet S\'I\lvg:at Yellow y::Ioc: W Total
Orange 150 150
----

Total 1000

» Potential queries
« What is the probability of it being a banana given the features long, sweet
and yellow?
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Naive Bayes: a motivating example

Step 1: Compute the prior probabilities P(Y) for each fruit

label

from prior information
or from training data

P(Y = banana) = 500/1000 = 0.5
P(Y = orange) = 300/1000 = 0.3
P(Y = other) = 200/1000 = 0.2

Label

Banana

Orange

Total
500
300

Total

1000
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Naive Bayes: a motivating example

Step 2: Compute the denominator

K
[ [Pexio
k=1

P(X; = long) = 500/1000 = 0.5
P(X, = sweet) = 650/1000 = 0.65
P(X; = yellow) = 800/1000 = 0.8

Label

Orange

Total

Long

4

100
500

Sweet

T
0 150 300 300

150
650

Yellow

800

Total

200
1000
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Naive Bayes: a motivating example

Step 3: Compute the likelihood

ﬁ P(X. V) = ﬁ #{fruits with label Y and feature X} }
k=1 (Xil¥) = #{fruits with label Y}

k=1
P(X; = long|banana) = 400/500 = 0.8
P(X, = sweet|banana) = 350/500 = 0.7
P(X3 = yellow|banana) = 450/500 = 0.9

Label Long | Sweet | Yellow | Total
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Naive Bayes: a motivating example

Given that the fruit is long, sweet, and yellow, what is the
probability it is a banana?

P(bananal|long, sweet, yellow) =

_ P(banana)P(long|banana) P (sweet|banana) P(yellow|banana)

B P(long) P(sweet) P (yellow)

- 0.5-0.8:0.7-0.9
~ 0.5-0.65-0.8

= 0.969

/
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Naive Bayes: a motivating example

Step 4: Given that the fruit is long, sweet, and yellow, what
is the most likely label?

P(bananallong, sweet, yellow)
o« P(banana)P (long |banana)P(sweet |banana)P (yellow |banana)

=0.5:-0.8:0.7-0.9=0.252
P(orange |long, sweet, yellow) « 0 because P(long|orange) = 0
P (other [long, sweet, yellow) « 0.01875

The fruit is most likely a banana!

/
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Laplace smoothing

Label Long Not Sweet Not Yellow Not Total
long sweet yeIIow

Orange 150 150
Total 500 500 650 350 800 200 1000

- Could be the true frequency in the population
- Could be due to a small sample
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Laplace smoothing

A simple way to avoid zero-frequencies is to add on
pseudo-counts to all counts.

K K

P(X,|Y) = #{label Y, feature X} + «
H (kl)—H e
k=1 1 1

For binary features X, € {0,1}

#{label Y, feature X; } + a

PXi]¥) = N+2 K-a

Add-one smoothing: a = 1
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Laplace smoothing

Label Long I'::::; Sweet S\'I\lvg:at Yellow y::Ioot W Total
CRRAI SR SR EHER
Orange 151 151

Total 503 503 653 353 803 203 1006

Total number of pseudo-counts: 2- K=2-3 =6
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Naive Bayes: Maximum Likelihood estimation (MLE)

Maximum Likelihood estimation

n
Y = argmax P(Xy, ..., X,|Y) = arg maxl_[P(X,-|Y)
Y Y
i=1

Maximize likelihood function

n

oL

3y = 0 where L(X|Y) = ZlogP(X,-IY)
i=1

Fruit example: {Y;,Y,,Y3} = {P(banana), P(orange), P(other)}
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Naive Bayes: Maximum A Posteriori (MAP) estimation

Similar to MLE, but now we have a prior P(0)

Maximum A Posteriori (MAP) estimation
_ P(X4,..,X,|0)P(0)

0 = argmax P(0|X4, ..., X,;) = arg max

Since P(X4, ..., X,,) is constant, we can ignore it.
0 = argmax P(X4, ..., X,,|0)P(0) () ®)
(7]

Maximize the posterior

0L

n
30 0 where L(X4, ..., X,,|0) = Z log P(X;|0) + log P(0)
i=1
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Naive Bayes: parameter estimation

When P(0) is uniform MLE and MAP are equivalent.
When the dataset increases, MLE and MAP converge.

« The more data the less influence of the prior.
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Bayesian networks (belief networks)

« Directed graph: ¢ = (V,E)

 Arandom variable X; for each nodei € V

- A conditional probability P(X;|pa(X;)) fori e V.
* Resulting in a distribution of the form

D
P(Xy, .., Xp) = | | P(Xilpa(x)
i=1

where pa(X;) are the parental nodes of X;.
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Bayesian networks: an example

metastatic cancer

increased total e brain tumor
serium calcium

severe
headaches
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Bayesian networks: an example
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Bayesian networks: an example

P(C|A)

st [o0s

0.2

TRUE

P(C|E)

s o

0.8
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Bayesian networks: an example

Now we can compute the joint probability for any
combination of interest

P(A*,B~,C*,D",E*) = P(B|A)
=P(AY)P(B~|AY)P(C*|A")P(D™|B~,CT)P(E*|CY)
= P(A")(1 - P(B*|A"))P(C*|A™)(1 — P(D*|B~,C"))P(E*|CT)

=...=0.00128 P(D|B, () P(E|C)

However: this needs to be put in relation to all other
value combinations (2° = 32 joint probabilities)...
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Dependency structures in Bayesian networks

Consider a graph G with nodes V = {X,Y, Z}

« Common cause: ifY <« X - ZthenY and Z are
conditionally independentgiven X =Y L Z | X

- Cascade:ifX Y > ZthenX L Z|Y O—(¥)~(2)

- Common effect (V-structure, explaining away): if
X->Z<YthenX 1Y if Z is unobserved, but not
otherwise.



CHALMERS

UNIVERSITY OF TECHNOLOGY

Dependency structures in Bayesian networks

Local Markov property:
In a DAG with variables X4, ..., X,,:

each node X; is independent of its non-
descendants given its parents.
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D-separation in directed graphs

Informally: two sets of hodes Q,W c V are d-separated
by a third set 0 c V if they are only connected via 0.

In practice: two variables (nodes) X and Y are d-
separated with respect to a set of variables Z, if they
are conditionally independent, given Z

P(X,Y|Z) = P(X|Z)P(Y|Z)
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Dependency structures in Bayesian networks

Global Markov property: Q

A DAG with variables X4, ..., X,, satisfies the
global Markov property if, for any subset of
variables Q, W, O such that O separates Q from 0
W, then
P(Q,W|0) = P(Q|0)P(W|0)
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Undirected graphs

* In undirected graphs the links have no direction,

and no causal inference can be made. 0 e
- A graph is fully connected if there is a link between v

every pair of nodes. ""Q
- The neighbors of a node are the nodes directly o=0

connected to it
ne(E) = {B, D}
* Neighboring nodes represent correlated variables.
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Undirected graphs: cliques

A clique is a fully connected subset of (at least two)
nodes.
e.g. C = {B, C, D} is one clique

Can you see how many cliques there are?

A maximal clique is a clique that is not contained in a
larger clique.

¢; = {A,B,C, D}, ¢, = {B,D, E}
Cliques represent

variables that are all dependent on one another.

variable structure cannot be reduced further without loss of
information.

X




CHALMERS

Markov random fields (MRFs, Markov networks)

Markov random field:

- probability distribution over variables X4, X5, ..., X,
represented by an undirected graph

1
Py, Xn) = 5| [ 9eX0

cec
where

* C =the set of cliques (fully connected subgraphs)
* ¢, = a factor function defined over the clique c
- Z = normalizing partition function
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MRF Markov properties

For an undirected graph G = (V, E) of random variables
X1, X0, 0, Xy

Pairwise Markov property: Any two non-adjacent
variables X;, X; are conditionally independent given
all other variables

Local Markov property: A variable X; is conditionally
independent of all other variables, given its

neighbors

Global Markov property: any two subsets X4, Xp
conditionally independnt given a separating subset
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MRFs versus Bayesian networks

MRFs

+ can be applied to problems without clear direction in
variable dependencies

+ Can express certain dependencies that Bayesian
networks cannot (converse is also true)

- The normalization constant Z is NP-hard in the
general case

- More difficult to interpret
- More difficult to generate data from
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Moralization

- A Bayesian network is a special case of Markov networks.

- A Bayesian network can always be converted to a Markov
network

- take the directed Bayesian network graph G
* remove edge direction
- add side edges between all parents

—
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Independencies in Markov networks

« Variables X and Y are dependent if they are connected by a path of
unobserved variables.

- If all neighbors of X are observed then X is independent of all other
variables
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Conditional random fields (CRFs)

Discriminative Markov random fields applied to model a conditional
probability distribution

1
P(Y = y|X =Xx) = mn‘l)c(xc;yc)

ceC

hidden (oo (1 —(¥%)
observed @ @ @ @ @
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Conditional random fields (CRFs)

In classification, X could be a features vector and Y the class label,
and the goal is to infer a label given the features using MAP
inference

y = arg max ¢p(yq,x41) 1_[ dVi—1, )Py, xi)
y i=1



CHALMERS

Inference in graphical models

Given a graphical model, we want to answer questions
of interest.

- Marginal inference: what is the marginal probability of a
given variable Y in our graph, summing out the rest?

PY=y)= 77 ---SZP(Y =y,X1=x1,X2 =%y, ..., X, = X,)

X1 X2 Xn

Maximum a posteriori (MAP) inference: what is the most
likely assignment to the variables in the graph (possibly
conditioned on data)?

max P(Y =y,X;1 =x¢1, ..., X5, = X;,)

X1,--wXn
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Inference algorithms in graphical models

Exact inference

- Variable elimination

- Message passing/belief propagation
« Junction trees

Approximative inference

- Stochastic simulation

« Markov chain Monte Carlo (MCMC)
- Variational algorithms
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Example: variable elimination in a chain graph

Random variables: A,B,C,D,E

OaORORORD)

each taking n possible values = joint probability has n°> possible
values.

P(E =e) = z P(A=aB=b,C=c,D=d,E=c¢e)
ab,cd
i.e. 0(n*) operations.
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Example: variable elimination in a chain graph

Exploit the structure and perform summation ”inside-out”

P(e) = Z P(a,b,c,d,e) = Z P(a)P(bla)P(c|b)P(d|c)P(e|d)

ab,c,d ab,c,d

_ z P(c|b)P(d|c)P(e|d]zP(bla)P(a) n operations

b,c.d

_ 2 P(c|b)P(d|c)P(e|d) P(b)

b,c,d
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Example: variable elimination in a chain graph

Repeat the process
P(e) = ZP(CIb)P(dlc)P(eld)P(b) . ‘ . . .

b,c,d

= ) (@loP(eld) > P(cib)P(b) [ n operations
cd b

_ z P(d|c)P(e|d) P(c)
cd

For k variables we perform 0(kn?) operations rather than 0(n>).

Similar rearrangements can be done in undirected graphs.
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Inference algorithms in graphical models

Exact inference

- Variable elimination

- Message passing/belief propagation
« Junction trees

Approximative inference

- Stochastic simulation

« Markov chain Monte Carlo (MCMC)
- Variational algorithms



