CHALMERS
 UNIVERSITY OF TECHNOLOGY

Statistical methods in Data Science and AI

Marina Axelson-Fisk
Xxx, 2019
-

CHALMERS

UNIVERSITY OF TECHNOLOGY

Module 3.2: Graphical models

CHALMERS

Graphical models

Information networks

Economic networks

Network of neurons

Biomedical networks

Internet

CHALMERS

UNIVERSITY OF TECHNOLOGY

Graphical models

- Diagrammatic representations of various connections and dependencies
- Informative visualization of the structure
- Efficient computer algorithms acting directly on the graph model

CHALMERS

Graphical models

Three main objectives:

- Representation
- model structure
- Inference
- queries to ask using model
- Learning
- fit model to observed data

CHALMERS

Graphical models: some basics

A simple graph $\boldsymbol{G}=(\boldsymbol{V}, \boldsymbol{E})$ consists of

- A set V of vertices or nodes
- A set E of edges or links

CHALMERS

Graphical models: some basics

The graph can be

- directed or
- undirected

A complete graph has a connection between every pair of vertices

CHALMERS

Graphical models: some basics

Directed

- Directional links (with arrows)
- Indicating conditional dependence

Undirected

- Links without arrows
- Indicating relationships (correlation)

CHALMERS

Directed acyclic graphs (DAGs)

- Contains no cycles/loops.
- Topological ordering of nodes

CHALMERS

UNIVERSITY OF TECHNOLOGY

Directed acyclic graphs (DAGs)

- The parents of a node are the nodes with links into it.

$$
\operatorname{pa}(\boldsymbol{Y})=\left\{\boldsymbol{X}_{3}, \boldsymbol{X}_{4}\right\}
$$

- The children of a node are the nodes with links to them from that node.

$$
\operatorname{ch}(\boldsymbol{Y})=\left\{X_{6}, X_{7}\right\}
$$

- The family of a node is itself and its parents.
- The Markov blanket of a node is its parents, its children, and its children's parents (excluding itself).

$$
\operatorname{Markov} \operatorname{blanket}(\boldsymbol{Y})=\left\{\boldsymbol{X}_{3}, \boldsymbol{X}_{4}, \ldots, \boldsymbol{X}_{7}\right\}
$$

CHALMERS

Probabilistic graphical models

A simple graph $G=(\boldsymbol{V}, \boldsymbol{E})$ consists of

- A set V of vertices or nodes
- A set E of edges or links
- Graph: represents the joint distribution of the random variables
- Vertices: random variables
- Edges: probabilistic relationships

CHALMERS

Examples of graphical models

Directed

- Naïve Bayes
- Bayesian networks
- Markov chains
- Neural networks

Undirected

- Markov random fields
- Conditional random fields

CHALMERS

UNIVERSITY OF TECHNOLOGY

Chain rule for DAGs

- Random variables: X, Y, Z
- Chain rule

$$
\begin{aligned}
P(X, Y, Z) & =P(X \mid Y, Z) P(Y, Z) \\
& =P(X \mid Y, Z) P(Y \mid Z) P(Z)
\end{aligned}
$$

- In general, for any $X_{1}, X_{2}, \ldots, X_{n}$

$$
\begin{aligned}
& P\left(X_{1}, X_{2}, \ldots, X_{n}\right)= \\
& \quad=P\left(X_{1} \mid X_{2}, \ldots X_{n}\right) P\left(X_{2} \mid X_{3}, \ldots, X_{n}\right) \cdots P\left(X_{n-1} \mid X_{n}\right) P\left(X_{n}\right)
\end{aligned}
$$

CHALMERS

Chain rule for DAGs

- Note: The factorization is not unique:

$$
P(X, Y, Z)=P(X \mid Y, Z) P(Y \mid Z) P(Z)=P(Z \mid X, Y) P(Y \mid X) P(X)=\cdots
$$

In total n ! = 6 different graph representations.

Can you figure out their structures and factorizations?

CHALMERS

UNIVERSITY OF TECHNOLOGY

Chain rule for DAGs

- Can deduce probabilistic model from graph $P\left(X_{1}, X_{2}, \ldots, X_{5}\right)$
$=P\left(X_{1}\right) P\left(X_{3}\right) P\left(X_{2} \mid X_{1}\right) P\left(X_{4} \mid X_{1}, X_{3}\right) P\left(X_{5} \mid X_{2}, X_{3}, X_{4}\right)$
- A link going from $X_{1} \rightarrow X_{2}$ means that X_{1} is a parent
 node of X_{2}.
- The probability of each node X_{i} is conditioned only on its parents $\mathrm{pa}\left(X_{i}\right)$

$$
P\left(X_{1}, \ldots, X_{n}\right)=\prod_{i=1}^{n} P\left(X_{i} \mid \operatorname{pa}\left(X_{i}\right)\right)
$$

$\operatorname{pa}\left(X_{4}\right)=\left\{\boldsymbol{X}_{1}, X_{3}\right\}$

Naïve Bayes: a motivating example

- We have $\boldsymbol{N}=\mathbf{1 0 0 0}$ fruits with possible class labels
- Banana
- Orange
- Other
- Three possible features
- Long
- Sweet
- Yellow
- Objective: predict the class label for a given fruit where only the three features are known

Naïve Bayes: a motivating example

- Labels $\left\{Y_{1}, Y_{2}, Y_{3}\right\}=\{$ banana, orange, other $\}$
- Features: $\left\{X_{1}, X_{2}, X_{3}\right\}=\{$ long, sweet, yellow $\}$ where

$$
X_{1}^{(i)}= \begin{cases}1 & \text { if fruit } i \text { is long } \\ 0 & \text { otherwise }\end{cases}
$$

- Objective: determine label Y^{*} for a new fruit with data $X_{1}^{*}, X_{2}^{*}, X_{3}^{*}$.

Naïve Bayes: a motivating example

- General model: $\boldsymbol{p}_{\boldsymbol{\theta}}\left(\boldsymbol{y}, \boldsymbol{x}_{1}, \ldots, x_{K}\right)$
- Has 2^{K+1} possible states!
- Often $K \gg 3$.
- Exponential-sized problem.
- Reduce the size through simplifying assumptions!

Naïve Bayes: a motivating example

- Assumption: X_{k} and X_{m} are conditionally independent given Y

$$
P\left(X_{k}, X_{m} \mid Y\right)=P\left(X_{k} \mid Y\right) P\left(X_{m} \mid Y\right) \text { for } k \neq m
$$

- May not be true for all applications.
- But if true for most pairs, then it might still be ok.
- This is referred to as the Naïve Bayes assumtion.

CHALMERS

UNIVERSITY OF TECHNOLOGY

Naïve Bayes: general description

- Class label Y and feature vector $\left(X_{1}, \ldots, X_{k}\right)$
- The Naïve Bayes assumption

$$
P\left(Y, X_{1}, X_{2}, \ldots X_{K}\right)=P(Y) \prod_{k=1}^{K} P\left(X_{k} \mid Y\right)
$$

- Posterior

$$
P\left(Y \mid X_{1}, \ldots, X_{K}\right)=\frac{P(Y) \cdot \prod_{k=1}^{K} P\left(X_{k} \mid Y\right)}{\prod_{k=1}^{\prod_{\text {normalizer }}^{K} P\left(X_{k}\right)}}
$$

Naïve Bayes: a motivating example

Label	Long	Not long	Sweet	Not sweet	Yellow	Not yellow	Total
Banana	400	100	350	150	450	50	500
Orange	0	300	150	150	300	0	300
Other	100	200	150	50	50	150	200
Total	500	500	650	350	800	200	1000

- Potential queries
- What is the probability of it being a banana given the features long, sweet and yellow?

Naïve Bayes: a motivating example

Step 1: Compute the prior probabilities $\boldsymbol{P}(\boldsymbol{Y})$ for each fruit label

- from prior information
- or from training data

$$
\begin{aligned}
& P(Y=\text { banana })=\mathbf{5 0 0} / \mathbf{1 0 0 0}=\mathbf{0} .5 \\
& P(Y=\text { orange })=\mathbf{3 0 0} / \mathbf{1 0 0 0}=\mathbf{0 . 3} \\
& P(Y=\text { other })=\mathbf{2 0 0} / \mathbf{1 0 0 0}=\mathbf{0 . 2}
\end{aligned}
$$

Label	Total
Banana	500
Orange	300
Other	200
Total	1000

Naïve Bayes: a motivating example

Step 2: Compute the denominator

$$
\begin{gathered}
\prod_{k=1}^{K} P\left(X_{k}\right) \\
P\left(X_{1}=\text { long }\right)=500 / 1000=0.5 \\
P\left(X_{2}=\text { sweet }\right)=650 / 1000=0.65 \\
P\left(X_{3}=\text { yellow }\right)=800 / 1000=0.8
\end{gathered}
$$

Label	Long	Sweet	Yellow	Total
Banana	400	350	450	500
Orange	0	150	300	300
Other	100	150	50	200
Total	500	650	800	1000

Naïve Bayes: a motivating example

Step 3: Compute the likelihood

$$
\begin{aligned}
& \prod_{k=1}^{K} P\left(X_{k} \mid Y\right)=\prod_{k=1}^{K} \frac{\#\left\{\text { fruits with label } \boldsymbol{Y} \text { and feature } X_{k}\right\}}{\#\{\text { fruits with label } Y\}} \\
& P\left(X_{1}=\text { long } \mid \text { banana }\right)=400 / 500=0.8 \\
& P\left(X_{2}=\text { sweet } \mid \text { banana }\right)=\mathbf{3 5 0} / 500=0.7 \\
& P\left(X_{3}=\text { yellow } \mid \text { banana }\right)=450 / 500=0.9
\end{aligned}
$$

Label	Long	Sweet	Yellow	Total
Banana	400	350	450	500

Naïve Bayes: a motivating example

Given that the fruit is long, sweet, and yellow, what is the probability it is a banana?

$$
\begin{aligned}
& \boldsymbol{P}(\text { banana } \mid \text { long, sweet, yellow })= \\
& \quad=\frac{\boldsymbol{P}(\text { banana }) \boldsymbol{P}(\text { long } \mid \text { banana }) \boldsymbol{P}(\text { sweet } \mid \text { banana }) \boldsymbol{P}(\text { yellow } \mid \text { banana })}{\boldsymbol{P}(\text { long }) \boldsymbol{P}(\text { sweet }) \boldsymbol{P}(\text { yellow })} \\
& \quad=\frac{0.5 \cdot 0.8 \cdot 0.7 \cdot 0.9}{0.5 \cdot 0.65 \cdot 0.8}=0.969
\end{aligned}
$$

Naïve Bayes: a motivating example

Step 4: Given that the fruit is long, sweet, and yellow, what is the most likely label?
P (banana|long, sweet, yellow)
$\propto \boldsymbol{P}($ banana $) \boldsymbol{P}($ long \mid banana $) \boldsymbol{P}$ (sweet \mid banana $) \boldsymbol{P}$ (yellow |banana)
$=0.5 \cdot 0.8 \cdot 0.7 \cdot 0.9=0.252$
\boldsymbol{P} (orange |long, sweet, yellow) $\propto \mathbf{0}$ because \boldsymbol{P} (long|orange) $=\mathbf{0}$
P (other llong, sweet, yellow) $\propto 0.01875$
The fruit is most likely a banana!

Laplace smoothing

Label	Long	Not long	Sweet	Not sweet	Yellow	Not yellow	Total
Banana	400	100	350	150	450	50	500
Orange	0	300	150	150	300	0	300
Other	100	200	150	50	50	150	200
Total	500	500	650	350	800	200	1000

- Could be the true frequency in the population
- Could be due to a small sample

CHALMERS

Laplace smoothing

A simple way to avoid zero-frequencies is to add on pseudo-counts to all counts.

$$
\prod_{k=1}^{K} P\left(X_{k} \mid Y\right)=\prod_{k=1}^{K} \frac{\#\left\{\text { label } Y, \text { feature } X_{k}\right\}+\alpha}{N+K \cdot \alpha}
$$

For binary features $X_{k} \in\{0,1\}$

$$
P\left(X_{\boldsymbol{k}} \mid \boldsymbol{Y}\right)=\frac{\#\left\{\text { label } \boldsymbol{Y}, \text { feature } X_{\boldsymbol{k}}\right\}+\boldsymbol{\alpha}}{\boldsymbol{N}+2 \cdot \boldsymbol{K} \cdot \boldsymbol{\alpha}}
$$

Add-one smoothing: $\alpha=1$

CHALMERS

UNIVERSITY OF TECHNOLOGY

Laplace smoothing

Label	Long	Not long	Sweet	Not sweet	Yellow	Not yellow	Total
Banana	401	101	351	151	451	51	502
Orange	1	301	151	151	301	1	302
Other	101	201	151	51	51	151	202
Total	503	503	653	353	803	203	1006

Total number of pseudo-counts: $2 \cdot K=2 \cdot 3=6$

Naïve Bayes: Maximum Likelihood estimation (MLE)

Maximum Likelihood estimation

$$
\widehat{\boldsymbol{Y}}=\underset{\boldsymbol{Y}}{\arg \max } \boldsymbol{P}\left(\boldsymbol{X}_{1}, \ldots, \boldsymbol{X}_{\boldsymbol{n}} \mid \boldsymbol{Y}\right)=\underset{\boldsymbol{Y}}{\arg \max } \prod_{i=1}^{n} \boldsymbol{P}\left(\boldsymbol{X}_{\boldsymbol{i}} \mid \boldsymbol{Y}\right)
$$

Maximize likelihood function

$$
\frac{\partial \mathcal{L}}{\partial Y}=0 \text { where } \mathcal{L}(X \mid Y)=\sum_{i=1}^{n} \log P\left(X_{i} \mid Y\right)
$$

Fruit example: $\left\{\boldsymbol{Y}_{1}, \boldsymbol{Y}_{2}, \boldsymbol{Y}_{3}\right\}=\{\boldsymbol{P}$ (banana), \boldsymbol{P} (orange), \boldsymbol{P} (other) $\}$

CHALMERS

UNIVERSITY OF TECHNOLOGY

Naïve Bayes: Maximum A Posteriori (MAP) estimation

Similar to MLE, but now we have a prior $\mathrm{P}(\boldsymbol{\theta})$
Maximum A Posteriori (MAP) estimation

$$
\widehat{\boldsymbol{\theta}}=\underset{\boldsymbol{\theta}}{\arg \max } \boldsymbol{P}\left(\boldsymbol{\theta} \mid \boldsymbol{X}_{1}, \ldots, \boldsymbol{X}_{n}\right)=\underset{\boldsymbol{\theta}}{\arg \max } \frac{\boldsymbol{P}\left(\boldsymbol{X}_{1}, \ldots, \boldsymbol{X}_{n} \mid \boldsymbol{\theta}\right) \boldsymbol{P}(\boldsymbol{\theta})}{\boldsymbol{P}\left(\boldsymbol{X}_{1}, \ldots, \boldsymbol{X}_{n}\right)}
$$

Since $P\left(X_{1}, \ldots, X_{n}\right)$ is constant, we can ignore it.

$$
\widehat{\boldsymbol{\theta}}=\underset{\boldsymbol{\theta}}{\arg \max } \boldsymbol{P}\left(\boldsymbol{X}_{1}, \ldots, \boldsymbol{X}_{\boldsymbol{n}} \mid \boldsymbol{\theta}\right) \boldsymbol{P}(\boldsymbol{\theta})
$$

Maximize the posterior

$$
\frac{\partial \mathcal{L}}{\partial \boldsymbol{\theta}}=0 \text { where } \mathcal{L}\left(\boldsymbol{X}_{1}, \ldots, \boldsymbol{X}_{n} \mid \boldsymbol{\theta}\right)=\sum_{i=1}^{n} \log \boldsymbol{P}\left(\boldsymbol{X}_{\boldsymbol{i}} \mid \boldsymbol{\theta}\right)+\log \boldsymbol{P}(\boldsymbol{\theta})
$$

Naïve Bayes: parameter estimation

- When $\boldsymbol{P}(\boldsymbol{\theta})$ is uniform MLE and MAP are equivalent.
- When the dataset increases, MLE and MAP converge.
- The more data the less influence of the prior.

CHALMERS

Bayesian networks (belief networks)

- Directed graph: $G=(V, E)$
- A random variable X_{i} for each node $i \in V$
- A conditional probability $P\left(X_{i} \mid \mathrm{pa}\left(X_{i}\right)\right)$ for $i \in V$.
- Resulting in a distribution of the form

$$
P\left(X_{1}, \ldots, X_{D}\right)=\prod_{i=1}^{D} P\left(X_{i} \mid \operatorname{pa}\left(X_{i}\right)\right)
$$

where $\mathrm{pa}\left(X_{i}\right)$ are the parental nodes of X_{i}.

Bayesian networks: an example

Bayesian networks: an example

CHALMERS

UNIVERSITY OF TECHNOLOGY

Bayesian networks: an example

CHALMERS

Bayesian networks: an example

Now we can compute the joint probability for any combination of interest

$$
\begin{aligned}
& P\left(A^{+}, B^{-}, C^{+}, D^{-}, E^{+}\right)= \\
& =P\left(A^{+}\right) P\left(B^{-} \mid A^{+}\right) P\left(C^{+} \mid A^{-}\right) P\left(D^{-} \mid B^{-}, C^{+}\right) P\left(E^{+} \mid C^{+}\right) \\
& =P\left(A^{+}\right)\left(1-P\left(B^{+} \mid A^{+}\right)\right) P\left(C^{+} \mid A^{-}\right)\left(1-P\left(D^{+} \mid B^{-}, C^{+}\right)\right) P\left(E^{+} \mid C^{+}\right) \\
& =\cdots=0.00128
\end{aligned}
$$

However: this needs to be put in relation to all other value combinations ($2^{5}=32$ joint probabilities)...

CHALMERS

UNIVERSITY OF TECHNOLOGY

Dependency structures in Bayesian networks

Consider a graph G with nodes $V=\{X, Y, Z\}$

- Common cause: if $Y \leftarrow X \rightarrow Z$ then Y and Z are conditionally independent given $X \Rightarrow Y \perp Z \mid X$
- Cascade: if $X \rightarrow Y \rightarrow Z$ then $X \perp Z \mid Y$
- Common effect (V-structure, explaining away): if $X \rightarrow Z \leftarrow Y$ then $X \perp Y$ if Z is unobserved, but not otherwise.

CHALMERS

Dependency structures in Bayesian networks

Local Markov property:
In a DAG with variables X_{1}, \ldots, X_{n} :
each node X_{i} is independent of its nondescendants given its parents.

CHALMERS

D-separation in directed graphs

Informally: two sets of nodes $Q, W \subset V$ are d-separated by a third set $O \subset V$ if they are only connected via O.

In practice: two variables (nodes) X and Y are d separated with respect to a set of variables Z, if they are conditionally independent, given Z

$$
P(X, Y \mid Z)=P(X \mid Z) P(Y \mid Z)
$$

CHALMERS

Dependency structures in Bayesian networks

Global Markov property:
A DAG with variables X_{1}, \ldots, X_{n} satisfies the global Markov property if, for any subset of variables Q, W, O such that O separates Q from W, then

$$
P(Q, W \mid O)=P(Q \mid O) P(W \mid O)
$$

CHALMERS

UNIVERSITY OF TECHNOLOGY

Undirected graphs

- In undirected graphs the links have no direction, and no causal inference can be made.
- A graph is fully connected if there is a link between every pair of nodes.
- The neighbors of a node are the nodes directly
 connected to it

$$
\operatorname{ne}(\boldsymbol{E})=\{\boldsymbol{B}, \boldsymbol{D}\}
$$

- Neighboring nodes represent correlated variables.

CHALMERS

Undirected graphs: cliques

A clique is a fully connected subset of (at least two) nodes.

$$
\text { e.g. } \mathcal{C}=\{B, C, D\} \text { is one clique }
$$

Can you see how many cliques there are?
A maximal clique is a clique that is not contained in a
 larger clique.

$$
\mathcal{C}_{1}=\{A, B, C, D\}, \quad \mathcal{C}_{2}=\{B, D, E\}
$$

Cliques represent

- variables that are all dependent on one another.
- variable structure cannot be reduced further without loss of information.

CHALMERS

UNIVERSITY OF TECHNOLOGY

Markov random fields (MRFs, Markov networks)

Markov random field:

- probability distribution over variables $X_{1}, X_{2}, \ldots, X_{n}$ represented by an undirected graph

$$
P\left(X_{1}, \ldots, X_{n}\right)=\frac{1}{Z} \prod_{c \in \mathcal{C}} \phi_{c}\left(X_{c}\right)
$$

where

- $\mathcal{C}=$ the set of cliques (fully connected subgraphs)
- $\phi_{c}=$ a factor function defined over the clique c
- $Z=$ normalizing partition function

MRF Markov properties

For an undirected graph $G=(V, E)$ of random variables $X_{1}, X_{2}, \ldots, X_{n}$:

- Pairwise Markov property: Any two non-adjacent variables X_{i}, X_{j} are conditionally independent given all other variables
- Local Markov property: A variable X_{i} is conditionally independent of all other variables, given its neighbors
- Global Markov property: any two subsets X_{A}, X_{B} conditionally independnt given a separating subset

MRFs versus Bayesian networks

MRFs

+ can be applied to problems without clear direction in variable dependencies
+ Can express certain dependencies that Bayesian networks cannot (converse is also true)
- The normalization constant Z is NP-hard in the general case
- More difficult to interpret
- More difficult to generate data from

CHALMERS

Moralization

- A Bayesian network is a special case of Markov networks.
- A Bayesian network can always be converted to a Markov network
- take the directed Bayesian network graph G
- remove edge direction
- add side edges between all parents

CHALMERS

UNIVERSITY OF TECHNOLOGY

Independencies in Markov networks

- Variables X and Y are dependent if they are connected by a path of unobserved variables.
- If all neighbors of X are observed then X is independent of all other variables

CHALMERS

Conditional random fields (CRFs)

Discriminative Markov random fields applied to model a conditional probability distribution

$$
P(Y=y \mid X=x)=\frac{1}{Z(x)} \prod_{c \in \mathcal{C}} \phi_{c}\left(x_{c}, y_{c}\right)
$$

hidden
observed

CHALMERS

Conditional random fields (CRFs)

In classification, X could be a features vector and Y the class label, and the goal is to infer a label given the features using MAP inference

$$
\widehat{y}=\underset{y}{\arg \max } \phi\left(y_{1}, x_{1}\right) \prod_{i=1}^{n} \phi\left(y_{i-1}, y_{i}\right) \phi\left(y_{i}, x_{i}\right)
$$

Inference in graphical models

Given a graphical model, we want to answer questions of interest.

- Marginal inference: what is the marginal probability of a given variable Y in our graph, summing out the rest?

$$
P(Y=y)=\sum_{x_{1}} \sum_{x_{2}} \cdots \sum_{x_{n}} P\left(Y=y, X_{1}=x_{1}, X_{2}=x_{2}, \ldots, X_{n}=x_{n}\right)
$$

- Maximum a posteriori (MAP) inference: what is the most likely assignment to the variables in the graph (possibly conditioned on data)?

$$
\max _{x_{1}, \ldots, x_{n}} P\left(Y=y, X_{1}=x_{1}, \ldots, X_{n}=x_{n}\right)
$$

CHALMERS

Inference algorithms in graphical models

Exact inference

- Variable elimination
- Message passing/belief propagation
- Junction trees

Approximative inference

- Stochastic simulation
- Markov chain Monte Carlo (MCMC)
- Variational algorithms

CHALMERS

Example: variable elimination in a chain graph

Random variables: A, B, C, D, E

each taking n possible values \Rightarrow joint probability has n^{5} possible values.

$$
P(E=e)=\sum_{a, b, c, d} P(A=a, B=b, C=c, D=d, E=e)
$$

i.e. $O\left(n^{4}\right)$ operations.

CHALMERS

Example: variable elimination in a chain graph

Exploit the structure and perform summation "inside-out"

$$
\begin{aligned}
P(e) & =\sum_{a, b, c, d} P(a, b, c, d, e)=\sum_{a, b, c, d} P(a) P(b \mid a) P(c \mid b) P(d \mid c) P(e \mid d) \\
& =\sum_{b, c, d} P(c \mid b) P(d \mid c) P(e \mid d) \sum_{a} P(b \mid a) P(a) \quad n \text { operations } \\
& =\sum_{b, c, d} P(c \mid b) P(d \mid c) P(e \mid d) P(b)
\end{aligned}
$$

CHALMERS

Example: variable elimination in a chain graph

Repeat the process

$$
\begin{aligned}
P(e) & =\sum_{b, c, d} P(c \mid b) P(d \mid c) P(e \mid d) P(b) \\
& =\sum_{c, d}(d \mid c) P(e \mid d) \sum_{b} P(c \mid b) P(b) \\
& =\sum_{c, d} P(d \mid c) P(e \mid d) P(c)
\end{aligned}
$$

For k variables we perform $\boldsymbol{O}\left(k n^{2}\right)$ operations rather than $\boldsymbol{O}\left(\boldsymbol{n}^{5}\right)$.
Similar rearrangements can be done in undirected graphs.

CHALMERS

Inference algorithms in graphical models

Exact inference

- Variable elimination
- Message passing/belief propagation
- Junction trees

Approximative inference

- Stochastic simulation
- Markov chain Monte Carlo (MCMC)
- Variational algorithms

