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Inference in graphical models

Given a graphical model, we want to answer questions
of interest. 

• Marginal inference: what is the marginal probability of a 
given variable � in our graph, summing out the rest?

� � � � ���⋯�� � � �, �	 � 
	, �� � 
�, … , � � 



�
	

• Maximum a posteriori (MAP) inference: what is the most
likely assignment to the variables in the graph (possibly
conditioned on data)?

max
	,…,
� � � �,�	 � 
	, … , � � 
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Inference algorithms in graphical models

Exact inference

• Variable elimination

• Message passing/belief propagation

• Junction trees

Approximative inference

• Stochastic simulation

• Markov chain Monte Carlo (MCMC)

• Variational algorithms
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Example: variable elimination in a chain graph

Random variables: �,�, �,�, �

each taking  possible values �	, �,… , �, then the marginal 

probability of �
� � � � � ������� � �,� � �, � � �,� � �,� � ��



��	



��	



��	



��	
� � ���, �, �, ��

�,�,�,�
we can utilize the chain structure to reduce the number of operations 
by variable elimination.

 ! " # $
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Example: variable elimination in a chain graph

Exploit the structure ”inside-out” or from ”leaf-to-top”

� � � � ������ � � �,� � �, � � �,� � �, � � �
����

������ � � � � � � � � � � ���|��
����

  � ���� � � � � � ���|��
���

�� � � ����
�

�������|��� � � � � �
���

� � � ⋯ �
   � �� � � � � � ����

�
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Message passing/belief propagation

• Variable elimination can be seen as ”passing a message” 
(information), or ”propagating a belief” from one node to the 
next.

• This is the basic framework for computing various entities in 
Hidden Markov Models (HMMs) and Linear dynamical
systems (LDS)

• In continuous distributions '�
|(� message passing
corresponds to passing on parameter values ( between
neighboring nodes.
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Inference on trees

• Each node sends out the product of the messages received
from the parents to the children

• I.e. message passing is an abstract notion of conditional
(in)dependence

undirected tree directed tree polytree
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Inference on trees

• The junction tree algorithm (or clique tree algorithm) is a 
generalization of message passing to arbitrary graphs



Module 4.1: Kernel methods
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Kernel methods: motivation

• Given a training set ) � *+ , ,+ +�-.
• ,+ response

• *+ feature vector

• there are numerous tools for detecting linear
relations

• Ridge regression

• Support vector machines (SVMs)

• Principal component analysis (PCA)

• But what if the relationship is nonlinear?
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Motivating example: binary classification

• Training set: ) � *+ , ,+ +�-. , ,+ ∈ �01,21�
• Objective: learn a function 3�*� such that ,+ � sign 3 *+
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Linear classification

When classes are linearly separable, the boundary is a hyperplane. 

8T* 2 : � 0
If  8T* 2 : <= 0 , � redredredred    A 0 , � greengreengreengreen

But which line should we
choose?
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Linear classification

• How large margins do we have between the classes?

• How do we maximize that margin?
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How do we maximize the margin?

• Let  *B ∈ ) be the point closest to the hyperplane 38 * � 8T* 2 : � 0
• Normalize 8:

8T*B � 1
• The distance between *B and the plane

distance � 1
8 8T*B 08T* � 1

8
• Maximize this distance.

⇒ The canonical hyperplane
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Support vector machines (SVMs)

For two linearly separable classes with class labels ,+ ∈ 01, 21
• construct two supporting hyperplanes, one for each class

8F*+ 2 : G 01  for ,+ � 018F*+ 2 : J 21  for ,+ � 21
The corresponding supporting hyperplanes 
are thus

KL- � *+: 8F*+ 2 : � 01 , ,+ � 01KN- � *+: 8F*+ 2 : � 21 , ,+ � 21
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Support vector machines (SVMs)

In two dimensions the separating hyperplanes are lines on the form

38 *+ � 8F*+ 2 : � O-P- 2OQPQ 2 : � 0
Maximizing the margin = minimizing 8
under the constraints

8F*+ 2 : G 01  for ,+ � 018F*+ 2 : J 21  for ,+ � 21
or 

8∗ � arg min8,S
1
2 8 Q: ,+ UT*+ 2 : J 1

using Lagrange multipliers.
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Lagrange multipliers

• We want to optimize a function 3�P� subject to a constraint V P � 0.

• We form the Lagrangian function

W P, X � 3 P 0 XV�P�
where X is a Lagrange multiplier.

• We optimize by computing

YW
YP � 0  Z[\ YWYX � 0

and solve the corresponding equation
system.
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Support vector machines (SVMs)

Lagrangian function

W 8, :, ] � 1
2 8 Q 0�X+ ,+ 8T*+ 0 :

.

+�-
• ] � �X-, … , X.�: Lagrange multipliers

• ^: number of constraints

YW
YO+ � 0, _ � 1,… , ^  Z[\ YWY: � 0

⇒ 8 ��X+,+
.

+�-
*+    Z[\  �X+,+ � 0

.

+�-

support vectors

8∗ � arg min8,S
1
2 8 Q: ,+ UT*+ 2 : J 1
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Kernelized SVMs

Dual representation

Instead we maximize

Ẁ ] ��X+ 0 1
2��X+Xa,+,a

.

a�-
b�*+ , *a�

.

+�-

.

+�-
under the constraints

X+ J 0  Z[\ �X+,a � 0
.

+�-
where b *+ , *a � *+T*a is a kernel function.

8 ��X+,+
.

+�-
*+   Z[\  �X+,+ � 0

.

+�-
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Kernelized SVMs

To classify a new data point *∗ we observe the sign of

3 *∗ ��X+,+
.

+�-
b *∗, *+ 2 :
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Soft margin SVMs

When the training set cannot be perfectly separated we introduce slack 
variables

,+ 8T* 2 : J 1 0 c+
such that c+ G 1 for points on the correct side.

We want to minimize the misclassification
rate, i.e. minimize

�d c+ 0 1
.

+�-
  8efgf  d P � <1 if P G 00 if P = 0

NP-complete!
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Soft margin SVMs

Use the upper bound

�d c+ 0 1
.

+�-
G�c+

.

+�-
and minimize

"�c+ 2 1
2 8 Q

.

+�-
, " = 0

under the soft margin constraints

,+ 8F*+ 2 :  J 1 0 c+ , c+ J 0

" is a trade-off between
misclassification and 
complexity
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Kernelized soft margin SVMs

Lagrangian function

W 8, :, ] � 1
2 8 Q 2 "�c+

.

+�-
0�X+ ,+ 8T*+ 0 1 2 c+

.

+�-
0�h+c+

.

+�-
with Lagrange multipliers

] � X-, … , X. , i � �h-, … , hB�
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Kernelized soft margin SVMs

The dual form is the same as before

Ẁ ] ��X+ 0 1
2��X+Xa,+,a

.

a�-
b�*+ , *a�

.

+�-

.

+�-
but the maximization constraints become
limited by "
0 G X+ G "   Z[\  �X+,+

.

+�-
� 0
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Nonlinear classification

• There is no linear classifier that can separate red from green.
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Kernel methods: motivation

• Solution: 

• map the data into a (possibly high-dimensional) vector
space where the relation becomes linear

• apply the linear algorithm in this space

j *



0
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Nonlinear classification

• There is no linear classifier that can separate red from green.

• However, the following function can separate the regions perfectly

3 P � PQ 0 k � 1,0k , PQ, 1 , for  l A k A :

l :0: 0l

8T j�P�

• By mapping P to feature space j P � PQ, 1 ∈ ℝQ the nonlinear problem has 
become linear.
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Nonlinear classification

3 * � lP-Q 2 :P-PQ 2 nPQQ 2 YP- 2 oPQ 2 V
� l, :, n, Y, o, V , P-Q, P-PQ, PQQ, P-, PQ, 1  , j ∈ ℝp

• There is no linear classifier that can separate red from green.

• However, a conic section separates them perfectly

8T j�*�
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Kernel methods: motivation

• Problem: 

• computationally difficult to represent data in high
dimensions

j *
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Kernel methods: motivation

• Alternative: 

• compute similarity measure between vectors in feature space

• apply algorithms based on similarity measures

j *
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Kernel definition

• For input vectors *, q ∈ r and a mapping j:r → ℝ.

b *, q � j * Tj q
is a kernel function.

• The kernel trick: we don’t need the coordinates of
the data in feature space. Just the inner product
between vectors.
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Example

P-

PQ

Kernel: b *, q � *Tq � P-t- 2 PQtQ Q � P-Qt-Q 2 2P-t-PQtQ 2 PQQtQQ �
� P-Q, 2P-PQ, PQQ t-Q, 2t-tQ, tQQ F � j * Fj�q�

where j * � P-Q, 2P-PQ, PQQ F
is the nonlinear feature mapping.

j�P-, PQ� � P-Q, PQQ, 2P-PQ
Feature map: j:ℝQ → ℝu

t-
tQ

tu
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Kernel functions

Another view: 

• a kernel b�*, q� is a measure of similarity
between vectors *, q ∈ r where r is some
abstract space.

• or simply a distance measure between points
in feature space P-

PQ
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Kernel functions

However, a feature space is not unique to a 
given kernel:

b *, q � *, q � is also the kernel that
computes the inner product of the map

v P-, PQ � P-Q, PQQ, P-PQ, PQ, P- ∈ ℝw
Moreover, every prospective kernel does not
necessarily correspond to a dot product in 
some space.

P-

PQ
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Kernel functions

Mercer’s condition:

A continuous, symmetric, positive semi-definite
kernel function can be written as a dot product
of vectors in a higher dimension

b *, q � j * Tj�q�
Positive semi-definite: a symmetric matrix with
positive eigenvalues

P-

PQ
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Let’s summarize

• We have a data set ) � *+ , ,+ +�-. where * ∈ ℝx and ,+ ∈ �01,21�
• We want a nonlinear projection j�*� onto a higher dimension 

j:ℝx → ℝxNy, Y = 0
where classes have a better chance of
being linearly separable.

Cover’s theorem (informally):

”A nonlinear projection in a high-dimensional 

space is more likely to be linearly separable than 

in a low-dimensional space”
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Let’s summarize

• The separating hyperplane in ℝxNy will be defined by 

�Oaja * 2 : � 8Fj * 2 : � 0
xNy

a�-
• The optimal hyperplane is given by

8 ��X+,+j�*+�
.

+�-
⇔�X+,+b *+ , * � 0

.

+�-
 

where b *+ , *a � j *+ Fj�*a� is a kernel

function and X+ Lagrange multipliers.
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How to choose the mapping j * ?

• Choosing an optimal feature space is non-trivial

• The kernel trick reduces this to choosing the best kernel, 
and determine the corresponding implicit mapping j * . 

• Performance of the algorithm highly depends on the kernel

• The best kernel depends on the specific problem

• Kernels can be applied to

• Numeric vectors

• Strings 

• Trees

• Graphs
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How to choose the best kernel

We want the kernel to be

• Valid: an implicit mapping must exist

= a kernel that can be expressed as the dot
product of two vectors

= satisfy the Mercer’s condition of positive 
semi-definiteness

• Accurate: embody the ”true” similarity
between objects

• Appropriate: generalize outside training data

• Efficient: computations should be feasible
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Which kernels meet Mercer’s condition?

• Linear kernels

b *, q � *Tq
• Polynomial kernels

b *, q � 1 2 *Tq B

• Radial basis function (RBF) kernels

b *, q � exp 0 12 * 0 q Q
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Radial basis function (RBF) kernels

• The squared exponential (SE) or Gaussian kernel

b *, q � exp 0 12 * 0 q T|L-�* 0 q�
• If the covariance matrix | is diagonal, we get

b *, q � exp 012�
1
}Q Pa 0 ta Q

a
• If | is spherical

b *, q � exp 0 1
2}Q * 0 q Q An RBF kernel
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Kernels for comparing text documents

• If P+a � the number of times word ~ occurs in 

document _
b *, q � *Tq

* Q q Q � cos ���
called the cosine similarity.

q
*

�
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Matern kernel

• Commonly used in Gaussian processes

b k � 2-L�
Γ �

2�k
�

�
!� 2�k

� → SESESESE    kernelkernelkernelkernel    asasasas � → ∞
where k � * 0 q , � J 0, � = 0 and !� a 
modified Bessel function. 

b k � exp 0k/�  8ef[  � � 1/2
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String kernels

• Consider two strings * and q of lengths #*
and #q, defined on a protein alphabet

• � � A,R,N,D,C,E, Q, G,H, I, L,K,M, F, P, S, T,W, Y, V
where

* (#* � 110):
IPTSALVKETLALLSTHRTLLIANETLRIPVPVHKNHQLCTEEIFQGIGTL

ESQTVQGGTVERLFKNLSLIKKYIDGQKKKCGEERRRVNQFLDYLQEFLGV

MNTEWI

q (#q � 153):
PHRRDLCSRSIWLARKIRSDLTALTESYVKHQGLWSELTEAERLQENLQAY

RTFHVLLARLLEDQQVHFTPTEGDFHQAIHTLLLQVAAFAYQIEELMILLE

YKIPRNEADGMLFEKKLWGLKVLQELSQWTVRSIHDLRFISSHQTGIP

Similarity measure:
number of common substrings

b *, q � � O�j� * j� q
�∈�∗

where � is a substring, O� J 0
and �∗ the set of all substrings
from �.
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String kernels

• If O� � 1 for  a nonempty substring � = 0: 

j * � number of times each char in � occurs in *
• bag-of-characters model

• If we require each substring � to be 
surrounded by white space

j * � number of times each word � occurs in *
• bag-of-words model

• If we only consider strings with � � b we get 
the b-spectrum kernel

Similarity measure:
number of common substrings

b *, q � � O�j� * j� q
�∈�∗

where � is a substring, O� J 0
and �∗ the set of all substrings
from �.
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An SVM as a neural network

  b�*, *-�  b�*, *-�

  b�*, *Q�  b�*, *Q�
⋮ ⋮

Input vector *

Kernels with

support vectors *

Output variable ,

Bias

Linear projection

  b�*, *x¡�  b�*, *x¡�

Output

neuron
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Gaussian processes

• Linear regression: determine relation 3 between
response , and independent variable P, � 3�P� 2 ¢
where 3 is assumed to be linear: 3 P � £¤ 2 £-P

• Bayesian linear regression: determine a posterior
distribution over the parameters £¤ and £- that gets 
updated whenever new data is available.

• Gaussian processes: finds a posterior distribution 
over the possible functions 3�P� consistent with the 
observed data and a suitable prior.
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Gaussian processes

• The current example isn’t really linear.

• Quadratic function

, � £¤ 2 £-P 2 £QPQ 2 ¢
• Three parameters to estimate: £¤, £-, £Q
• But what if we don’t know how many parameters 

we should use?

• Instead of searching for suitable parameter values
for a fixed number of parameters (and a fixed
function), we want to search among all functions

that fit our data.
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Gaussian processes

• We need to define a prior over the function space.

• Assume we limit our P-values: 05 G P G 5.

• In that domain we want to sample functions that
are reasonablye smooth.

• We use a covariance matrix to ensure that points
close together in input space will produce output 
values thar are also close together.

0¥ ¥¦0� �

0¥ ¥¦0� �
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Gaussian processes

• A Gaussian process defines a prior over functions, 
which, given observed data, can be converted into
a posterior.

• Instead of explicitly representing a distribution 
over a function, choose a finite set of points �P-, … , PB�.

• A GP assumes that the function values3�P-�, … , 3�PB� has a jointly Gaussian distribution 
with some mean i�*� and covariance |�*�, given 
by |+a � b�P+ , Pa�
where b is a positive definite kernel.

0¥ ¥¦0� �

0¥ ¥¦0� �



9/30/2019 Chalmers 51

Multivariate normal distribution

• Gaussian processes are based on the multivariate 
normal (Gaussian) distribution

§ ∼ ^ ©, | � 1
2ª| exp 0 12 * 0 © F|L- * 0 ©

where | is a covariance matrix.

• The covariance matrix determines the shape
of the ”bell”
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Multivariate normal distribution

• Viewing from above, if the contours form a perfect
circle, the variables are independent, and the 
covariance is zero

| � |-- |-Q|Q- |QQ � 1 00 1
• With covariance |-Q « 0, the contour will have a 

more oval shape.
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Gaussian processes

• Assume that we want to learn a function 3 from data ) � � P+ , ,+ : _ � 1, … , #�
• Assume we have a distribution ¬�3� over functions, 

• Now: ¬�3� is a Gaussian process if for a finite subset�P-, … , PB� the marginal distribution over that subset

¬�3 P- , … , 3 PB �
has a Gaussian distribution.

• Now, if the prior is Gaussian, so is the posterior

¬ 3 ) � ¬ ) 3 ¬�3�
¬�)�
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Gaussian processes

• The Gaussian process is parameterized by a mean
vector and a covariance matrix

¬ 3�P-�3�PQ� ∼ ^�© * , |�
where

© * � h�P-�h PQ ,    Σ � b�P-, P-� b�P-, PQ�b�PQ, P-� b�PQ, PQ�
and b�P-, PQ� is a kernel function.
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Gaussian processes

• So: we have the following data 

) � P+ , ,+ : _ � 1,… , #
and for some new point P∗ we want to predict ,∗.

• To do this we want to find a function 3 such that

,+ � 3�P+�
• Instead we assume that �3 P- , … , 3 Px � follow a 

joint normal distribution, and use it to compute the 
posterior distribution

¬ 3 P∗ P∗, ), 3 � ^�h∗, Σ∗�
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Gaussian processes

• Intuitively, be begin by sampling from 
our prior distribution
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Gaussian processes

• Intuitively, be begin by sampling from 
our prior distribution

• We use our training data to represent the 
outputs of the unknown function.
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Gaussian processes

• Intuitively, be begin by sampling from 
our prior distribution

• We use our training data to represent the 
outputs of the unknown function.

• And update the posterior.
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Gaussian processes

• Where does the kernel b come from?

• The covariance matrix characterizes the 
similarities between nearby points.

• The same range of kernels available as 
for SVMs.

• The squared exponential (SE)

• The radial basis function (RBF)

• The Matern

• …
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Gaussian processes
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Advantages of GPs over SVMs

• GPs handle uncertainty in unknown function 3 by 
averaging, not minimizing

• GPs can learn kernel parameters from data, no matter how
flexible we want to make the kernel

• GPs can learn regularization parameters without cross-
validation.

• Can incorporate interpretable noise models and priors 
over functions, and can sample from prior to get intuitions 
about the model assumptions.

• We can combine automatic feature selection with learning 
using Automatic Relevance Determination (ARD)


