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Bayesian network inference

• Approximate inference, simulation or sampling is a 
hot topic in machine learning

• Basic idea:

• Draw � samples from some sampling distribution ��
• Compute an approximate posterior probability

• Show that this converges to the true distribution �
• Why sample?

• Learning: get samples from an unknonw distribution

• Inference: faster than exact methods (if even possible)
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Sampling basics

• We want to make inference about about a population 
that is too large to observe completely.

• Or a distribution that is too complex to observe
directly.

• We draw a representative sample (i.i.d.
observations) and assume that the conclusions
approximate those of the population/distribution.

• But what if the distribution is too complex to even
sample from?
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Sampling statistics

Given a sample ��, ��, … , �	 from some distribution 
a statistic is a function 
���, … , �	� of the sample.

Common exampels

• Sample mean: 

• Sample variance: 

• Sample range: 

�
 � 1
����

	

���

�� � 1
� � 1� �� � �
 �

	

���

� ��… ,�	 � max ��, … , �	 �min ���, … �	�
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Simple sampling from a distribution

Inverse probability transformation

For a cumulative distribution function (cdf) �
• Generate uniform ��0,1� sample !�, … , !	
• Compute the inverse �"�
• Sample from desired distribution is given by

#� � �"� !� , $ � 1,… , �
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Example: sample from Exp�'�
We want to generate a sample for � ∼ Exp ' . 
Distribution function

� # � 1 � )"*+
Inverse

, � 1 � )"*+ ⇔ # � � ln 1 � # /'
    ⇔ �"� # � � ln 1 � # /'

Compute

#� � �ln !� /' � ∼ � 0,1 ⇒ 1 � � ∼ � 0,1
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Resampling methods

Due to cheap rapid computing and new software 
resampling methods have become practical.

Common resampling methods

• Permutation: sampling without replacement to test 
hypotheses on the form ”no effect”

• Bootstrap: sampling with replacement to establish
more precise confidence intervals

• Monte Carlo: repeated sampling from populations 
with known characteristics to determine the 
sensitivity to those characteristics
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Resampling methods

Advantages over both nonparametric and 
parametric methods:

• Simpler

• More accurate

• Fewer assumptions

• Greater generalizability

• Answer questions not possible with traditional
methods

• Conceptually simple
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Empirical bootstrap

Example 

Given a sample ��, … , �	 we estimate the mean 1 and 
variance 2� by the sample mean and variance

1̂ � �
 � 1
����

	

���

24� � �� � 1
� � 1���� � �
�^2

	

���
A 1 � 7 % confidence interval for 1 is then

1 � #̅ : ;�"</� �
�

Can we construct a 
confidence interval 
for the sample median
in a similar way?
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Empirical bootstrap

• Given the sample ��, … , �	 we sample with
replacement from these � points.

• Resampled sample: ��∗ � , … , �	∗ �

• Repeat this, creating > bootstrap samples

��∗ � , … , �	∗ �

��∗ � , … , �	∗ �
…
��∗ ? , … , �	∗ ?
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Empirical bootstrap

• For each sample, compute the sample median

@	∗ � , @	∗ � , … ,@	∗ ?

• Estimate the median using: @A? � �
?∑ @	∗ �C���

• Boostrap estimate of the median variance:

VarF ? @	 � 1
> � 1 � @	∗ � �@A?∗

�?

���
• Bootstrap confidence interval of the median

@	 : ;�"</� ⋅ VarF ? @	
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Empirical bootstrap

• Can be generalized to many other statistics

• Sample quantiles

• Interquartile range

• Skewness (related to HI�JK)
• Kurtosis (related to HI�LK)
• …
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Monte Carlo simulation

• We want to evaluate the integral

� # � M )"+NO#
�

P
• Riemann integration: 

Evaluate 
 # � exp��#J� in evenly spread points
0 R #� S #+ S ⋯ S #U R 1, and compute

∑ 
�#��U��� /V
• Converges as V → ∞. 

No closed form solution!
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Monte Carlo simulation

• We want to evaluate an integral

Y � Z 
 # O#
• We choose a pdf [�#� of � and compute

Y � Z 
 # [ # O# � HI
 � K
• Generate i.i.d. ��, … , �	 ∼ [ and compute

Y\	 � 1
��
����

	

���
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Monte Carlo simulation – example

• We want to compute the integral

Y � M )"+NO#
�

P
• Let � ∼ �I0,1K and write

Y � M )"+N1O#
�

P
� H )"]N

evaluating integral ⇔ estimating the expected value.

H )"]N
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Monte Carlo simulation – example

• Generate i.i.d. sample ��, … , �	 ∼ �I0,1K.
• Compute �̂ � )"]_N and use

Â � 1
�� �̂ � 1

�
	

���
�)"]_N
	

���
• Law of large numbers: Â →̀ H �̂ � H )"]N
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Monte Carlo simulation – example

• Note that the function 
 changes if the pdf [ changes:

• Since Beta�2,2� has pdf [ # � 6#�1 � #� we could write

M )"+NO# � M )"+N
6#�1 � #� ⋅ 6# 1 � # O# �

�

P
H )"dN

6� 1 � �
�

P
where now � ∼ Beta 2,2 .

• Thus we can sample i.i.d. ��, … , �	 ∼ Beta�2,2�. 
So which sampling distribution [ should we use?
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Monte Carlo simulation: bias and variance
• Bias: 

HIY\	K � Y ⇒ efgh � 0
• Variance

Var Y\	 � 1
� Var 
 ��

                � 1
� H 
� �� � H 
 �� �

                � 1
� Z 
� # [ # O# � Y�

The quantity Y� is fixed. 

We choose a density [ and a function 
 that
minimizes the variance.

Unbiased!

The variance depends on 
the sample size � and 
sampling distribution [. 

How?
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Sampling in Bayesian networks

• Prior sampling

• Rejection sampling

• Likelihood weighting

• Gibbs sampling
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Prior sampling

• In a network of � nodes ��, … , �	 a sample is 
generated by drawing in hierarchical order from

i���|pa �� , $ � 1, … , �
• Then samples are generated with probability

ki �� pa �� � i���, … , �	�
	

���
• Repeat the process many times (�). Then for a 

certain event �#�, … , #	�
#� #�, … , #	 �

� → i #�, … , #	   as  � → ∞
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Prior sampling: example

• Assume that we sample a Bayesian network with
true/false variables n,o, p, q

rs,�t,ru, rv
rs,rt,ru, rv
�s,rt,ru, �v
rs,�t,ru, rv
�s,�t,�u, rv

• To compute the probability w�q� we see

#�rv� � x, # �v � y
• Thus: wz q � rv � x/{ � |. ~| � y � wz�q � �v� 

A

B C

D
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Rejection sampling (rejection/acceptance)

Assume we want to sample from some distribution [ #
1. Create a rejection distribution ��#� that is easy to sample

from and which satisfies

@� # � [��#�
constant @, [��#� = unnormalized [ #

[ # � [� # /��⇔ [� # � [ # ��
2. Sample a random location # ∼ ��#� and a random height

! ∼ ��0,1�.
3. If ! R ���+�

���+� keep the observation in sample.

envelope



9/30/2019 Chalmers 29

Example: rejection sampling

We want to sample from a 
Gaussian mixture

� r � ∼ � 30,10 r ��80,20�
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Example: rejection sampling

We want to sample from a Gaussian
mixture

� r � ∼ � 30,10 r ��80,20�
Use � # � ��50,30� as proposal
distribution. (Unnormalized)

Bad choice since ��#� is not
enveloping [�#�.
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Example: rejection sampling

We want to sample from a Gaussian
mixture

� r � ∼ � 30,10 r ��80,20�
Use � # � ��50,30� as proposal
distribution. (Unnormalized)

Bad choice since ��#� is not
enveloping [�#�.
Add on a scaling factor

� � max [ # /� #  for all #
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Example: rejection sampling

• Produce a large sample from

� ∼ ��#�
• Uniformly pick the height

! ∼ � 0, �� ;
Now �;, !� is uniform under 

���#�
• Accept points �;, !� under the 

[�#� curve.
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Rejection sampling

• Unnormalized target distribution – no 
problem.

• Drawbacks:

• Need a closed form for �.

• � # has to envelope [�#�.
• Need to know shape of [�#�.
• Large @ is time consuming.
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Rejection sampling in Bayesian statistics

• Data set � and target distribution with parameter �.

• We want to sample from the posterior

[ � � � [ � � [ � /[���
• We can use unnormalized target [� � � [ � � [ �

proposal distribution � � � [ �
and envelope @ � [��|�z� where �z � arg max [ �|� , 
i.e. the MLE 

• Accept sampled points with probability

i � [��|��
@����
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Sampling in Bayesian networks: example

We use an AI to diagnose the true cause of a fire
alarm. 

Variabels (all true/false):

• Fire: true when there is a fire

• Alarm: true when the alarm sounds

• Smoke: true when there is smoke

• Leaving: true if many people leave the building

• Report: true if reports of people leaving

• Tampering: true when alarm were tampered with

Conditional dependencies are given by the DAG.

Tampering Fire

Alarm Smoke

Leaving

Report
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Sampling in Bayesian networks: example

Factorization

w tamperingtamperingtamperingtampering, firefirefirefire, alarmalarmalarmalarm, smokesmokesmokesmoke, leavingleavingleavingleaving, reportreportreportreport �
     � w tamperingtamperingtamperingtampering
         ⋅ w firefirefirefire
         ⋅ w alarmalarmalarmalarm tampering,tampering,tampering,tampering,    firefirefirefire�
         ⋅ w smokesmokesmokesmoke firefirefirefire�
         ⋅ w�leavingleavingleavingleaving alarmalarmalarmalarm ⋅
         ⋅ w reportreportreportreport leavingleavingleavingleaving�

Tampering Fire

Alarm Smoke

Leaving

Report
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Sampling in Bayesian networks: example

T F

A S

L

R

i �
0.02

i �
0.01

� i �|�
��!) 0.9

���) 0.01

� � i �|�, �
��!) ��!) 0.5
��!) 
���) 0.99

���) ��!) 0.85

���) 
���) 0.0001 � i �|�

��!) 0.88

���) 0.001� i �|�

��!) 0.75

���) 0.01
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Forward sampling in Bayesian networks

A method to generate a sample of every variable
so that each sample is generated in proportion to
its probability.

Forward sampling

Assume variables ��, ��, … , �	 are network
variables ordered so parents come before
children.

1. Sample �� using its CDF

2. Sample �� given the value of ��
3. …

Tampering Fire

Alarm Smoke

Leaving

Report
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Forward sampling in Bayesian networks

Sampling from a single variable

Assume variable � takes values ���, ��, �J, �L�. 
Assume

i � � �� � 0.3
i � � �� � 0.4
i � � �J � 0.1
i � � �L � 0.2

Order the values, say �� S �� S �J S �L.

Generate numbers from ! ∼ ��0,1�:
If �� S ! S �J, then �J etc.

0.5

0 �y �� �  �x

0.5

0
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Sampling in Bayesian networks: example

Forward sampling:

Sample T F A S L R

�� false false true false false true

�� false true false true false false

�J false true true false true true

�L false true false true false false

�¡ false true true true true true

�¢ false false false true false false

�£ true false false false true false

�¤ true true true true true true

…
��PPP true false true false true false

Sample from Tampering:
w ¥ � |. |�, w ¥u � |. ¦~
Draw from § |, y ⇒ ¨ � |.  ©
⇒ ¥ � ªs«¬­

Sample from Fire:
w ® � |. |y, w ®u � |. ¦¦
⇒ ® � ¯°¨­

Sample from Alarm given parents
w n|¥u, ® � |. ¦¦, 
w nu|¥u, ® � |. |y
⇒ n � ¯°¨­

etc.
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Rejection sampling in Bayesian networks

Given some data ± rejection sampling estimates
the posterior

i � ± � i ± � i���
i�±�

Tampering Fire

Alarm Smoke

Leaving

Report
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Sampling in Bayesian networks: example

Rejection sampling for w�¥|², ³u�
T F

A S

L

R

Sample T F A S L R

�� false false true false X

�� false true false true false false

�J false true true false X

�L false true false true false false

�¡ false true true true true true X

�¢ false false false true false false

�£ true false false false X

�¤ true true true true true true X

…
��PPP true false true false X






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Sampling in Bayesian networks: example

Rejection sampling for i��|�, �´�
Sample T F A S L R

�� false false true false X

�� false true false true false false

�J false true true false X

�L false true false true false false

�¡ false true true true true true X

�¢ false false false true false false

�£ true false false false X

�¤ true true true true true true X

…
��PPP true false true false X







The probability i��|�, �´� is 
estimated using observed
proportions:

i� � �, �´ � #�accepted, ��
#�accepted�
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Sampling in Bayesian networks: example

Downside: Rejection sampling requires MANY samples

Example: estimate i��|�, �� 
Recall:

i � � 0.01
i � � � 0.9
i � �´ � 0.01

Out of 1000 samples:

· 990 � � 
���)
Of these 990

· 1% = 10 � � ��!)
⇒ remaining 980 (98%) rejected

Sample T F A S L R

�� false false true false false true

�� false true false true false false

�J false true true false true true

�L false true false true false false

�¡ false true true true true true

�¢ false false false true false false

�£ true false false false true false

�¤ true true true true true true

…
��PPP true false true false true false
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Likelihood weighting in Bayesian networks

• A kind of importance sampling where
instead of accepting/rejecting a sample, 
we weigh its contribution to the sample.

• Instead of generating samples until
enough many has been accepted: 

• Generate only samples that agree with
evidence (what we condition on)

• Weigh samples by their likelihood

• Combine the corresponding weights in the 
final probability estimates.

Tampering Fire

Alarm Smoke

Leaving

Report
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Likelihood weighting in Bayesian networks

If we wanted to estimate i ¸ ¹ :

• Compute the sampling distribution of ¸ with ¹
fixed

�º» ¼, ½ � ki���|pa �� �
d_∈¸

• Compute sample weights

¿ ¼, ½ � ki���|pa �� �
À_∈¹

• We get

i� ¸ � ¼, ¹ � ½ � �º» ¼, ½ ¿�¼, ½�

Tampering Fire

Alarm Smoke

Leaving

Report
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Likelihood weighting in Bayesian networks

Example: estimate i��|�, �´�
Variables � � ��!) and � � 
���) are
fixed evidence

Generate sample:
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Likelihood weighting in Bayesian networks

Example: estimate i��|�, �´�
Variables � � ��!) and � � 
���) are
fixed evidence

Generate sample:

1. Sample �: e.g � � 
���)
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Likelihood weighting in Bayesian networks

Example: estimate i��|�, �´�
Variables � � ��!) and � � 
���) are
fixed evidence

Generate sample:

1. Sample �: e.g � � 
���)
2. Sample �: e.g. � � ��!)
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Likelihood weighting in Bayesian networks

Example: estimate i��|�, �´�
Variables � � ��!) and � � 
���) are
fixed evidence

Generate sample:

1. Sample �: e.g � � 
���)
2. Sample �: e.g. � � ��!)
3. Sample �|�, �´: e.g. � � ��!)
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Likelihood weighting in Bayesian networks

Example: estimate i��|�, �´�
Variables � � ��!) and � � 
���) are
fixed evidence

Generate sample:

1. Sample �: e.g � � 
���)
2. Sample �: e.g. � � ��!)
3. Sample �|�, �´: e.g. � � ��!)
4. Now: � � ��!) is evidence

weight ¿ � i � � � 0.9
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Likelihood weighting in Bayesian networks

Example: estimate i��|�, �´�
Variables � � ��!) and � � 
���) are
fixed evidence

Generate sample:

1. Sample �: e.g � � 
���)
2. Sample �: e.g. � � ��!)
3. Sample �|�, �´: e.g. � � ��!)
4. Now: � � ��!) is evidence

weight ¿ � i � � � 0.9
5. Sample �|�: e.g. � � ��!)
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Likelihood weighting in Bayesian networks

Example: estimate i��|�, �´�
Variables � � ��!) and � � 
���) are
fixed evidence

Generate sample:

1. Sample �: e.g � � ��!)
2. Sample �: e.g. � � ��!)
3. Sample �|�, �: e.g. � � 
���)
4. Now: � � ��!) is evidence

weight ¿ � i � � � 0.9
5. Sample �|�´: e.g. � � ��!)
6. Now: � � 
���) is evidence

¿ � 0.9 ⋅ i �´ � � 0.9 ⋅ 0.25 � 0.225
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Likelihood weighting in Bayesian networks

Example: estimate i��|�, �´�
¿ � 0.9 ⋅ i �´ � � 0.9 ⋅ 0.25 � 0.225

Sample ��, �, �´ , �, �, �´� gets weight ¿ �
0.225
Draw new samples and add the weights
for each specific state. E.g. if state

��, �, �´ , �, �, �´� occurs � times the total 
weight for that state is � ⋅ 0.225.

To compute i � �, �´

i � �, �´ � sum of weights where � � ��!)
sum of all weights
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Likelihood weighting: algorithm
1. Initiate the weight of the sample: ¿ � 1
2. Initiate the state of the sample # � ��
3. Initiate total weights: ^ # � 0
4. Sample node by node:

a) If current node is evidence (conditioned on)
¿ � ¿ ⋅ i�Ä!��)���ÅO)|[��)����

Add state of node to #.

b) If not, sample from distribution to determine its state. 
Add state of node to #.

5. Add weight to total weight: ^ # � ^ # r ¿
Compute estimate for specific probabilities

i� � � � � ^ #
+:d|À

/ �^�#�
+

Tampering Fire

Alarm Smoke

Leaving

Report
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Likelihood weighting in Bayesian networks

• More efficient than rejection sampling.

• But doesn’t solve all our problems:

• By fixing the evidence nodes, we influence
the sampling of the downstream variables, 
not the upstream ones.

We would like to consider the evidence when
we sample every node!

Tampering Fire

Alarm Smoke

Leaving

Report
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Markov chain Monte Carlo (MCMC)

• MCMC combines Monte Carlo simulation and Markov chains. 

• Idea: Instead of generating every sample from scratch, we
create samples that are similar to the previous one

• We construct a Markov chain that has the desired
distribution as stationary distribution.
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Markov processes

• A random process is a set of random variables
���� Ç∈È developing over time �. 
• The time can be continuous or discrete

• It can be actual time or some kind of spatial 
enumeration (e.g. characters in a text)

• A Markov process is a random process
were conditioning on the current state,
future states are independent of the past.
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Markov chains

• A Markov chain is a discrete realization
��, ��, �J, … of a Markov process, where the 
process jumps between states in some state
space 

� � ��, … , �É
and where the next jump only depends on 
the current state

i �	Ê� � Ë �� � #�, … , �	"� � #	"�, �	 � $
� i��	Ê� � Ë|�	 � $�
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Markov chains

• A Markov chain is defined by its

• state space � � ��, … , �É
• initial state distribution

Ì� � i �� � �� , $ � 1, … , �
• transition probabilities

[�Í � i��	Ê� � Ë|�	 � $�
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Markov chains

• A Markov chain is said be be stationary if its
distribution of the state is independent of its
starting condition. 

• This means that we can start the chain in any
initial state and if we run it long enough (burn-
in period) we approach stationarity.

• Key idea of MCMCs: construct a Markov chain
whose stationary distribution is the 
distribution we want to sample from.
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The Metropolis-Hastings algorithm

Assume that we want to sample from 
[ Î � 
�Î�/V

where V is a normalizing constant that may be 
difficult to compute.

The idea is choose generate random numbers
from some proposal distribution, which will be 
accepted or rejected according to some
acceptance probability.
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The Metropolis-Hastings algorithm

1. Choose an initial value Î P where 
�Î P � Ï 0.

2. Use current value Î Ð , sample a candidate point

Î∗ according to some proposal prob � Î∗ Î Ð
(symmetric � # , � ��,|#�.)

3. Compute the ratio

7 � 
 Î∗ ��Î∗|Î Ð

 Î Ð � Î Ð Î∗

4. If the jump increases the density (7 Ï 1), accept 

the point: Î ÐÊ� � Î∗. If the jump decreases the 
density (7 S 1), accept the point with probability
7. Else reject it. Return to step 2. 
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The Metropolis-Hastings algorithm

• Generates a Markov chain

Î P , Î � , … , Î Ð , …
as the transition probability from Î Ð to Î ÐÊ�
depends only on Î Ð .

• After a burn-in period � samples from the 
vector �ÎÈÊ�, ÎÈÊ�, … , ÎÈÊ	� are samples from 
[�#�.
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Burn-in period

A key issue in Metropolis-Hastings and MCMC is the 
number of steps until the chain reaches stationarity

• this is called the burn-in period.

• typically the 1000-5000 first points are tossed.

A poor choice of initial values can greatly increase the 
burn-in period. 

• Initiate in the centre of the 
distribution
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Gibbs sampling

• The Gibbs sampler is a version of the 
Metropolis-Hastings algorithm that accepts all
generated samples

• Key: all conditional distributions must have a 
nice form (conditionally conjugate likelihoods)

• Idea: resample one variable at a time, 
conditioned on the rest, but keep evidence
fixed.

• Now samples are not independent, but sample
averages are still consistent estimators.
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Example: Gibbs sampling

Assume we have a joint distribution of a discrete
random variable � ∈ �0,1, … �� and a continuous random
variable �, 0 R � R 1, with joint density function

[ #, , � �!
� � # ! #! ,+Ê<"� 1 � , 	"+ÊÒ"�

Complex joint distribution, but simple conditionals:

�|� ∼ Bin��, ,�
�|� ∼ Beta�# r 7, � � # r Ó�
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Example: Gibbs sampling

Let � � 10 and 7 � 1, Ó � 2. Initiate with ,P � 1/2. 

1. Generate #P from Bin �, ,P � Bin�10,1/2�. Say
we get #P � 5.

2. Generate ,� from Beta #P r 7, � � #P r Ó �
Beta�6,7�, giving ,� � 0.33. 

3. Generate #� from Bin 10,0.33 giving #� � 3.

And so on. The #� are samples from the marginal 
posterior of ��, and ,� from that of ��. 
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Gibbs sampling in a Bayesian network

Assume again that we want to estimate a probability
i��, �´|�, ��
1. Initialization:

a. Fix the evidence variables � � ��!), � � ��!)
b. Sample all other variables �, �, �, �

2. Repeat (as many times as wanted)

a. Pick a non-evidence variable �� uniformly

b. Sample #�Ô from i���|#�, … , #�"�, #�Ê�, … , #	�
c. Keep all other variables #ÍÔ � #Í , ∀Ë Ö $
d. The new sample is #�Ô , … #	Ô

3. Alternatively march through the variables in some
predefined order.


