
Introduction to Artificial Intelligence

Ashkan Panahi and Claes Strannegård

Department of Computer Science and Engineering
Chalmers University of Technology

Lecture 2: ML

DO NOT DISTRIBUTE

Panahi and Strannegård Supervised learning Fall 2019 1 / 55

Sources

Video. 3Blue1Brown, 2017: But what *is* a neural network?
Online book chapter. Michael Nielsen, 2015: Using neural nets
to recognize handwritten digits. Read up to and including
“Learning with gradient descent”.
Online book chapter. Michael Nielsen, 2015: Deep learning.
Read up to and including “Introducing convolutional networks”.

Panahi and Strannegård Supervised learning Fall 2019 2 / 55

https://www.youtube.com/watch?v=aircAruvnKk
http://neuralnetworksanddeeplearning.com/chap1.html
http://neuralnetworksanddeeplearning.com/chap1.html
http://neuralnetworksanddeeplearning.com/chap6.html

How does image recognition work?

Panahi and Strannegård Supervised learning Fall 2019 3 / 55

Overview

1 Machine learning

2 Nervous systems

3 Artificial neurons

4 Neural networks

5 Training neural networks

6 Explainability

7 Convolutional networks

Panahi and Strannegård Supervised learning Fall 2019 4 / 55

Machine learning

Panahi and Strannegård Supervised learning Fall 2019 5 / 55

Machine learning

Definition
Machine learning is the study of algorithms and statistical models
that computer systems use to progressively improve their performance
on a specific task.

Panahi and Strannegård Supervised learning Fall 2019 6 / 55

Machine learning

Panahi and Strannegård Supervised learning Fall 2019 7 / 55

Nervous systems

Panahi and Strannegård Supervised learning Fall 2019 8 / 55

Supervised learning

Supervised learning is the task of learning a function based on
examples of input-output pairs.
More precisely, the task is to find an approximation of a function
f based on a proper samples of its graph
{(x,f(x)) : x ∈ dom(f)}. These samples are called training set.
Supervised learning is used for classification (left: predicting a
label) and regression (right: predicting a value).

Panahi and Strannegård Supervised learning Fall 2019 9 / 55

Supervised learning

Some methods for supervised learning:
linear regression
k-nearest neighbor
naive Bayes
decision trees
neural networks (the topic of this lecture).

Panahi and Strannegård Supervised learning Fall 2019 10 / 55

Neurons

Model of a biological nerve cell (neuron):

Panahi and Strannegård Supervised learning Fall 2019 11 / 55

How neurons work

Input signals in the form of positive and negative ions are
transmitted to the dendrites.
Together the ions sum up to an action potential in the soma
(cell body).
If the action potential exceeds a threshold, the neuron fires and
sends an electrical signal (spike) through the axon.
The signal is transmitted to synapses that in turn send input
signals to dendrites of other neurons, e.g. motor neurons.

Panahi and Strannegård Supervised learning Fall 2019 12 / 55

Nervous systems

Neurons form nervous systems. Almost all animals have nervous
systems. Enables sensing, signal transmission, computation,
motion. A huge advantage!
Neurons in the entire body: sponges: 0; C. elegans (a 1 mm
nematode): 302; jellyfish: 10000; lobster 100000; bee: 1 million;
zebrafish 10 million; finch: 100 million; raven: 1 billion; gorilla:
33 billion; human: 86 billion; elephant: 257 billion.
Neurons in the brain: gorilla: 9 billion; human: 16 billion;
long-finned pilot whale: 32 billion.

Panahi and Strannegård Supervised learning Fall 2019 13 / 55

Types of neurons
Sensory neurons transmit information from sensory receptors (ion
channels sensitive to, e.g. cold temperature, acidity, or pressure)
to the central nervous system (CNS)
Relay neurons (interneurons) transmit information within the
CNS as part of the decision-making process
Motor neurons transmit information from the CNS to effectors
(muscles), in order to initiate a response

Source: BioNinja
Panahi and Strannegård Supervised learning Fall 2019 14 / 55

Stimulus-Response Pathway

Source: BioNinja
Panahi and Strannegård Supervised learning Fall 2019 15 / 55

Artificial neurons

Panahi and Strannegård Supervised learning Fall 2019 16 / 55

Perceptron

The Perceptron is a rough mathematical model of a neuron in the
form of a function. Introduced by Frank Rosenblatt in 1958. It maps
real vectors to 0 or 1:

Note the resemblance with the biological model. Source: Galaxy

Panahi and Strannegård Supervised learning Fall 2019 17 / 55

Perceptron: expressive power

AND and OR:

Panahi and Strannegård Supervised learning Fall 2019 18 / 55

Perceptron: expressive power

MOST and NOT:

Panahi and Strannegård Supervised learning Fall 2019 19 / 55

Perceptron: expressive power
Using vector notation we can write the Perceptron more compactly:

output(x) =
{

1 if w ·x+ b ≥ 0
0 otherwise.

Here w = (w1, . . . ,wn), x = (x1, . . . ,xn), and · is the dot product.
output(x) is defined for any real vector x ∈ Rn. It is 1 on one side of
the hyperplane w ·x+ b = 0 and 0 on the other side. Hence single
perceptrons can only compute boolean functions that are linearly
separable. For instance, OR is linearly separable, but XOR is not:

Panahi and Strannegård Supervised learning Fall 2019 20 / 55

Perceptrons: expressive power

Since we can express NOT and AND with perceptrons (and since
AND and NOT form a logically complete set of connectives), we can
express any boolean function by connecting several perceptrons. For
instance, we can compute XOR as follows:

Here y′ and y are perceptrons. y′ is an AND-gate and y is an
OR-gate, except when y′ outputs 1.

Panahi and Strannegård Supervised learning Fall 2019 21 / 55

Neurons

Perceptrons always give binary output, which is a limiting factor. Let
us generalize the notion of Perceptron slightly:

Definition
A neuron (or artificial neuron or unit or node) consists of a weight
vector w, a bias b, and an activation function f : R → R. The output
of the neuron is f(w ·x+ b).

Panahi and Strannegård Supervised learning Fall 2019 22 / 55

Examples of activation functions

Top left: the binary step function (as in the Perceptron).
Top right: the sigmoid (or logistic) function, a smoothed out
step function. The definition is f(z) = 1/(1+ e−z), so
f : R → (0,1).
Bottom left: the identity function.
Bottom right: the rectified linear function (ReLU). Perhaps the
most popular activation function for deep neural networks.

Panahi and Strannegård Supervised learning Fall 2019 23 / 55

Neural networks

Panahi and Strannegård Supervised learning Fall 2019 24 / 55

Neural networks

Definition
A neural network (or just network) consists of

an architecture: an acyclic directed graph consisting of a set of
neurons (with the type of each neuron specified) together with
edges that specify how the neurons are connected.
a set of parameters: weights of all the connections and biases of
all the neurons.

Neural networks are rough models of nervous systems. Since neural
networks are labeled graphs, they are suitable for graphical
presentation.

Panahi and Strannegård Supervised learning Fall 2019 25 / 55

Example of a neural network

Here the xi are called input nodes. They can be thought of as
neurons with a single input with weight 1, bias 0, and the identity
function as activation function. Hence their output = their input.
Moreover, the si are called hidden nodes and the yi output nodes.

Panahi and Strannegård Supervised learning Fall 2019 26 / 55

Feed-forward networks

Any neuron of any network at any time will compute a value.
This value is the neuron’s activation.
Feed-forward networks are loop-free. Hence constant signals on
the input nodes will lead to a constant activation of all nodes
and in particular the output nodes.

Panahi and Strannegård Supervised learning Fall 2019 27 / 55

Recurrent networks
Recurrent networks contain loops.

The output of a recurrent network depends on the input, but
also on time, which proceeds in discrete steps.

Panahi and Strannegård Supervised learning Fall 2019 28 / 55

The MNIST data set

The MNIST data set consists of 70000 scanned images of
handwritten digits (written by 250 different people).
Each image consists of 28 by 28 pixels in greyscale with 0.0
representing white and 1.0 representing black.
Each image is labeled with its correct classificationsť, e.g. 8.

Panahi and Strannegård Supervised learning Fall 2019 29 / 55

A neural network for MNIST

Input layer: 28×28 = 784 input neurons.
Hidden layer: 15 sigmoid neurons.
Output layer: 10 sigmoid neurons representing 0 through 9. We
interpret the most active output neuron as the “answer”.

Panahi and Strannegård Supervised learning Fall 2019 30 / 55

Neural networks: expressive power

It can be shown that neural networks are universal in the sense that
they can approximate any continuous function from a closed subset of
Rn to Rm down to arbitrary precision!

Panahi and Strannegård Supervised learning Fall 2019 31 / 55

Training neural networks

Panahi and Strannegård Supervised learning Fall 2019 32 / 55

Idea: training networks

What if we did not set the parameters (of a given architecture)
manually and instead tried to do it automatically somehow?
We could use training data of the form (input, desired output)
for specifying what the network should do.
What if we just set the parameters randomly at the start and
then try to adjust them little by little (local search) so that the
network becomes increasingly better on the training data?
This idea turns out to work!

Panahi and Strannegård Supervised learning Fall 2019 33 / 55

Turning it into an optimization problem

An input x is a 28x28=784-dimensional real-valued vector.
The desired output (or label) of x is a 10-dimensional vector
y(x). For example, if x is an image of a 3, then
y(x) = (0,0,0,1,0,0,0,0,0,0).
An example among many possibilities of a cost function (or loss
function or error function) for a given data set of size n:

C(w,b) ≡ 1
2n

∑
x

∥y(x)−actual_output(x)∥2,

where ∥ . . .∥ is the Euclidean norm. This is the quadratic cost
function, a.k.a. the mean squared error or the MSE.

Panahi and Strannegård Supervised learning Fall 2019 34 / 55

Cost function

Note that C(w,b) is non-negative.
It is essentially an average of the error on the data set.
Furthermore, the cost C(w,b) becomes small, i.e., C(w,b) ≈ 0,
precisely when y(x) is approximately equal to the output, for all
training inputs x.
We want to minimize C, i.e. find (thousands of) weights and
biases that make the cost as small as possible.
Why not try to maximize the number of correctly classified
images instead? Because it is not a smooth function of the
weights and biases in the network.

Panahi and Strannegård Supervised learning Fall 2019 35 / 55

Gradient descent 1
Now we are going to optimize, so we will need some calculus. We will
solve our optimization problem using gradient descent.

Let f(v1,v2) be some function that we want to minimize
Calculus tells us that ∆f ≈ ∂f

∂v1
∆v1 + ∂f

∂v2
∆v2.

In other words, ∆f ≈ ∇f ·∆v, where ∇f = (∂f
∂v1

, ∂f
∂v2

) is the
gradient (the symbol ∇ is called nabla) and ∆v = (∆v1,∆v2).

Panahi and Strannegård Supervised learning Fall 2019 36 / 55

Gradient descent 2

We want to go downhill, so we want ∆f to be negative.
To ensure that, we can let ∆v = −η∇f , where η > 0 is a
number (hyper-parameter) called the learning rate.
Then we get ∆f ≈ ∇f ·∆v = −η · (∇f ·∇f). Hence ∆f ≤ 0.
So we can use the update rule v → v +∆v = v −η∇f .

Panahi and Strannegård Supervised learning Fall 2019 37 / 55

Backpropagation

Now we can use our update rule v → v −η∇f to approach the
minimum gradually. Note that ∇f is used, hence the partial
derivatives of f must exist.
We derived this formula for 2 variables, but the same holds for
any number of variables. In particular it holds for C, which has
thousands of variables.
But to use the update rule C → C −η∇C we need to compute
∇C. Thus we need to compute ∂C

∂p for all parameters p.
We can actually do that with the chain rule, since the network
consists of many composed functions. But then all the activation
functions must be differentiable. (So no perceptrons!)
A widely used algorithm for computing ∇C is called
back-propagation. Roughly explained here.

Panahi and Strannegård Supervised learning Fall 2019 38 / 55

https://www.youtube.com/watch?v=Ilg3gGewQ5U

Measuring performance

Our ultimate goal is usually not to get a perfect performance on
the training data. Instead we want a model that generalizes well
to unseen data.
Therefore we want to test our model on previously unseen test
data (from the same data set).
Sometimes we also use a validation set for testing purposes
during training. Thus we will know when to stop (to avoid
underfitting and overfitting). Keep training until the
performance on the validation data stops improving.
For instance, the MNIST data set can be split as follows:

training data: 50,000 images
validation data: 10,000 images.
test data: 10,000 images (digits written by other people).

Panahi and Strannegård Supervised learning Fall 2019 39 / 55

Stochastic gradient descent
A faster way of training the network!
Partition the training data into randomly generated
mini-batches, e.g. of size 10.
Perform an update with gradient descent and back-propagation
pretending that the data set consisted of those 10. Then select a
new mini-batch, and so on.
When all 50000 images have been seen, that epoch terminates
and another one begins.

Panahi and Strannegård Supervised learning Fall 2019 40 / 55

Results

74 lines of code. A few minutes to run on a laptop.
Hyper-parameters: 30 hidden neurons, mini-batch size: 10,
learning rate η = 3.0.
Correct classifications:

Epoch 0: 9129/10000
Epoch 1: 9295/10000
Epoch 2: 9348/10000
...
Epoch 27: 9528/10000
Epoch 28: 9542/10000 (best!)
Epoch 29: 9534/10000

With 100 hidden nodes, it reaches 9659/10000!

Panahi and Strannegård Supervised learning Fall 2019 41 / 55

https://github.com/mnielsen/neural-networks-and-deep-learning/blob/master/src/network.py

What do you think?

Is it explainable/interpretable/transparent?
Reliable?
Intelligent?
Magic?

Panahi and Strannegård Supervised learning Fall 2019 42 / 55

Explainability

Panahi and Strannegård Supervised learning Fall 2019 43 / 55

Explainability
A network that converts digital digits into numbers is easy to
construct with perceptrons. Only a part of the network is shown.

Panahi and Strannegård Supervised learning Fall 2019 44 / 55

Explainability

Panahi and Strannegård Supervised learning Fall 2019 45 / 55

Explainability

Panahi and Strannegård Supervised learning Fall 2019 46 / 55

Explainability

Panahi and Strannegård Supervised learning Fall 2019 47 / 55

Adding layers

Try adding a second hidden layer with 30 nodes. Result: Only a
slight improvement: 9690/10000
Try adding a third hidden layer with 30 nodes. Result: A slight
deterioration (!): 9657/10000
We seem to have run into problems that make it difficult to train
deep networks.

Panahi and Strannegård Supervised learning Fall 2019 48 / 55

Convolutional networks

Panahi and Strannegård Supervised learning Fall 2019 49 / 55

Convolutional networks

Weakness of our network: If we shift a digit slightly left/right
and/or up/down, our present network will not necessarily
recognize it anymore.
Convolutional networks can handle that!
Today, convolutional networks are used in most networks for
image recognition.
Convolutional networks combine three ingredients: local
receptive fields, shared weights, and pooling.

Panahi and Strannegård Supervised learning Fall 2019 50 / 55

Local receptive fields

Now we draw the input neurons as a matrix (like an image) instead of
a vector. Here a local receptive field is a hidden neuron that is
connected to a 5×5 window on the input matrix. In this case the
hidden neuron has 25 weights and one bias.

Panahi and Strannegård Supervised learning Fall 2019 51 / 55

Feature maps
There is one local receptive field for each 5×5 window. They are all
required to have identical weights (shared weights) and bias (shared
bias). Together these hidden nodes form a layer called a feature map.

Panahi and Strannegård Supervised learning Fall 2019 52 / 55

Convolutional layer

The convolutional layer consists of feature maps that are directly
connected to the inputs. In the example shown, there are 3 feature
maps. This enables the network to detect 3 different kinds of
features, with each feature being detectable across the entire image.

Panahi and Strannegård Supervised learning Fall 2019 53 / 55

Pooling layers

Pooling layers summarize the information in the feature maps.
For instance, each unit in the pooling layer may summarize a
region of (say) 2x2 neurons of a feature map.
In max-pooling, a pooling unit outputs the maximum activation
of its 2x2 input region. Detects presence of the feature in that
region!

Panahi and Strannegård Supervised learning Fall 2019 54 / 55

Convolutional network

Putting the pieces together with an input layer, a convolutional layer
and a pooling layer, followed by two fully connected layers.

Now we get 9878/1000! About human-level performance!

Panahi and Strannegård Supervised learning Fall 2019 55 / 55

	Machine learning
	Nervous systems
	Artificial neurons
	Neural networks
	Training neural networks
	Explainability
	Convolutional networks

