
Introduction to Artificial Intelligence

Ashkan Panahi and Claes Strannegård

Department of Computer Science and Engineering
Chalmers University of Technology

Lecture 3: Classical AI

DO NOT DISTRIBUTE

Panahi and Strannegård Basic search Fall 2019 1 / 52



How do navigators work?

Panahi and Strannegård Basic search Fall 2019 2 / 52



Overview

1 Search problems

2 Generic Search Algorithm

3 Uninformed search

4 Informed search

Panahi and Strannegård Basic search Fall 2019 3 / 52



Sources

Online book chapter. David L. Poole and Alan K. Mackworth,
Cambridge University Press, 2017: Artificial Intelligence:
Foundations of Computational Agents. Chapter 3: Searching for
Solutions up to and including 3.6.
Some slides are by Peter Ljunglöf and used with his permission.

Panahi and Strannegård Basic search Fall 2019 4 / 52

https://artint.info/2e/html/ArtInt2e.Ch3.html
https://artint.info/2e/html/ArtInt2e.Ch3.html


Search problems

Panahi and Strannegård Basic search Fall 2019 5 / 52



Delivery robot problem

Suppose a delivery robot wants to go from start (red) to goal (blue).
Panahi and Strannegård Basic search Fall 2019 6 / 52



Graph terminology

A (directed) graph consists of a set of nodes and and a binary
relation on the nodes, whose elements are called arcs or edges.
Note that the arc relation is generally not symmetric.
A node n2 is called a successor (or child) of the node n1 if there
is an arc from n1 to n2.
A path is a sequence of nodes (n0,n1, . . . ,nk) such that
(ni,ni+1) is an arc, for all i such that 0 ≤ i ≤ k.
A cycle is a path whose first and last nodes are the same.
A directed graph without any cycles is called a directed acyclic
graph (DAG).

Panahi and Strannegård Basic search Fall 2019 7 / 52



Graph problems (today’s topic)

Definition
A graph problem (or path-finding problem) consists of

a set of states (or nodes)
a set of arcs between states (that may be labeled with labels
representing actions and/or costs)
a distinguished state called start state
a distinguished set of states called goal states.

Definition
A solution to a graph problem is a path leading from the start state
to a goal state.

Panahi and Strannegård Basic search Fall 2019 8 / 52



Example of a graph problem

The Delivery robot problem formulated as a graph problem (with
exactly 3 solutions). The labels are not relevant here.

Panahi and Strannegård Basic search Fall 2019 9 / 52



Frontier

We will soon define a generic algorithm for solving graph problems.
The algorithm maintains a set of paths called the Frontier (or
Fringe). We will make sure that any solution must begin with a path
that belongs to the Frontier.

Panahi and Strannegård Basic search Fall 2019 10 / 52



Generic Search Algorithm

Panahi and Strannegård Basic search Fall 2019 11 / 52



Generic Search Algorithm

Panahi and Strannegård Basic search Fall 2019 12 / 52



Instances

Different instances of the Generic Search Algorithm can be defined by
specifying how the paths are to be selected from the Frontier:

Breadth-first search: Select the path that was added to the
Frontier the longest time ago.
Depth-first search: Select the path that was added to the
Frontier the most recently.
Best-first search: Use a function that assigns “grades” to paths.
Select the path that has the best “grade.”

Panahi and Strannegård Basic search Fall 2019 13 / 52



Implementation

One way of implementing the Generic Search Algorithm is to let the
Frontier be a list and always select the first path (=head) of the list.
Then the above instances can be obtained by different policies for
inserting new paths into the list:

Breadth-first search: In this case new paths are inserted at the
end of the list. Then the Frontier is an ordinary queue, i.e. a
FIFO (First-in First-Out) queue.
Depth-first search: In this case new paths are inserted at the
front of the list. Then the Frontier is a stack, i.e. a LIFO
(Last-in First-Out) queue.
Best-first search: In this case new paths are inserted into the list
based on their “grades.” Then the Frontier is sorted by “grades.”

Panahi and Strannegård Basic search Fall 2019 14 / 52



Uninformed search

Panahi and Strannegård Basic search Fall 2019 15 / 52



Breadth-first search (BFS)

We can illustrate the order in which paths are checked (and removed
from the Frontier) by using a tree whose nodes represent paths. In
the case of BFS the paths are checked in the order shown. First the
path with end-node 1, then the path with end-node 2, etc. The
shaded nodes are the end-nodes of paths that are on the Frontier
right after path 16 was checked.

Panahi and Strannegård Basic search Fall 2019 16 / 52



Breadth-first search: analysis

Breadth-first search is useful when:
the problem is small enough so that the graph can be stored
explicitly, or
there are short solutions.

It is a poor method when:
the graph is large (and dynamically generated) and
there are no short solutions.

Panahi and Strannegård Basic search Fall 2019 17 / 52



Depth-first search (DFS)

The shaded nodes are the end-nodes of paths that are on the Frontier
right after path number 16 was removed in a search with DFS.

Panahi and Strannegård Basic search Fall 2019 18 / 52



Depth-first search: analysis

Depth-first search is appropriate when:
the search space is small, or
many solutions exist

It is poor when:
it is possible to get caught in infinite paths, which might happen
when the graph is infinite or contains loops.

Panahi and Strannegård Basic search Fall 2019 19 / 52



Iterative Deepening DFS

Iterative deepening depth-first search proceeds as follows:
First do a depth-first search down to depth 1. (So only paths of
max length 1 are put into the Frontier.)
If that does not lead to a solution, do a depth-first search down
to depth 2
If that does not lead to a solution, do a depth-first search down
to depth 3
and so on until a solution is found.

Panahi and Strannegård Basic search Fall 2019 20 / 52



Iterative Deepening DFS

Panahi and Strannegård Basic search Fall 2019 21 / 52



Iterative Deepening DFS: analysis

Advantages:
it always finds a solution if there is one (like BFS)
it always finds the shortest solution (like BFS)
it is memory efficient (like DFS)

Drawback:
some nodes are revisited many times.

Panahi and Strannegård Basic search Fall 2019 22 / 52



Adding arc costs

Sometimes it is useful to put costs on arcs. For example, the
costs might represent travel time or travel distance.
We write the cost of arc (ni,nj) as cost(ni,nj).
Given a path p = (n0,n1, . . . ,nk), the cost of p, cost(p) is
defined as the sum of the costs of the arcs appearing in p.
Given a cost function, we may look for an optimal solution to a
graph problem, e.g. the shortest path or the fastest path.

Panahi and Strannegård Basic search Fall 2019 23 / 52



Finding an optimal path

Find a path from the red node to the blue node with minimum cost.
This is the kind of problem that navigators need to solve.

Panahi and Strannegård Basic search Fall 2019 24 / 52



Lowest-cost-first search

Applies when the arcs are labeled with costs.
A version of the Generic Search Algorithm
Lowest-cost-first search: Let the Frontier be a list sorted by path
cost (with the path with the lowest cost first).
When arc costs are all equal, it coincides with BFS.
It always finds the cheapest solution, so it is optimal.
But it has limited scalability (like BFS)...

Panahi and Strannegård Basic search Fall 2019 25 / 52



Informed search

Panahi and Strannegård Basic search Fall 2019 26 / 52



Heuristics

In everyday language, a heuristic is a rule of thumb that
indicates where to search primarily.
The word has the same origin as the Greek “Eureka!” (“I found
it!”) that Archimedes shouted in his bathtub.

Panahi and Strannegård Basic search Fall 2019 27 / 52



Heuristics

Example
Heuristic principles in everyday life:

Search for toys at low levels primarily
Search for blueberries in forests primarily
Search for translations that use common words primarily
Search for solutions that are simple primarily

Panahi and Strannegård Basic search Fall 2019 28 / 52



Heuristic functions

Definition
A heuristic function is a function h that assigns a non-negative real
number h(p) to each path p. Intuitively it is an estimate of the cost
of the cheapest path from the end-node of p to a goal node.

For calculating h(p), the only relevant part of p is its end-node. Some
texts define heuristic functions on nodes and costs on paths. Our
choice here is to define both heuristic functions and costs on paths.

Panahi and Strannegård Basic search Fall 2019 29 / 52



Example of a heuristic function

This is a graph problem with arc costs drawn to scale. The cost
of each arc is its length. The aim is to find the shortest path
from s to g.
A heuristic function h(p) can be defined as the straight-line
distance from the end node of p to g.

Panahi and Strannegård Basic search Fall 2019 30 / 52



Greedy best-first search

Greedy best-first search: Keep the Frontier sorted by heuristic
value h(p) (with paths with low values first).
In the above example, the algorithm will get stuck in the red
loop and never terminate!
So greedy best-first search is not what we want...

Panahi and Strannegård Basic search Fall 2019 31 / 52



The algorithm A*

Very powerful search algorithm
Pronounced “A star”
Invented by Hart, Nilsson and Raphael in 1968.
A kind of best-first search: the Fringe is sorted by “grades.”

Panahi and Strannegård Basic search Fall 2019 32 / 52



A* search

Panahi and Strannegård Basic search Fall 2019 33 / 52



Running example: driving in Romania

We want to find the shortest path from Arad to Bucharest using a
map with road distances to neighbors (for computing cost(p)) and a
table with straight-line distances (for computing h(p)). This
information is available to a navigator.

Panahi and Strannegård Basic search Fall 2019 34 / 52



A* at work

Panahi and Strannegård Basic search Fall 2019 35 / 52



A* at work

Panahi and Strannegård Basic search Fall 2019 36 / 52



A* at work

Panahi and Strannegård Basic search Fall 2019 37 / 52



A* at work

Panahi and Strannegård Basic search Fall 2019 38 / 52



A* at work

Panahi and Strannegård Basic search Fall 2019 39 / 52



A* at work

Panahi and Strannegård Basic search Fall 2019 40 / 52



A* at work

Panahi and Strannegård Basic search Fall 2019 41 / 52



A* at work

Since we follow the Generic Search Algorithm, we don’t stop here just
because we added Bucharest (a goal state) to the Frontier.

Panahi and Strannegård Basic search Fall 2019 42 / 52



A* at work

Panahi and Strannegård Basic search Fall 2019 43 / 52



A* at work

Panahi and Strannegård Basic search Fall 2019 44 / 52



A* at work

Since we follow the Generic Search Algorithm, we stop here. In fact
we just removed (and returned) a path ending in a goal state
(Bucharest) from the Frontier.

Panahi and Strannegård Basic search Fall 2019 45 / 52



A* at work

So A* found the path Arad-Sibiu-Rimnicu-Pitesti-Bucharest (418km).
This is the shortest path. Actually, A* always finds the shortest path
from any city to any city!

Panahi and Strannegård Basic search Fall 2019 46 / 52



Admissible heuristics

Definition
The heuristic function h is admissible if

h(p) ≤ cost(p′),

whenever p′ starts at the end-node of p and ends at a goal node. In
words: an admissible heuristic never overestimates the actual cost of
reaching a goal node. In other words: The estimate of the remaining
cost is never higher than the actual cost.

Example
The straight-line distance heuristic is admissible, since the it is always
smaller than or equal to the actual (road) distance.

Panahi and Strannegård Basic search Fall 2019 47 / 52



Optimality of A*
Theorem
If there is a solution, then A* always returns an optimal solution,
provided that:

1 the branching factor is finite,
2 the arc costs are uniformly bounded (i.e., there is an ε > 0 such

that all of the arc costs are greater than ε), and
3 the heuristic function h is admissible.

Proof.
First, suppose there is only one optimal solution, p. Then the first
two requirements ensure that p will eventually enter the Frontier. The
last requirement ensures that p will be sorted before any other
solution. Hence A* will eventually return p. The case when there are
several optimal solutions is similar.

Panahi and Strannegård Basic search Fall 2019 48 / 52



Why is A* optimal?

Paths with bigger and bigger f -values will be put on the Fringe.

Panahi and Strannegård Basic search Fall 2019 49 / 52



Video about A*

Video
Panahi and Strannegård Basic search Fall 2019 50 / 52

https://www.youtube.com/watch?v=vP5TkF0xJgI


Play with search algorithms

Animation. Light green: state at the end of some generated path.
Blue: state at the end of some selected path. Yellow: returned path.

Panahi and Strannegård Basic search Fall 2019 51 / 52

http://qiao.github.io/PathFinding.js/visual/


How do navigators work?

For instance, the TomTom route engine is based on A*. It takes
real-time traffic data as input to find the fastest way.

Panahi and Strannegård Basic search Fall 2019 52 / 52


	Search problems
	Generic Search Algorithm
	Uninformed search
	Informed search

