Introduction to Artificial Intelligence

Ashkan Panahi and Claes Strannegard

Department of Computer Science and Engineering
Chalmers University of Technology

Lecture 3: Classical Al

DO NOT DISTRIBUTE

Panahi and Strannegard Basic search Fall 2019 1/52

How do navigators work?

Panahi and Strannegard Basic search Fall 2019 2 /52

Overview

@ Scarch problems
© Generic Search Algorithm
© Uninformed search

@ Informed search

Panahi and Strannegard Basic search

Fall 2019

3/52

/

@ Online book chapter. David L. Poole and Alan K. Mackworth,
Cambridge University Press, 2017: Artificial Intelligence:
Foundations of Computational Agents. Chapter 3: Searching for
Solutions up to and including 3.6.

@ Some slides are by Peter Ljungléf and used with his permission.

Panahi and Strannegard Basic search Fall 2019 4 /52

https://artint.info/2e/html/ArtInt2e.Ch3.html
https://artint.info/2e/html/ArtInt2e.Ch3.html

Search problems

Panahi and Strannegard Basic search Fall 2019

Delivery robot problem

M31 | 129 | H27 | ri25 @ f21 | ri19

- ~ ~ - — - storage
0131 0129 5127 o125 o123 o121 of19
17
da d2 1 o117 |
c2
d3 —— c3 o115 |/ r115
a1 b1 b2
o113 | \r113
2 a3 b3 b4
mail s 0101 0105 0107 0109 oft1
main |
office stairs — r101 r103 ; r105 r107 r109 i1
| |

Suppose a delivery robot wants to go from start (red) to goal (blue).

Panahi and Strannegard Basic search Fall 2019

Graph terminology

A (directed) graph consists of a set of nodes and and a binary
relation on the nodes, whose elements are called arcs or edges.
Note that the arc relation is generally not symmetric.

A node ny is called a successor (or child) of the node n; if there
is an arc from nq to ns.

A path is a sequence of nodes (ng,n1,...,ny) such that
(nj,nit+1) is an arc, for all 7 such that 0 <i <k.

A cycle is a path whose first and last nodes are the same.

A directed graph without any cycles is called a directed acyclic
graph (DAG).

Panahi and Strannegard Basic search Fall 2019 7 /52

Graph problems (today’s topic)

A graph problem (or path-finding problem) consists of
@ a set of states (or nodes)

@ a set of arcs between states (that may be labeled with labels
representing actions and/or costs)

@ a distinguished state called start state

@ a distinguished set of states called goal states.

4

A solution to a graph problem is a path leading from the start state
to a goal state.

Panahi and Strannegard Basic search Fall 2019 8 /52

Example of a graph problem

G:D)

A

~

4

OB ‘ L

s

The Delivery robot problem formulated as a graph problem (with
exactly 3 solutions). The labels are not relevant here.

Panahi and Strannegard Basic search Fall 2019

unexplored nodes

=

We will soon define a generic algorithm for solving graph problems.
The algorithm maintains a set of paths called the Frontier (or
Fringe). We will make sure that any solution must begin with a path
that belongs to the Frontier.

Panahi and Strannegard Basic search Fall 2019 10 / 52

Generic Search Algorithm

Panahi and Strannegard Basic search Fall 2019 11 / 52

Generic Search Algorithm

procedure Search(G, S, goal)

1
2 Inputs
3 G graph with nodes NV and arcs A
4 8 start node
5 goal: Boolean function of nodes
6 Output
7 path from s to a node for which goal is true
8 or L if there are no solution paths
9 Local
10 Frontier: set of paths
n Frontier := {(s)}
122 while Frontier # {} do
13 select and remove (nyg, . ..,ng) from Frontier
14 if goal (ny) then
15 return (ng, ..., nk)
16 Frontier := Frontier U {{ng,...,ni,n) : (ny,n) € A}
17 return L
Panahi and Strannegard Basic search

Fall 2019

12 / 52

Instances

Different instances of the Generic Search Algorithm can be defined by
specifying how the paths are to be selected from the Frontier:

@ Breadth-first search: Select the path that was added to the
Frontier the longest time ago.

@ Depth-first search: Select the path that was added to the
Frontier the most recently.

@ Best-first search: Use a function that assigns “grades” to paths.
Select the path that has the best “grade.”

Panahi and Strannegard Basic search Fall 2019 13 / 52

Implementation

One way of implementing the Generic Search Algorithm is to let the
Frontier be a list and always select the first path (=head) of the list.
Then the above instances can be obtained by different policies for
inserting new paths into the list:

@ Breadth-first search: In this case new paths are inserted at the
end of the list. Then the Frontier is an ordinary queue, i.e. a
FIFO (First-in First-Out) queue.

o Depth-first search: In this case new paths are inserted at the
front of the list. Then the Frontier is a stack, i.e. a LIFO
(Last-in First-Out) queue.

@ Best-first search: In this case new paths are inserted into the list
based on their “grades.” Then the Frontier is sorted by “grades.”

Panahi and Strannegard Basic search Fall 2019 14 / 52

Uninformed search

Panahi and Strannegard Basic search Fall 2019 15 / 52

Breadth-first search (BFS)

® ©
4 hd n
lofofjolefiecle
Shen en e
CFO O TQH SO
33 < dJ0o

We can illustrate the order in which paths are checked (and removed
from the Frontier) by using a tree whose nodes represent paths. In
the case of BFS the paths are checked in the order shown. First the
path with end-node 1, then the path with end-node 2, etc. The
shaded nodes are the end-nodes of paths that are on the Frontier
right after path 16 was checked.

Panahi and Strannegard Basic search Fall 2019 16 / 52

Breadth-first search: analysis

Breadth-first search is useful when:
@ the problem is small enough so that the graph can be stored
explicitly, or
@ there are short solutions.
It is a poor method when:
@ the graph is large (and dynamically generated) and

@ there are no short solutions.

Panahi and Strannegard Basic search Fall 2019 17 / 52

Depth-first search (DFS)

/®\
© ®
. SN
g B d N
HoHe §dn
jofofcfoqefeyefe
SEFO®»EY CQ SO
& J J30O

The shaded nodes are the end-nodes of paths that are on the Frontier
right after path number 16 was removed in a search with DFS.

Fall 2019 18 / 52

Depth-first search: analysis

Depth-first search is appropriate when:
@ the search space is small, or
@ many solutions exist

It is poor when:

@ it is possible to get caught in infinite paths, which might happen
when the graph is infinite or contains loops.

Panahi and Strannegard Basic search Fall 2019 19 / 52

lterative Deepening DFS

Iterative deepening depth-first search proceeds as follows:

@ First do a depth-first search down to depth 1. (So only paths of
max length 1 are put into the Frontier.)

@ If that does not lead to a solution, do a depth-first search down
to depth 2

o If that does not lead to a solution, do a depth-first search down
to depth 3

@ and so on until a solution is found.

Panahi and Strannegard Basic search Fall 2019 20 / 52

lterative Deepening DFS

Figure 3.19 Four iterations of iterative deepening search on a binary tree.

Panahi and Strannegard Basic search Fall 2019

lterative Deepening DFS: analysis

Advantages:
@ it always finds a solution if there is one (like BFS)
e it always finds the shortest solution (like BFS)
@ it is memory efficient (like DFS)

Drawback:

@ some nodes are revisited many times.

Panahi and Strannegard Basic search Fall 2019 22 /52

Adding arc costs

@ Sometimes it is useful to put costs on arcs. For example, the
costs might represent travel time or travel distance.

e We write the cost of arc (n;,n;) as cost(n;,n;).

e Given a path p = (ng,n1,...,ng), the cost of p, cost(p) is
defined as the sum of the costs of the arcs appearing in p.

@ Given a cost function, we may look for an optimal solution to a
graph problem, e.g. the shortest path or the fastest path.

Panahi and Strannegard Basic search Fall 2019 23 /52

Finding an optimal path

G
7
(o125) 13 ol19
A

L

-
(®3)
4

8 {Coms y—2

Find a path from the red node to the blue node with minimum cost.
This is the kind of problem that navigators need to solve.

Panahi and Strannegard Basic search Fall 2019 24 /

Lowest-cost-first search

Applies when the arcs are labeled with costs.

A version of the Generic Search Algorithm

Lowest-cost-first search: Let the Frontier be a list sorted by path
cost (with the path with the lowest cost first).

When arc costs are all equal, it coincides with BFS.

It always finds the cheapest solution, so it is optimal.
But it has limited scalability (like BFS)...

Panahi and Strannegard Basic search Fall 2019 25 / 52

Informed search

Panahi and Strannegard Basic search Fall 2019

Heuristics

@ In everyday language, a heuristic is a rule of thumb that
indicates where to search primarily.

@ The word has the same origin as the Greek “Eureka!” ("I found
it!") that Archimedes shouted in his bathtub.

Panahi and Strannegard Basic search Fall 2019 27 / 52

Heuristics

Heuristic principles in everyday life:

@ Search for toys at low levels primarily
Search for blueberries in forests primarily

()
@ Search for translations that use common words primarily
o

Search for solutions that are simple primarily

Panahi and Strannegard Basic search Fall 2019 28 / 52

Heuristic functions

Definition

A heuristic function is a function h that assigns a non-negative real
number h(p) to each path p. Intuitively it is an estimate of the cost
of the cheapest path from the end-node of p to a goal node.

For calculating h(p), the only relevant part of p is its end-node. Some
texts define heuristic functions on nodes and costs on paths. Our
choice here is to define both heuristic functions and costs on paths.

Panahi and Strannegard Basic search Fall 2019 29 / 52

Example of a heuristic function
w

O

@ This is a graph problem with arc costs drawn to scale. The cost
of each arc is its length. The aim is to find the shortest path
from s to g.

@ A heuristic function h(p) can be defined as the straight-line
distance from the end node of p to g.

Panahi and Strannegard Basic search Fall 2019 30/ 52

Greedy best-first search

oy

?

o Greedy best-first search: Keep the Frontier sorted by heuristic
value h(p) (with paths with low values first).

@ In the above example, the algorithm will get stuck in the red
loop and never terminate!

@ So greedy best-first search is not what we want...

Panahi and Strannegard Basic search Fall 2019

31/ 52

The algorithm A*

@ Very powerful search algorithm

@ Pronounced “A star”

@ Invented by Hart, Nilsson and Raphael in 1968.

@ A kind of best-first search: the Fringe is sorted by “grades.”

Panahi and Strannegard Basic search Fall 2019 32 /52

A* search

A* search uses both path cost and heuristic values.
cost(p) is the cost of path p.
h(p) estimates the cost from the end node of p to a goal.

f(p) = cost(p) + h(p), estimates the total path cost
of going from the start node, via path p to a goal:

path p estimate
start n > goal
—————

cost(p) h(p)

Panahi and Strannegard Basic search Fall 2019 33 /52

Running example: driving in Romania

Straight-line distance
to Bucharest

Arad 366

Bucharest 0

Craiova 160

Dobreta 242

Arad 3 Eforie 161
Fagaras 178

o Giurgiu 77
118 Hirsova 151
Iasi 226

Lugoj 244

Mehadia 241

Neamt 234

Oradea 380

" Pitesti 98

[] Hirsova Rimnicu Vilcea 193

Sibiu 253

Timisoara 329

Urziceni 80

Eforie Yaslui 199

[] Giurgiu Zerind 374

We want to find the shortest path from Arad to Bucharest using a
map with road distances to neighbors (for computing cost(p)) and a
table with straight-line distances (for computing h(p)). This
information is available to a navigator.

Panahi and Strannegard Basic search Fall 2019 34 /52

P
366=0+366

Panahi and Strannegard Basic search Fall 2019

393=140+253 447=118+329 449=75+374

Panahi and Strannegard Basic search Fall 2019

393=140+253 447=118+329 449=75+374

Panahi and Strannegard Basic search Fall 2019 37/

449754374

646=280+366 415=239+176 671=291+380 413=220+193

nahi and Strannegard i Fall 2019 38

449754374

646=280+366 415=239+176 671=291+380 413=220+193

nahi and Strannegard i Fall 2019 39

447=118+329

449754374

Rimnicu Vilcea

646=280+366 415=239+176 671=291+380

526=366+160 417=317+100 553=300+253

Panahi and Strannegard i Fall 2019

447=118+329

449754374

Rimnicu Vilcea

646=280+366 415=239+176 671=291+380

526=366+160 417=317+100 553=300+253

Panahi and Strannegard i Fall 2019

646=280+366 671=291+380

591=338+253 450=450+0 526=366+160 417=317+100 553=300+253

Since we follow the Generic Search Algorithm, we don't stop here just
because we added Bucharest (a goal state) to the Frontier.

Panahi and Strannegard Basic search Fall 2019 42 / 52

447=118+329

449754374

646=280+366

591=338+253 450=450+0 526=366+160 417=317+100 553=300+253

Panahi and Strannegard i Fall 2019

447=118+329

449754374

646=280+366

591=338+253 450=450+0 526=366+160 553=300+253

418=418+0 615=455+160 607=414+193

Panahi and Strannegard i Fall 2019

449=75+374

553=300+253

418=418+0 615=455+160 607=414+193

Since we follow the Generic Search Algorithm, we stop here. In fact
we just removed (and returned) a path ending in a goal state
(Bucharest) from the Frontier.

Panahi and Strannegard Basic search Fall 2019 45 / 52

Fagaras

rHirsova

Dobreta

Eforie

So A* found the path Arad-Sibiu-Rimnicu-Pitesti-Bucharest (418km).
This is the shortest path. Actually, A* always finds the shortest path

from any city to any city!
Panahi and Strannegard Basic search Fall 2019 46 / 52

Admissible heuristics

The heuristic function h is admissible if

h(p) < cost(p'),

whenever p’ starts at the end-node of p and ends at a goal node. In
words: an admissible heuristic never overestimates the actual cost of
reaching a goal node. In other words: The estimate of the remaining
cost is never higher than the actual cost.

Example

The straight-line distance heuristic is admissible, since the it is always
smaller than or equal to the actual (road) distance.

Panahi and Strannegard Basic search Fall 2019 47 / 52

Optimality of A*

If there is a solution, then A* always returns an optimal solution,
provided that:

© the branching factor is finite,

@ the arc costs are uniformly bounded (i.e., there is an € > 0 such
that all of the arc costs are greater than), and

© the heuristic function h is admissible.

Proof.

First, suppose there is only one optimal solution, p. Then the first
two requirements ensure that p will eventually enter the Frontier. The
last requirement ensures that p will be sorted before any other
solution. Hence A* will eventually return p. The case when there are
several optimal solutions is similar. O

4

Panahi and Strannegard Basic search Fall 2019 48 / 52

Why is A* optimal?

Paths with bigger and bigger f-values will be put on the Fringe.

Panahi and Strannegard Basic search Fall 2019 49 / 52

Video about A*

At/SearahcAlgorithen t GeeksforGesks ath between A and J

A r—m——
/ / \ Let us start with A
A have 2 nodes B and F
\ Lets calculate F(B) and F(F)
/ \I / F(B) =6+ =14

FR=3+6=9
/ F(F)<F(B), so we will choose F as
E\ our new start node
J

pathy, o) 1:35/3:00

Panahi and Strannegard Basic search Fall 2019 50 / 52

https://www.youtube.com/watch?v=vP5TkF0xJgI

Play with search algorithms

Instructions Select Algorithm

Click within the white grid and drag your mouse to draw obstacles. - A+
Drag the node to set the start position.
Drag the red node to set the end position.
Choose an algorithm from the right-hand panel. @ Mannatian
Click Start Search in the lower-right comer to start the animation. Gt
Octile
@ Chebyshev
Options
B Allow Diagonal
Bi-directional
Don't Cross Comers

Weight

Heuristic

IDA*
Breadth-First-Search
Best-First-Search
Dijkstra

Jump Point Search
Orthogonal Jump Point
Search

Trace

Restart Clear Clear
Project Hosted on Githb En Path Walls

Animation. Light green: state at the end of some generated path.
Blue: state at the end of some selected path. Yellow: returned path.

Fall 2019

Panahi and Strannegard

http://qiao.github.io/PathFinding.js/visual/

How do navigators work?

For instance, the TomTom route engine is based on A*. It takes
real-time traffic data as input to find the fastest way.

Panahi and Strannegard Basic search Fall 2019 52 / 52

	Search problems
	Generic Search Algorithm
	Uninformed search
	Informed search

