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Problem formulation
General solution

Filtering solutions

Reviewing L11-L13
What have we done so far?

Signal models (L11-L12)
Nonparametric models: ACF and PSD.
Parametric models: AR, MA and ARMA.

Signal model estimation (L13)
Nonparametric spectral estimation: the periodogram.
Pros:

fast to compute
asymptotically unbiased.

Cons:
limited resolution for finite N:
 the modified periodogram improves this
large variance for all N:
 Blackman-Tukey’s method lowers variance.

Parametric spectral estimation: AR-estimation.
1 Estimate rx [k] from data.
2 Reformulate Yule-Walker to get â = R−1

x rx .
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Problem formulation
General solution

Filtering solutions

Learning objectives

After today’s lecture you should be able to

explain what type of problems Wiener-filters can solve.

derive the Wiener-Hopf (WH) equations.

use the WH-equations to derive a causal FIR Wiener filter.

use the WH-equations to derive a non-causal IIR Wiener
filter.

Compute the mean squared error (MSE) of a Wiener-filter.
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Problem formulation
General solution

Filtering solutions
Filtering, smoothing and prediction

Filtering, smoothing and prediction

Let s[n] and w [n] be zero mean, wide sense stationary
processes and

x [n] = s[n] + w [n].

Objective

Select H(z) to make e[n] as ”small” as possible

H(z)x [n]
d̂ [n]

d [n]

e[n] = d̂ [n]− d [n]
−

Small could mean different things. We use mean squared error

E
{
e[n]2

}
,

since this is easy to minimize.
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Problem formulation
General solution

Filtering solutions
Filtering, smoothing and prediction

Filtering, smoothing and prediction

Based on measurements collected up until now, we encounter three
common problems (k > 0):

Filtering – estimating current signal values, d [n] = s[n].
Applications: positioning, control systems, noise or echo
cancellation, etc.

Smoothing – estimating past signal values, d [n] = s[n − k].
Applications: signal analysis, image processing, system
identification (modelling).

Prediction – estimating future signal values, d [n] = s[n + k].
Applications: decision making, planning, weather forecasts,
etc.
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Problem formulation
General solution

Filtering solutions
Filtering, smoothing and prediction

Filtering, smoothing and prediction

These problems can be illustrated as

Smoothing:

Filtering:

Prediction:

time

Time of interest
Measurements
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Problem formulation
General solution

Filtering solutions
Filtering, smoothing and prediction

Filtering, smoothing and prediction

We seek a linear estimator (filter)

d̂ [n] = h[n] ? x [n] =
∑
k

h[k]x [n − k]

of d [n].

As mentioned above, we wish to minimize the mean square
error (MSE),

MSE(h) = E


(
d [n]−

∑
k

h[k]x [n − k]

)2


where the vector h contains the impulse response coefficients
h[k].

The resulting Wiener filter d̂ [n] is a linear minimum mean
square error (LMMSE) estimator.
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Problem formulation
General solution

Filtering solutions
Filtering, smoothing and prediction

Cross-correlation function

In this filtering case we have two signals x and d and when
evaluating the MSE we will obtain terms E {d [n]x [n − k]}.

The cross-correlation function for signals d and x is defined as

rdx [k] = E {d [n]x [n − k]}

and describes how the two signals co-vary.
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Problem formulation
General solution

Filtering solutions
Wiener-Hopf equations

Wiener-Hopf (W-H) equations

The W-H equations are very important and can be used to
solve all the problems mentioned above.

Objective: (again) We wish to minimize

MSE(h) = E


(
d [n]−

∑
k

h[k]x [n − k]

)2


with respect to h.

Derivation 1: the function is quadratic in h
⇒ it is convex in h
⇒ no local optima (except for the global optimum)
⇒ sufficient to differentiate and set to zero!
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Problem formulation
General solution

Filtering solutions
Wiener-Hopf equations

Wiener-Hopf (W-H) equations
Differentiate the MSE:

∂

∂h[t]
MSE(h) =

∂

∂h[t]
E


(
d [n]−

∑
k

h[k]x [n − k]

)2


= E

{
2

(
d [n]−

∑
k

h[k]x [n − k]

)
(−x [n − t])

}
= −2rdx [t] + 2

∑
k

h[k]rx [t − k]

Setting this derivative to zero gives the

Wiener-Hopf (WH) equations∑
k

h[k]rx [t − k] = rdx [t],

for all t. Optimal h[t] must satisfy WH.
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Problem formulation
General solution

Filtering solutions

Causal FIR filters
MSE of optimal FIR filter
General LMMSE estimator

FIR filters

Suppose H(z) is a causal FIR filter:

d̂ [n] =

p−1∑
n=0

h[k]x [n − k].

The W-H eq’s can be written as
rx [0] rx [1] . . . rx [p − 1]
rx [1] rx [0] . . . rx [p − 2]
...

...
. . .

...
rx [p − 1] rx |p − 2] . . . rx [0]


︸ ︷︷ ︸

Rx


h[0]
h[1]
...

h[p − 1]


︸ ︷︷ ︸

h

=


rdx [0]
rdx [1]

...
rdx [p − 1]


︸ ︷︷ ︸

rdx

which yields that

hopt = R−1
x rdx .

Chalmers University of Technology Tomas McKelvey 11/16



Problem formulation
General solution

Filtering solutions

Causal FIR filters
MSE of optimal FIR filter
General LMMSE estimator

What is the minimum MSE?

The minimum MSE can be calculated by plugging in hopt:

E
{
e2
min[n]

}
= E

{
emin[n]

(
d [n]− d̂opt[n]

)}
=
{
Note: d̂opt ⊥ e[n]

}
= E

{(
d [n]−

p−1∑
k=0

hopt[k]x [n − k]

)
d [n]

}

= rd [0]−
p−1∑
k=0

hopt[k]rdx [k] = rd [0]− rTdxR
−1
x rdx

Special case: if d [n] and x [n] are uncorrelated, then d̂ [n] = 0
and the MSE is rd [0].
In general, the more correlated (similar) x [n] is to d [n] the
better is the estimate d̂ [n]!
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Problem formulation
General solution

Filtering solutions

Causal FIR filters
MSE of optimal FIR filter
General LMMSE estimator

The LMMSE estimator

Consider two vectors z and v which are zero mean and have the
joint covariance

E

{[
z
v

] [
z
v

]T}
=

[
E
{
zzT

}
E
{
zvT

}
E
{
vzT

}
E
{
vvT

}] = [Qzz QT
vz

Qvz Qvv

]
Assume we want to estimate the value of z by forming a linear
combination of v , i.e.

ẑ = Kv

such that

MSE = E
{
‖z − ẑ‖2

}
= E

{
(z − Kv)T (z − Kv)

}
is minimized. Linear Minimum Mean Squared Error Estimator
(LMMSE) .
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Problem formulation
General solution

Filtering solutions

Causal FIR filters
MSE of optimal FIR filter
General LMMSE estimator

Solution

Evaluating the MSE yields

MSE =E
{
(z − Kv)T (z − Kv)

}
= trE

{
(z − Kv)(z − Kv)T

}
=tr(Qzz − KQvz − QT

vzK
T + KQvvK

T )

=tr
(
(K − QT

vzQ
−1
vv )Qvv (K − QT

vzQ
−1
vv )T

)
+ tr(Qzz − QT

vzQ
−1
vv Qvz)

The optimal K is hence

Kopt = QT
vzQ

−1
vv

and the optimal MSE is

MSEopt = tr(Qzz − QT
vzQ

−1
vv Qvz)
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Problem formulation
General solution

Filtering solutions

Causal FIR filters
MSE of optimal FIR filter
General LMMSE estimator

The Wiener filter is the LMMSE estimator

The FIR Wiener filter is obtained by setting

z = d [n] and v =


x [n]

x [n − 1]
...

x [p − 1]


which imply [

Qzz QT
vz

Qvz Qvv

]
=

[
rd [0] rTdx
rdx Rx

]
and hence,

Kopt = QT
vzQ

−1
vv = rTdxR

−1
x and MSEopt = rd [0]− rTdxR

−1
x rdx

d̂ [n] = ẑ = Koptv = rTdxR
−1
x v =

p−1∑
k=0

hopt [k]x [n − k]
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Problem formulation
General solution

Filtering solutions

Causal FIR filters
MSE of optimal FIR filter
General LMMSE estimator

Learning objectives

After today’s lecture you should be able to

explain what type of problems Wiener-filters can solve.

derive the Wiener-Hopf (WH) equations.

use the WH-equations to derive a causal FIR Wiener filter.

use the WH-equations to derive a non-causal IIR Wiener
filter.

Compute the mean square error (MSE) of a Wiener-filter.
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