
Architectural
Technical Debt

• Terese Besker

Software Center

• Chalmers University of Technology
Gothenburg, Sweden.

• www.software-center.se

http://www.software-center.se/

Today’s excursion
• Cleaning in general

• Who am I?

• What is debt?

• What is Technical Debt?

• Solutions

• Prioritization

• Prevention mechanisms

• Regulations

• The costly Bill of Technical Debt

• Architectural Technical Debt

• Always a bad thing?

• A balancing act

Have you ever…..?

Have you ever deliberately
introduced a sub-optimal

solution (“quick and dirty” or
“cutting some corners”) in

order to finish early?

….or maybe you have introduced a sub-
optimal solution unconsciously at some
point?

Because you didn’t know any better way of
doing it or…
it was the most optimal solution at that
specific time

The final question:

Did you ever go back and fixed it?

Mission: Improve the software engineering
capability of the Nordic Software-Intensive
industry with an order of magnitude

Theme: Fast, continuous deployment of customer value

Success: Academic excellence

Success: Industrial impact

Software Center

A Debt Background

Financial debt:
• Loan
• Debt
• Interest

Borrowing against
our capacity of
tomorrow to make
more progress today

Basically a Debt is….

What is
Technical Debt?

A ordinary day at the software development office
Software Companies need to do:

Software companies need to deliver customer value
continuously, both from a short- and long-term perspective

Customer
value

Software companies need to consider the tradeoffs between the
overall quality of the software, and the costs of the software
development process in terms of the required time and resources

Tradeoffs

Software companies need to balance the quality of the software
with the ambition of increasing the efficiency and decreasing the
costs in each lifecycle phase

Efficiency

A ordinary day at the software development office:
What Software Companies need to do:

Deliberately implement sub-optimal solutions in order to shorten
the time-to-market or when resources are limited in practice, by
implementing “quick fixes” or “cutting corners” during the
software development process

Implement sub-
optimal

solutions

Deliberately

Even if the best intention is to go back and refactor the sub-
optimal solution immediately afterward, there is a tendency that
these refactoring tasks will be postponed since, commonly, there
are other important deadlines in the near future, where these
refactoring tasks are often down-prioritized

Postponed
refactoring

tasks

There is also the scenario where sub-optimal solutions are
implemented unintentionally, due to a lack of knowledge,
guidelines or best practices.

Implement sub-
optimal

solutions

Unintentionally

And what do we do?

Let’s finish the
testing in the next

release*

Eavesdropping at the office

Let’s just copy and
paste this part*

* R. K. Gupta, P. Manikreddy, S. Naik, and K. Arya, “Pragmatic Approach for Managing Technical Debt in Legacy Software Project,” in

Proceedings of the 9th India Software Engineering Conference, Goa, India, 2016, pp. 170-176.

We don’t have time
to reconcile these

two databases right
now, lets use some
glue code and we

can fix it later
Lets do a quick and
dirty solution now,
and we can have a
look at this in next

sprint(s)

"Shipping first time code is like going into
debt”

“A little debt speeds development so long as it
is paid back promptly with a rewrite…”

“Every minute spent on not-quite-right code
counts as interest on that debt”

Ward Cunningham

Why the Technical Debt metaphor?

Helps business staff to understand
and make technical decisions

Helps technical staff to understand
financial consequences of technical

decisions, and argue for e.g. the
need for refactoring

Technical Debt is sub-optimal solutions, not
bugs, and not yet implemented features

Technical Debt, Features, Defects, etc.

P. Kruchten, R. L. Nord, and I. Ozkaya, “Technical Debt: From Metaphor to Theory and Practice,” IEEE Software

Visible Invisible

Positive Value

Negative Value

New Features
Added Functionality

Architectural,
Structural Features

Defects Technical Debt

Examples of
Technical Debt

• Poor code quality

• Poor or inappropriate Architecture of the
software

• Lack of following guidelines

• Lack of documentation

• Lack of testing

• … and so on

The Bill: Software related Interest

- it is not technical debt if you don’t pay
any interest

• Working around or fixing existing
errors

• Extra effort spent on
understanding complex code

• Baby-sitting tasks that could be
automated

Worst case scenarios

• Impede innovation and expansion of your
software systems

• Stifle an whole organization’s ability to innovate

• Negative effect on available resources to
implement new technology

• Time consuming maintenance

• Lower the productivity

• Lower the morale

• In the long run, it can lead to a system crisis

Examples of Vicious circles

Running late and
behind schedule

Take on Technical
Debt, both

deliberate or
undeliberate

Lower the software

developer productivity

Less time for
implementing new

features and do
refactorings

Postpone
refactoring = still
having Technical

Debt in the
software

Suddenly, you reach a point when you
have to take a step back and reflect on

where you are going

Solutions…

• Refactoring – to optimize (and clean)
the software without impacting the
user experience or functionality

• Continuous process of refactoring
initiatives

• Refactoring is crucial to prevent
spiraling technical debt

• The only significantly effective way of
reducing TD, is to refactor it

• Refactoring activities of the identified TD
items needs to be prioritized

• Competing with for example
implementation of new features

Remediation of
Technical Debt

Besker, T., et al. (2019). Technical debt triage in backlog management.

Proceedings of the Second International Conference on Technical Debt.
Montreal, Quebec, Canada, IEEE Press: 13-22.

The Agile Backlog

The presence of Technical Debt items in backlogs?

Does the Prioritization process of the backlog also
include the prioritization of Technical Debt?

Fixed amount of time in each sprint allocated
for improvement, which includes TD,
however no follow-up on time spent

Technical Debt issues – not in same Backlog as Features and Bug
fixes

Technical Debt issues – in a “shadow “
backlog

Besker, T., et al. (2019). Technical debt triage in backlog management. Proceedings of the Second International Conference on
Technical Debt. Montreal, Quebec, Canada, IEEE Press: 13-22.

Supporting frameworks or Gut Feelings?

Company commonly does not use any guiding Decision Making
Frameworks

Gut feeling is not an add-hoc
approach:
• Prior experience
• Acquired knowledge
• Instinct or emotion
• Roadmap of future features
• ……

“In my experience, it’s
usually the most

experienced guy that has
the biggest impact [when
prioritizing TD]. We don’t

actually need a big
consensus among the

participants.”

A reactive or proactive approach

The prioritization of TD in the backlog is much more of a

reactive then a proactive approach

Estimating the value of doing refactoring of
Technical Debt, is considered to be difficult

92 % states that the Technical Debt’s negative effects could be reduced, if they did the
prioritization of their Backlog differently

Besker, T., et al. (2019). Technical debt triage in backlog management. Proceedings of the Second International Conference on
Technical Debt. Montreal, Quebec, Canada, IEEE Press: 13-22.

TD refactoring competition with
customer requirements

92 % states that the Technical Debt’s negative effects could be reduced, if they did the
prioritization of their Backlog differently

Besker, T., et al. (2019). Technical debt triage in backlog management. Proceedings of the Second International Conference on
Technical Debt. Montreal, Quebec, Canada, IEEE Press: 13-22.

Refactoring
contra
Prevention

Besides continuously refactoring
activities we also need to
prevent introducing Technical
Debt from the very beginning

TD prevention……prevents
potential TD from being
incurred, in the first place

• Commonly TD Prevention is "cheaper"
than TD repayment

• There is no tool for TD prevention - >
Development Process Improvement

TD prevention –
from a Change Management perspective

TD Prevention
1 2 3 4 5 6 7 8

TD prevention (1/2)

Identify what need to
be improved

coding standards

code reviews

definition of done

architectural structure (e.g.
Monolithic or Micro Services)

Explain the cost and
nature of debt to

developers architect,
PO, PM etc.

Debt awareness is best among
the methods of debt prevention

Harmfulness today and in future
(predicting growth of interest

costs)

Productivity increase

Feel more confident (developers
pride) and attract the “best”

developers

Set the Targets
(clear steps with

measurable targets
e.g. wasted time)

Provide Resources (tools
such as AnaConDebt,

SonarQube, Arcan,
education etc.)

TD prevention (2/2)

Communication Change in
mindset

Manage
resistance and
cultivate a
culture

Celebrate
Success

Recognizing
milestone
achievements

Encouragement

Review, Revise
and
Continuously
Improve

Can regulations stop us from introducing TD in the first place?

The relationship between safety-critical software (SCS)
regulations and the management of TD

Examples of regulatory
certification processes

SCS are heavily
regulated

SCS require
certification

against industry
standards

Recertified to
ensure

compliance
with the

present safety
standards.

E.g. after a
refactoring
activity of
software:

retested

revalidated

reverified

Cost and time-
consuming –
risk of being

down-
prioritized or

avoided -> more
TD

Besker, T., et al. (2018). How Regulations of Safety-Critical Software Affect Technical Debt. 2019, SEAA

Consequences and Effects of SCS Regulations when
Conducting or Planning for TD Refactoring Activities

TD refactoring activities are commonly deliberately avoided

Besker, T., et al. (2018). How Regulations of Safety-Critical Software Affect Technical Debt. 2019, SEAA

Software Architectural Structures
Contributing to TD Refactoring

• Components can have different levels of safety
regulations, which defines the refactoring scope

• The importance of a software architecture that
facilitates refactoring with as little effort and cost
as possible

• Examples of different architectural structures;
component-based, pipes and filters, monolithic,
and layered structures

Besker, T., et al. (2018). How Regulations of Safety-Critical Software Affect Technical Debt. 2019, SEAA

Software Architectural Structures
Contributing to TD Refactoring

• Monolithic architecture = major hindrance for TD refactoring tasks in SCS

• Modular SCS architecture (component-based or loosely coupled units or
layer-based structures) = increase likelihood of TD Refactoring tasks

“Our middle layer
in the architecture would have
looked different [if it was not
SCS] since the intention of the

decision level is actually to
abstract and isolate different

ASIL levels because it would be
quite hard and expensive to

maintain these dependencies
otherwise.”

Work-around solutions to avoid the additional activities and costs

Consequences and Effects of SCS Regulations when
Conducting or Planning for TD Refactoring Activities

Besker, T., et al. (2018). How Regulations of Safety-Critical Software Affect Technical Debt. 2019, SEAA

The Counterproductiveness of the SCS
Regulations

Opposite effect : the regulations contribute to the further introduction of TD and thereby
potentially decrease both the maintainability and evolvability of the software.

Even if the SCS regulations have the best intention to produce a high-quality software product, the findings
demonstrate that these heavy regulations are conceivably counterproductive since they potentially can constrain
the possibility of performing optimal TD refactoring activities efficiently

Besker, T., et al. (2018). How Regulations of Safety-Critical Software Affect Technical Debt. 2019, SEAA

How expensive is Technical Debt? –
from a productivity perspective

• Technical Debt cause developers to waste working time, since they
have to perform extra activities due to the present Technical Debt.

• How much time?

24 % of all development time is
wasted by developers, due to
Technical Debt

Technical Debt contra Productivity

Besker, T., et al. (2019). "Software developer productivity loss due to technical debt—A replication and
extension study examining developers’ development work." Journal of Systems and Software 156: 41-61.

Additional activities:

performing additional
testing

additional source
code analysis

performing additional
refactoring

In a quarter of all occasions of encountering TD,
developers were forced to introduce additional TD due

to already existing TD

Technical Debt contra Productivity

Besker, T., et al. (2019). "Software developer productivity loss due to technical debt—A replication and
extension study examining developers’ development work." Journal of Systems and Software 156: 41-61.

• TD can reduce developers’ morale; the
presence of TD hinders developers from
performing their tasks and achieving
their goals

• A proper management of TD increases
developers’ morale

Technical Debt and Morale

Ghanbari, H., et al. (2017). Looking for Peace of Mind? Manage your (Technical) Debt - An Exploratory Field Study. 11th
International Symposium On Empirical Engineering and Measurement (ESEM), Toronto, Canada.

What about the Software Quality due to having Technical Debt?

Compromised quality
attributes due to
Technical Debt

• Maintainability

• Reliability

• Performance

• Reusability

• Ability to add new
features

Besker, T., et al. (2017). Time to Pay Up - Technical Debt from a Software Quality Perspective. proceedings of the 20th Ibero

American Conference on Software Engineering (CibSE) @ ICSE17, Buenos Aires, Argentina, CibSE.

Different types of Technical Debt*

Requirements
Technical Debt

Design
Technical Debt

Code Technical
Debt

Versioning
Technical Debt

Defect
Technical Debt

Test Technical
Debt

Build
Technical Debt

Infrastructure
Technical Debt

Documentation

Technical Debt

* E. Tom, A. Aurum, and R. Vidgen, “An exploration of technical debt,” Journal of Systems and Software, vol. 86, no. 6, 2013, pp. 1498-1516.

Architectural
Technical Debt

Architectural
Technical Debt –
ATD

The importance of ATD

• ATD is the most commonly encountered instances of TD and are
caused by architectural inadequacies

• Architectural decisions are the most important source of TD

• ATD has a huge impact and leverage within the overall
development lifecycle

• “Architecture plays a significant role in the development of large
systems, together with other development activities, such as
documentation and testing (which are often lacking). These activities
can add significantly to the debt and thus are part of the technical
debt landscape”. **

** Kruchten, P. , Nord, R.L. , Ozkaya, I. , 2012. Technical debt: from metaphor to theory and practice. Software, IEEE 29, 18–21 .

Dependencies violations,
including module
dependencies, external
dependencies, and external
team dependencies

Non-uniformity of patterns
and policies where, for
example, a violation of
naming conventions and
non-uniform design or
architectural patterns are
implemented

Code-related issues such as
code duplication and overly
complex code

Non-uniform management
of integration with
subsystems and resources

Conflicting QA synergies

Categories related to ATD

Besker, T., et al. (2018). "Managing architectural technical debt: A unified model and systematic literature review." Journal of
Systems and Software 135(Supplement C): 1-16.

• Detection, no available tools
supporting the detection of ATD

• ATD seldom yield observable
behaviors to end users

• ATD evolves over time

Challenges
related to ATD

• Reduced flexibility –
need for a proactive thinking

• Maintenance complications and penalties

• Stifling the organization's ability to
introduce new features

• Imped innovation and system growth
(evolvability, extendability)

• Understandability, testability, extensibility,
reusability performance and reliability

Negative effects
caused by ATD

Architectural Technical Debt

[T. Besker, A. Martini, and J. Bosch, “Managing architectural technical debt: A unified model and systematic literature review,” Journal of Systems

and Software, vol. 135, no. Supplement C, pp. 1-16, 2018/01/01/, 2018.

Technical Debt:
always negative?

Software Quality,
Maintainability,
Evolvability etc.

Technical Debt – so far

Technical Debt

N
e

gative

im
p

act

Developer
productivity

Developer
Morale

Any suggestions when taking on
TD can be beneficial?

Is it always a bad thing to take on Technical
Debt?

• It’s about making informed decisions and be
aware of the consequences

• Depends on the amount of the interest cost

• Depends on the variance on the interest
(growing or stable)

• Possible spending the money and time on
new features that can generate even more
value to the company instead of paying back
the debt (called refactoring)

Software Startups

Mature
Software

developing
companies

Startup
Companies

Software development in Startups:
• Freshly created company, no history
• Main goal is to grow their business

Extreme pressure to get to the market quickly
• Limited resources and limited budget
• High uncertainty
• Need early feedback from customers

Software development in Mature companies:
• Less pressure to get to the market quickly
• More resources
• Less uncertainty

Startups contra

Mature Software companies

Besker, T., et al. (2018). Embracing Technical Debt, from a Startup Company Perspective. 2018 IEEE International Conference on Software Maintenance

and Evolution (ICSME).

Startups and Technical Debt

• Taking on Technical Debt can be beneficial for
Startups:

• Speed up time-to-market

• Allowing them to release their product to end-
users faster

• Get feedback

• Evolve the software

• Preserve capital

Besker, T., et al. (2018). Embracing Technical Debt, from a Startup Company Perspective. 2018 IEEE International Conference on Software Maintenance

and Evolution (ICSME).

Unmanaged TD can have
negative consequences, such as
the death of the startup itself!

Technical Debt must
be managed

Besker, T., et al. (2018). Embracing Technical Debt, from a Startup Company Perspective. 2018 IEEE International Conference on Software Maintenance

and Evolution (ICSME).

A balance between
Benefits and Challenges

Besker, T., et al. (2018). Embracing Technical Debt, from a Startup Company Perspective. 2018 IEEE International Conference on Software Maintenance

and Evolution (ICSME).

Terese Besker

besker@chalmers.se

