Software Center

Architectural
Technical Debt

* Terese Besker

Software Center

e Chalmers University of Technology
Gothenburg, Sweden.

e www.software-center.se

http://www.software-center.se/

Today’s excursion

* Cleaning in general

e Whoam I?

 What is debt?

 What is Technical Debt?

e Solutions

* Prioritization

* Prevention mechanisms

* Regulations

* The costly Bill of Technical Debt
* Architectural Technical Debt
e Always a bad thing?

A balancing act

Have you ever.....?

s you ever deliberately
ad a otimal
uick " or

K-
- N

finis

....or maybe you have introduced a sub-
optimal solution unconsciously at some
point?

Because you didn’t know any better way of
doing it or...

it was the most optimal solution at that
specific time

The final question:

Did you ever go back and fixed it?

CLEAN UP AFTER | E
" YOURSELF &=

Software Center 4. @

Tetra Pak

Mission: Improve the software engineering Sl EM ENS

capability of the Nordic Software-Intensive
industry with an order of magnitude

) verisure

ALARMS WITH IQ

\ M)

Theme: Fast, continuous deployment of customer value —

Success: Academic excellence
Success: Industrial impact AXI SA

COMMUNICATIONS

©

wwovesy @ _JEPPESEN.

A BOEING COMPANY

ERICSSON £ ,
GRUNDFOS -\

A Debt Background

Financial debt:
* Loan

e Debt
* |Interest

HOME LOAN EDUCATION LOAN PERSONAL LOAN

Basically a Debt is....

Borrowing against

our capacity of
tomorrow to make

more progress today

What is
Technical Debt?

A ordinary day at the software development office

Software Companies need to do:

Customer Software companies need to deliver customer value
continuously, both from a short- and long-term perspective

Software companies need to consider the tradeoffs between the
overall quality of the software, and the costs of the software
development process in terms of the required time and resources

Software companies need to balance the quality of the software
with the ambition of increasing the efficiency and decreasing the
costs in each lifecycle phase

And what do we do?

InlIENESEE Defiberately implement sub-optimal solutions in order to shorten
optimal the time-to-market or when resources are limited in practice, by
solutions implementing “quick fixes” or “cutting corners” during the
DA software development process

Even if the best intention is to go back and refactor the sub-
optimal solution immediately afterward, there is a tendency that
these refactoring tasks will be postponed since, commonly, there
are other important deadlines in the near future, where these
refactoring tasks are often down-prioritized

There is also the scenario where sub-optimal solutions are
implemented unintentionally, due to a lack of knowledge,
guidelines or best practices.

Eavesdropping at the office

Lets do a quick and
dirty solution now,
and we can have a
look at this in next
sprint(s)

* R. K. Gupta, P. Manikreddy, S. Naik, and K. Arya, "Pragmatic Approach for Managing Technical Debt in Legacy Software Project,” in
Proceedings of the 9th India Software Engineering Conference, Goa, India, 2016, pp. 170-176.

57, T
& | ¥ e
&

g‘/fz\ . debt spée o
~ id back proi

¢’

Ward Cunningham

Why the Technical Debt metaphor?

Helps business staff to understand

and make technical decisions Helps technical staff to understand

financial consequences of technical
decisions, and argue for e.g. the
need for refactoring

Technical Debt is sub-optimal solutions, not
bugs, and not yet implemented features

Technical Debt

4 f‘" 1 "

Customer’s view Developer’s view

Technical Debt, Features, Defects, etc.

Visible Invisible

New Features Architectural,
Added Functionality Structural Features

Positive Value

Negative Value

Technical Debt

P. Kruchten, R. L. Nord, and I. Ozkaya, “Technical Debt: From Metaphor to Theory and Practice,” IEEE Software

. : Pl | L e~ n =1 Y o | -« :)-: =
L H Py _ > ' o il L »
g R i | P R L S S cara= j.-*l
- r”yr-n\/-.-fll Fe o ok) & C X
A — F 2
= oW — = L= axw F aI I lr) ‘ ; ‘ ,

I CI |1 l.CaI D bt
2 s —ontx=dlkxn e I e

s LEcCl e S . = o]

3 T Yy = cq l-_-;::«_.L w (1
it st <
= oW —

miyr =<y L _

— - = *9 o=
- | I EewWEsE) - X S
e ¥ A= e L T e ek =
R - - 3 = |
i A= v Ce=tt "= ;
> g p— — -
w3 o AilulatoT > ;
jcl=""contx

L EE e L TR PR * Poor code quality
a hrel= Tt tacs

- * Poor or inappropriate Architecture of the

o B W == 1
54 e - WS, c_,'c__;rxt.;__: ‘
s Tm i = ol cruery (S <Iv Software
- 7 - fetach_ <

~ W = xn}/.‘_‘.C:[l__

rhews "> * Lack of following guidelines
__r"'e-’— —,:_-'h = gy, € = echho
- Wi rybernt " = i eck

T e ripbutor>"7 ¢ Lack of documentation

— r =

* Lack of testing

... and so on
]:‘ p.z:o-jec:ts E'R?M
mysc_{i__qLJeT‘y (S
= mysdl. fetch _

The Bill;: Software related Interest

- it is not technical debt if you don’t pay
any interest

* Working around or fixing existing
errors

* Extra effort spent on
understanding complex code

* Baby-sitting tasks that could be
automated

Worst case scenarios

Impede innovation and expansion of your
software systems

Stifle an whole organization’s ability to innovate

Negative effect on available resources to
implement new technology

Time consuming maintenance
Lower the productivity
Lower the morale

In the long run, it can lead to a system crisis

Examples of Vicious circles

Running late and
behind schedule

Postpone Take on Technical

refactoring = still Debt, both

having Technical deliberate or
Debt in the undeliberate

software

Lower the software

implementing new
features and do
refactorings

developer productivity

Suddenly, you reach a point when you
have to take a step back and reflect on
where you are going

Solutions...

e Refactoring — to optimize (and clean)
the software without impacting the
user experience or functionality

* Continuous process of refactoring
initiatives

» Refactoring is crucial to prevent
spiraling technical debt

Remediation of
Technical Debt

* The only significantly effective way of
reducing TD, is to refactor it

» Refactoring activities of the identified TD
items needs to be prioritized

 Competing with for example
implementation of new features

Besker, T, et al. (2019). Technical debt triage in backlog management.
Proceedings of the Second International Conference on Technical Debt.
Montreal, Quebec, Canada, IEEE Press: 13-22.

The Agile Backlog

B Lagend Sow m'@a-'mn u

Sponsorship portal launch ©
May 02, 2016 Showing 5 of 5

R S —
Capacity 20d
FREDR-25 '
Top level navigation

$95.000

|™ Expand market presence in Europe

FREDR-23 i
Live dashboard

$55,000

™ Triple revenue Yo

= Capagity limit

FREDR-10 &
Add stages to lifestyle section

$40,000

I Expand market presence in Europe

FREDR-6 &
Integrate Twitter stream

$25,000

™ Tripla ravanua YoY

FREDR-8

TV coverage
$a0.000

I
i0S refresh ©
Jun 17, 2016 Showing 6 of 6
i ——————
Capacity
FREDR-13

Notify my netwark when | win a

KOM

$35,000

/™ #1inthe 10 and Androld app stores

FREDR-14

Save start/finish and automatically
start/stop fracking

$100,000

™ Expand market presence in Europe

FREDR-17

Remind users when to fuel during
their rides

$80,000

/™ i1 inthe iOS and Android app stores

FREDR-19
Allow a user to give another Kudos
/™ ¥1n the 105 and Androld app stores

FREDR-18
Track my friends in real-time

LTSS & Add to Notebo

Android Upgrade ©
Oct 12, 2016 Showing 5 of 5
[N ——————
Capacity 244
FREDR-4 ih
Add search
$100,000
/™ Triple revenue Yo
FREDR-21 i
Highlight tour stages
$120,000

[™ Expand market presence in Europe

FREDR-15
Navigation for safest routes
$35,000

™ Triple revenue Yo

FREDR-7 "
Real-time leaderboard

§75,000

™ Triple revenue YoY

FREDR-4 i
Tour de California history

$80,000

™ # inthe IOS and Androld app stores

Running club ¢
Feb21, 2017

Capacity

FREDR-38
Automatic dashb:
$125,000

FREDR-24

Store live intervie
$50,000

™ Triple revenue

FREDR-16

Push based weat
$55,000

™ Triple revenue

FREDR-5

Athlete profiles
$25,000

™ Tripla ravanue

FREDR-22
Live video feed
$40,000

= Capacity imit —

The presence of Technical Debt items in backlogs?

Does the Prioritization process of the backlog also
include the prioritization of Technical Debt?

Technical Debt issues — not in same Backlog as Features and Bug
fixes

Technical Debt issues — in a “shadow “
backlog

Fixed amount of time in each sprint allocated
for improvement, which includes TD,
however no follow-up on time spent

Besker, T, et al. (2019). Technical debt triage in backlog management. Proceedings of the Second International Conference on
Technical Debt. Montreal, Quebec, Canada, IEEE Press: 13-22.

Supporting frameworks or Gut Feelings?

Company commonly does not use any guiding Decision Making

Frameworks

Gut feeling is not an add-hoc
approach:
- * Prior experience

experienced guy that has * Acquired knowledge

the biggest impact [when : :‘St:‘a oF efr:ottlonf -
prioritizing TD]. We don’t oadmap ot future features

‘In my experience, it’s
usually the most

actually need a big
consensus among the
participants.”

| GUT FEELING VS

A reactive or proactive approach

The prioritization of TD in the backlog is much more of a

reactive then a proactive approach

¥ Reactivg

-

Estimating the value of doing refactoring of
Technical Debt, is considered to be difficult

92 % states that the Technical Debt’s negative effects could be reduced, if they did the
prioritization of their Backlog differently

Besker, T, et al. (2019). Technical debt triage in backlog management. Proceedings of the Second International Conference on
Technical Debt. Montreal, Quebec, Canada, IEEE Press: 13-22.

TD refactoring competition with
customer requirements

Internal External

Customer Customer

92 % states that the Technical Debt’s negative effects could be reduced, if they did the
prioritization of their Backlog differently

Besker, T, et al. (2019). Technical debt triage in backlog management. Proceedings of the Second International Conference on
Technical Debt. Montreal, Quebec, Canada, IEEE Press: 13-22.

Refactoring
contra
Prevention

Besides continuously refactoring
activities we also need to
prevent introducing Technical
Debt from the very beginning

- TD prevention......prevents
potential TD from being
incurred, in the first place

e Commonly TD Prevention is "cheaper’
than TD repayment

* There is no tool for TD prevention - >
Development Process Improvement

TD prevention —

from a Change Management perspective

) —
v

Identify what need to
be improved

coding standards
code reviews
definition of done

architectural structure (e.g.
Monolithic or Micro Services)

TD prevention (1/2)

@

Set the Targets
(clear steps with
measurable targets
e.g. wasted time)

Explain the cost and
nature of debt to
developers architect,
PO, PM etc.

Debt awareness is best among
the methods of debt prevention

Harmfulness today and in future
(predicting growth of interest
costs)

Productivity increase

Feel more confident (developers
pride) and attract the “best”
developers

Provide Resources (tools
such as AnaConDebt,
SonarQube, Arcan,
education etc.)

TD prevention (2/2)

i Q

Communication Cr!ange in Celebrate Review, Revise

mindset Success and
Continuously
Improve

Manage Recognizing

resistance and milestone

cultivate a achievements

culture

Encouragement

Can regulations stop us from introducing TD in the first place?

The relationship between safety-critical software (SCS)
regulations and the management of TD

Examples of regulatory
certification processes

SCS are heavily SCS require Recertified to E.g. afte.r a ol and.tlme
o refactoring consuming —
regulated certification ensure . . .
. 1 activity of risk of being
against industry compliance
. software: down-
standards with the . SR
prioritized or
present safety :
avoided -> more
standards.

TD
retested
revalidated

reverified

Besker, T., et al. (2018). How Regulations of Safety-Critical Software Affect Technical Debt. 2019, SEAA

Consequences and Effects of SCS Regulations when
Conducting or Planning for TD Refactoring Activities

TD refactoring activities are commonly deliberately avoided

Besker, T., et al. (2018). How Regulations of Safety-Critical Software Affect Technical Debt. 2019, SEAA

Software Architectural Structures
Contributing to TD Refactoring

¢ Components can have different levels of safety
regulations, which defines the refactoring scope
-

e The importance of a software architecture that

aaaaaaaaaa

TCP/IP Broker

; / = = facilitates refactoring with as little effort and cost
_: Software : e as possible
. —Architectural Patterns
N\ roteon] _==w Examples of different architectural structures;
el WP e . 1. component-based, pipes and filters, monolithic,
vocel | | ~ L= and layered structures

Besker, T., et al. (2018). How Regulations of Safety-Critical Software Affect Technical Debt. 2019, SEAA

Software Architectural Structures
Contributing to TD Refactoring

* Monolithic architecture = major hindrance for TD refactoring tasks in SCS

* Modular SCS architecture (component-based or loosely coupled units or
layer-based structures) = increase likelihood of TD Refactoring tasks

“Our middle layer
in the architecture would have
looked different [if it was not
SCS] since the intention of the
decision level is actually to
abstract and isolate different
ASIL levels because it would be
guite hard and expensive to
maintain these dependencies
otherwise.”

Consequences and Effects of SCS Regulations when
Conducting or Planning for TD Refactoring Activities

Work-around solutions to avoid the additional activities and costs

Besker, T., et al. (2018). How Regulations of Safety-Critical Software Affect Technical Debt. 2019, SEAA

The Counterproductiveness of the SCS
Regulations

Increased

Software

Quality

K"_' Refactor
nchanged

Refactoring : Ignore or Software

Analysis postpone Quality
- Costs vs Benefits,

Debt issue

\ Decreased :
\ ‘ Maintainability
~ and Evolvability

Even if the SCS regulations have the best intention to produce a high-quality software product, the findings
demonstrate that these heavy regulations are conceivably counterproductive since they potentially can constrain
the possibility of performing optimal TD refactoring activities efficiently

Opposite effect : the regulations contribute to the further introduction of TD and thereby
potentially decrease both the maintainability and evolvability of the software.

Besker, T., et al. (2018). How Regulations of Safety-Critical Software Affect Technical Debt. 2019, SEAA

How expensive is Technical Debt? —
from a productivity perspective

* Technical Debt cause developers to waste working time, since they
have to perform extra activities due to the present Technical Debt.

e How much time?

Technical Debt contra Productivity

24 % of all development time is
wasted by developers, due to
Technical Debt

Besker, T., et al. (2019). "Software developer productivity loss due to technical debt—A replication and
extension study examining developers’ development work." Journal of Systems and Software 156: 41-61.

Technical Debt contra Productivity

In a quarter of all occasions of encountering TD,
developers were forced to introduce additional TD due
to already existing TD

Additional activities:

performing additional additional source performing additional
testing code analysis refactoring

Besker, T, et al. (2019). "Software developer productivity loss due to technical debt—A replication and
extension study examining developers’ development work." Journal of Systems and Software 156: 41-61.

Technical Debt and Morale

 TD can reduce developers’ morale; the
presence of TD hinders developers from
performing their tasks and achieving
their goals

* A proper management of TD increases
developers’ morale

Ghanbari, H., et al. (2017). Looking for Peace of Mind? Manage your (Technical) Debt - An Exploratory Field Study. 11th
International Symposium On Empirical Engineering and Measurement (ESEM), Toronto, Canada.

What about the Software Quality due to having Technical Debt?

EC 2501{]:2[]1 1{en] 2YSLIEITES dlnd s0onwdle endgineennyg — aysie

Compromised quality
attributes due to

luct quality model

:t quality model categonzes product quality properties into eight charactenstics (funi
usability, security, compatibility, maintainability and portability). Each characteristic

Te C h n i Ca I) e bt teristics {Figure 4 and Table 4).

* Maintainability

* Reliability

e Pe rfo rmance Capaciy Accountabilty
Compatibility Authenticity
. Co-existence m
o R b I ty Interoperability Maodularity
eusa I I Usability Reusability
—— Appropriateness recognizability Analysability
Y A b l ty t dd L earnability Modifiability
I I O a n e W Operability Testability
User error protection W
fea tu res User interface aesthetics Adaptability
Accessibility Installability
Replaceability

(Sub)Characteristic

Functional suitability

Functional completeness

Functional correctness

Functional appropriateness

Performance efficiency

Time behaviour

Resource utilization

Reliability

Maturity

Availability

Fault tolerance

Recoverability

Security

Confidentiality

Integrity

Mon-repudiation

Besker, T, et al. (2017). Time to Pay Up - Technical Debt from a Software Quality Perspective. proceedings of the 20th Ibero

American Conference on Software Engineering (CibSE) @ ICSE17, Buenos Aires, Argentina, CibSE.

Different types of Technical Debt*

Architectural

Technical Debt

Documentation Requirements Design
Technical Debt Technical Debt Technical Debt

Code Technical Test Technical Build
Debt Debt Technical Debt

Infrastructure Versioning Defect
Technical Debt Technical Debt Technical Debt

* E. Tom, A. Aurum, and R. Vidgen, “An exploration of technical debt,” Journal of Systems and Software, vol. 86, no. 6, 2013, pp. 1498-1516.

glicdayAwesrelgoingjtofadd
ajthirdifloortolouheuse!s

Architectural
Technical Debt—

The importance of ATD

e ATD is the most commonly encountered instances of TD and are
caused by architectural inadequacies

* Architectural decisions are the most important source of TD

e ATD has a huge impact and leverage within the overall
development lifecycle

» “Architecture plays a significant role in the development of large
systems, together with other development activities, such as
documentation and testing (which are often lacking). These activities
can add significantly to the debt and thus are part of the technical
debt landscape”. **

** Kruchten, P., Nord, R.L., Ozkaya, ., 2012. Technical debt: from metaphor to theory and practice. Software, IE

Categories related to ATD

Dependencies violations,
including module
dependencies, external
dependencies, and external
team dependencies

Code-related issues such as
code duplication and overly
complex code

Conflicting QA synergies

Non-uniformity of patterns
and policies where, for
example, a violation of
naming conventions and
non-uniform design or
architectural patterns are
implemented

Non-uniform management
of integration with
subsystems and resources

Besker, T, et al. (2018). "Managing architectural technical debt: A unified model and systematic literature review." Journal of
Svstems and Software 135(Supplement C): 1-16.

Challenges
related to ATD

* Detection, no available tools
supporting the detection of ATD

e ATD seldom yield observable
behaviors to end users

 ATD evolves over time

Negative effects
caused by ATD

Reduced flexibility —
need for a proactive thinking

Maintenance complications and penalties

Stifling the organization's ability to
introduce new features

Imped innovation and system growth
(evolvability, extendability)

Understandability, testability, extensibility,
reusability performance and reliability

Architectural Technical Debt

A unified Model of ATD

o
Importance

g [gf ATD] [ATD Checklist] [ATD Impediments ATD Management

m

v

m

a - Relevance - Categorization - Challenges - Negative effects ATDM Activities - Methods/Tools - Refactoring

(%]

S

g RQ1 RQ 2.1 - Debt RQ2.2 RQ 2.2 - Interest RQ 3.1 RQ 3.3 RQ 3.3 - principal
Encountering Dependency , . M i Extent none/

o »! Detectio —! Flexibility [3 ATDM 4 Vieasuring . E]

frequenc 1 w4 -

q y E] violations [12) Process partial/full)
Non-Uniformity .] | Identification | | Timing E]
of patterns and Time L2 . Mallntebr?la.\tnce and .-‘ Tracking

erspective J f
!'EVEI of E] policies perse B | Measurement | ' | Resources E] |
a importance /
o N -
] i : Innovation : .
a Code issues 7 | A rdi et “| Evaluating Cost- Benefit
2 ||[Impact on Complexity@" — and system | Prioritization | . @
Overall Inter-dependen _growth
i E] | Repayment |
software Life- resources Performance [Z]
cycle i
: Lack of mechanisms degradations | Monitoring |/ ~N
for addressing Non = aspects linked to Complexity
Functional E] Reliability [D ,,,,,,, » = aspects linked to Maintenance and Evolvability
Requirements » = other generic relations between aspects

D = indication of publications fitting each aspect

\ /

[T. Besker, A. Martini, and J. Bosch, “Managing architectural technical debt: A unified model and systematic literature review,” Journal of Systems
and Software, vol. 135, no. Supplement C, pp. 1-16,2018/01/01/, 2018.

Technical Debt:
always negative?

Technical Debt — so far

[Technical Debt J

| annesaN

/zedw!

S—

¥
"

Any suggestions when taking on
TD can be beneficial?

Is it always a bad thing to take on Technical
Debt?

* |It’s about making informed decisions and be
aware of the consequences

* Depends on the amount of the interest cost

* Depends on the variance on the interest
(growing or stable)

* Possible spending the money and time on
new features that can generate even more
value to the company instead of paying back
the debt (called refactoring)

y

Startups contra
Mature Software companies

Software development in Startups:

* Freshly created company, no history
Startup * Main goal is to grow their business
Extreme pressure to get to the market quickly

Companles * Limited resources and limited budget
* High uncertainty
* Need early feedback from customers
Mature Software development in Mature companies:
Software * Less pressure to get to the market quickly
developing * More resources
. * Less uncertainty
companies

Besker, T., et al. (2018). Embracing Technical Debt, from a Startup Company Perspective. 2018 IEEE International Conference on Software Maintenance
and Evolution (ICSME).

Startups and Technical Debt

* Taking on Technical Debt can be beneficial for
Startups:

e Speed up time-to-market < L% ,
=—
w

e Allowing them to release their product to end-
users faster

* Get feedback
e Evolve the software

* Preserve capital

Besker, T., et al. (2018). Embracing Technical Debt, from a Startup Company Perspective. 2018 IEEE International Conference
and Evolution (ICSME).

Technical Debt must
be managed

Unmanaged TD can have
negative consequences, such as
the death of the startup itself!

Besker, T., et al. (2018). Embracing Technical Debt, from a Startup Company Perspective. 2018 IEEE International
and Evolution (ICSME).

A balance between
Benefits and Challenges

Good Enough Level

balance benefits and challenges

Benefits Challenges
* Shorter development time * Product failure
» faster feedback * Business disruption
* increased revenue * Reduced Scalability
* Preserved resources * Compounding effects
* Decreased risk (current) * Increased risk (future)
* More objective decisions * Loss of Productivity

Besker, T., et al. (2018). Embracing Technical Debt, from a Startup Company Perspective. 2018 IEEE International Conference on Software Maintenance
and Evolution (ICSME).

W\OU\L&@M.I

Terese Besker

besker@chalmers.se

