
1 a)

Note (not part of answer): Assumes customers have unique emails (which seems reasonable). Adding a

synthetic key (like an ID-number) is OK.

1b)

Courses(code, name)

Instances(course, semester, capacity)

 course -> Courses.code

Teachers(ssn, name)

Teaches(teacher, course, semester)

 teacher -> Teachers.ssn

 (course, semester) -> Instances(course, semester)

Examiner(examiner, course, semester)

 (examiner,course,semester) -> Teaches(teacher,course,semester)

Note (not part of answer): Additional references in Examiner are allowed but not required.

AccessCustomer

Member

expdateISA

 By

name

Facility

In

time

name

city

email

address

2 a) {a,c,e} {b,c,e} {d,c,e}

Note (not part of answer): Set notation ({,}) is not required as long as it is clear which attributes are in

each key.

2 b) {b,c,d} {a,b,c,d} {a,b,d,e}

2 c) Example:

a b c d e

0 0 0 0 0

0 0 0 1 1

Note (not part of answer): b and c must be the same in both rows, and d differ to violate the functional

dependency. Column a is essentially irrelevant and e must be different to respect the keys. Having

additional rows is OK as long as the keys are respected.

Another correct solution where values are "as unique as possible":

a b c d e

0 1 2 3 4

5 1 2 6 7

3 a)

SELECT username, email, COUNT(follower) AS total_followers

FROM Users LEFT OUTER JOIN Follows ON username=follows

GROUP BY username, email

3 b) One simple solution:

SELECT (follower, follows) FROM Follows

EXCEPT

SELECT (follows, follower) FROM Follows

3 c)

WITH JonasFollowers AS SELECT follower FROM Follows WHERE follows='jonas'

SELECT follower FROM JonasFollowers

UNION

SELECT follower FROM Follows WHERE follows IN (SELECT follower FROM JonasFollowers)

Note (not part of answer): Union deletes duplicates automatically. A self-join could be used instead of

the subquery. The WITH-clause is not required, but reduces code size slightly.

4 a)

δ(

 π (name, idnr)(

 σ (minute > 90)(

 Players X(player=idnr) Goals)))

Note (not part of answer): The sigma could also be placed on Goals or in the join condition (but the latter

is discouraged)

4 b)

γ(birthmonth, COUNT(*))(

 Players X(player=idnr) Goals)

4 c) One solution:

π G1.idnr(

 ρ G1(Goals)

 XG1.player=G2.player AND G1.game=G2.game AND G1.minute=G2.minute AND G1.goalNumber != G2.goalNumber

 ρ G2(Goals))

Note (not part of answer): An aggregate + select works as well.

Note (not part of the answer): Since the question was slightly unclear, solutions that allow goals from

different games are also OK if done correctly (G1.goalNumber != G2.goalNumber OR G1.game != G2.game)

5)

CREATE TABLE Customers(

 id INT PRIMARY KEY, -- Any numeric type is OK

 name TEXT,

 isPrivate BOOLEAN,

 UNIQUE (id, isPrivate) -- c - Not needed for full points

);

CREATE TABLE Subscriptions

 (number INT PRIMARY KEY,

 customer INT,

 isPrivate BOOLEAN, -- c

 plan TEXT,

 fee INT,

 balance INT,

 FOREIGN KEY (customer, isPrivate) -- c

 REFERENCES Customers(id,isPrivate)

 ON DELETE CASCADE, -- e

 CHECK (plan IN ('prepaid','corporate','flatrate')), -- a

 CHECK (plan='prepaid' OR balance=0), -- b

 CHECK (plan!='corporate' OR NOT isPrivate), -- c

 CHECK (fee >= 0) -- d

);

CREATE VIEW CustomerView AS -- d

 SELECT id, name, Customers.isPrivate, SUM(fee)

 FROM Customers JOIN Subscriptions ON id=customer

 GROUP BY id,name,Customers.isPrivate;

CREATE FUNCTION deleteEmpty() RETURNS trigger AS $$

BEGIN

 IF NOT EXISTS (SELECT *

 FROM Subscriptions

 WHERE customer = OLD.customer) THEN

 DELETE FROM Customers WHERE id=OLD.customer;

 END IF;

 RETURN OLD;

END;

$$ LANGUAGE plpgsql;

CREATE TRIGGER deleteEmpty -- f

 AFTER DELETE ON Subscriptions

 FOR EACH ROW

 EXECUTE PROCEDURE deleteEmpty();

Note (not part of answer): Using an assertion is acceptable for c)

6

a)

[

 {"category":"Starters",

 "contents":[

 {"dish":"Calamari", "price":8.50}

]

 },

 {"category":"Salads",

 "contents":[

 {"dish":"Caesar", "price":8.50},

 {"dish":"Chicken", "price":9.25}

]

 },

 {"category":"Burgers",

 "contents":[

 {"dish":"Standard", "price":9},

 {"dish":"Bacon", "price":10},

 {"category":"Vegetarian Burgers",

 "contents":[

 {"dish":"Haloumi", "price":12},

 {"dish":"Mushroom", "price":10}

]

 }

]

 }

]

b)

{"type":"array",

 "items":{

 "type":"object",

 "oneOf":[

 { "properties":{

 "category":{"type":"string"},

 "contents":{"$ref":"#"},

 "dish":false,

 "price":false

 },

 "required":["category","contents"]

 },

 { "properties":{

 "category":false,

 "contents":false,

 "dish":{"type":"string"},

 "price":{"type":"number"}

 },

 "required":["dish","price"]

 }]

 }

}

c)

$[?(@.category=="Burgers")]..price

