1a)

Customer - Access

Member -— Facility

Note (not part of answer): Assumes customers have unique emails (which seems reasonable). Adding a
synthetic key (like an ID-number) is OK.

1b)
Courses (code, name)

Instances (course, semester, capacity)
course —> Courses.code

Teachers (ssn, name)

Teaches (teacher, course, semester)
teacher -> Teachers.ssn
(course, semester) —> Instances (course, semester)

Examiner (examiner, course, semester)
(examiner, course, semester) —-> Teaches (teacher, course, semester)

Note (not part of answer): Additional references in Examiner are allowed but not required.

2a){acel{b,cel{dce}
Note (not part of answer): Set notation ({,}) is not required as long as it is clear which attributes are in
each key.

2 b) {b,c,d}{a,b,c,d} {a,b,d,e}

2 c) Example:

a |b|c|d]je

0O |[0|0]|O0]O

0 |00 |11
Note (not part of answer): b and c must be the same in both rows, and d differ to violate the functional
dependency. Column a is essentially irrelevant and e must be different to respect the keys. Having
additional rows is OK as long as the keys are respected.

Another correct solution where values are "as unique as possible":

a b|lc|d]|e
0 [1]2 (3|4
5 (126 |7

3 a)

SELECT username, email, COUNT(follower) AS total_followers
FROM Users LEFT OUTER JOIN Follows ON username=follows
GROUP BY username, email

3 b) One simple solution:

SELECT (follower, follows) FROM Follows
EXCEPT
SELECT (follows, follower) FROM Follows

3¢)
WITH JonasFollowers AS SELECT follower FROM Follows WHERE follows='jonas'

SELECT follower FROM JonasFollowers
UNION
SELECT follower FROM Follows WHERE follows IN (SELECT follower FROM JonasFollowers)

Note (not part of answer): Union deletes duplicates automatically. A self-join could be used instead of
the subquery. The WITH-clause is not required, but reduces code size slightly.

4 a)

&(
TU (name, idnr)(
O (minute > 90)(
Players X(player=idnr) GOQls)))

Note (not part of answer): The sigma could also be placed on Goals or in the join condition (but the latter
is discouraged)

4 b)

Y (birthmonth, COUNT(*))(
P|ayerS X(p|ayer=idnr) GOE\'S)

4 c) One solution:

T[Gl.idnr(
p c1(Goals)

XGl.pIayer=GZ.pIayer AND G1l.game=G2.game AND G1l.minute=G2.minute AND G1.goalNumber != G2.goalNumber

p c2(Goals))
Note (not part of answer): An aggregate + select works as well.

Note (not part of the answer): Since the question was slightly unclear, solutions that allow goals from

different games are also OK if done correctly (G1.goalNumber != G2.goalNumber OR G1.game 1= G2.game)

5)

CREATE TABLE Customers (
id INT PRIMARY KEY, —- Any numeric type is OK
name TEXT,
isPrivate BOOLEAN,

UNIQUE (id, isPrivate) —-- ¢ - Not needed for full points

)

CREATE TABLE Subscriptions

(number INT PRIMARY KEY,

customer INT,

isPrivate BOOLEAN,

plan TEXT,

fee INT,

balance INT,

FOREIGN KEY (customer, isPrivate)
REFERENCES Customers (id, isPrivate)
ON DELETE CASCADE,

CHECK (plan IN ('prepaid', 'corporate','flatrate')),

CHECK (plan='prepaid' OR balance=0),

CHECK (plan!='corporate' OR NOT isPrivate),

CHECK (fee >= 0)

)i

CREATE VIEW CustomerView AS
SELECT id, name, Customers.isPrivate, SUM(fee)
FROM Customers JOIN Subscriptions ON id=customer
GROUP BY id, name,Customers.isPrivate;

CREATE FUNCTION deleteEmpty () RETURNS trigger AS $$
BEGIN
IF NOT EXISTS (SELECT *
FROM Subscriptions
WHERE customer = OLD.customer) THEN
DELETE FROM Customers WHERE id=OLD.customer;
END IF;
RETURN OLD;
END;
$$ LANGUAGE plpgsql;

CREATE TRIGGER deleteEmpty
AFTER DELETE ON Subscriptions
FOR EACH ROW
EXECUTE PROCEDURE deleteEmpty();

Note (not part of answer): Using an assertion is acceptable for c)

Q

Q. Q oo 0

a)
[
{"category":"Starters",
"contents": [
{"dish":"Calamari", "price":8.50}
1
},
{"category":"Salads",
"contents": [
{"dish":"Caesar", "price":8.50},
{"dish":"Chicken", "price":9.25}
1
b,
{"category":"Burgers",
"contents": [
{"dish":"Standard", "price":9},
{"dish":"Bacon", "price":10},
{"category":"Vegetarian Burgers",
"contents": [
{"dish":"Haloumi", '"price":12},
{"dish" :"Mushroom", "price":10}
1
}
1
}
1
b)

{"type":"array",

"items":{
"type":"object",
"oneOf": [

{ "properties":{
"category":{"type":"string"},
"contents":{"Sref":"#"},
"dish":false,

"price":false
},
"required":["category", "contents"]

},

{ "properties":{
"category":false,
"contents":false,
"dish":{"type":"string"},
"price":{"type":"number"}
}I
"required":["dish", "price"]

}

}
}
c)

$[?(Q.category=="Burgers")]..price

