
Databases Exam
TDA357 (Chalmers), DIT621 (University of Gothenburg)

2019-08-29 14:00-18:00

Department of Computer Science and Engineering

Examiner: Aarne Ranta

Responsible teacher: Jonas Duregård tel. 031 772 1028.

Results: Will be published within three weeks from exam date

Maximum points: 60

Grade limits Chalmers: 24 for 3, 36 for 4, 48 for 5.

Grade limits GU: 24 for G, 42 for VG.

Allowed material: One double sided A4 sheet with hand-written notes. If you bring a sheet, it

must be handed in with your answers to the exam questions, add “+1” in the box for number

of pages on the exam cover. Also, a standard reference is handed out in a separate document.

One English language dictionary is also allowed. You can answer in English or Swedish.

Begin the answer to each question (numbers 1 to 6) on a new page. The a,b,c,... parts with

the same number can be on the same page.

Write the question number on every page. Write clearly, unreadable answers give no points!

Fewer points are sometimes given for solutions that are clearly unnecessarily complicated.

Indicate clearly if you make any assumptions that are not given in the question. In

particular: in SQL questions, use standard SQL or PostgreSQL. If you use any other variant

(such as Oracle or MySQL), say this; but full points are not guaranteed since this may

change the nature of the question.

Question 1: ER-design (10 points, 5+5)

a) Make an ER-diagram for a web application where users can register, join interest groups,

and post messages to these groups.

Users have unique user names, and groups have unique names. Users can be members of any

number of groups. The time each user joined a group should be recorded. Each group has an

owner, which is a user. Each post is posted in a group by a user. Posts contain text. Posts

are identified by their timestamp and the username of the user posting it. There is also a

special kind of post called a group link, these contain a link to a group in addition to the

normal parts of a post.

You do not need to translate your diagram into a schema!

b) Translate this (symbolic) ER-diagram into a relational schema, including keys and

constraints.

(yes - I was too lazy to come up with another domain for this…)

Y

Z Ryz

z1

X

x1

x2 xy1

y1ISA

Rzz

Rxy

Question 2: Functional Dependencies, Normal Forms (9 p, 3+3+3)

Consider a relation R(A, B, C, D, E) with the following Functional Dependencies

A -> B

B -> A

B, D -> E

B, C -> E

E -> A

a) Calculate the following transitive closures:

{E}+

{B, C}+

{C, D}+

b) List 3 different minimal keys of this relation (each key is a set of attributes, write each set

in alphabetical order on its own line)

c) Decompose the relation into BCNF. You only have to provide the final schema, not all the

steps taken to compute it. If you do include all the steps, be sure to clearly indicate which

relations are actually in the final schema (as opposed to intermediate relations).

Question 3: SQL Queries (10 p, 5+5)

Below is the schema for a database of dots in a plane that can have (directed) connections

between them. Each dot has an x- and a y-coordinate, and an identifying number. Each

connection has a numeric weight value.

Dots(x, y, idnr)

 (x, y) UNIQUE

Connections(from, to, weight)

 from -> Dots.idnr

 to -> Dots.idnr

 from ≠ to

Example contents:

x y idnr

0 0 0

3 8 1

-5 7 2

In this example, dots 0 and 2 are both connected to 1 (weights 4 and 9 respectively) and 1 is

connected back to 0 with a weight of 7.

a) Write an SQL query that lists the from/to coordinates of each connection along with the

weights of the connections. The result should have five columns: x_from, y_from, x_to,

y_to, and weight. Below is the expected result for the example above:

x_from y_from x_to y_to weight

0 0 3 8 4

3 8 0 0 7

-5 7 3 8 9

b) Write an SQL query that lists the Radix (total number of incoming and outgoing

connections) and the total weight of all incoming and outgoing connections for all dots.

Below is the expected result for the example above:

idnr radix total

0 2 11

1 3 20

2 1 9

from to weight

0 1 4

1 0 7

2 1 9

Question 4: Relational Algebra (9, 3+3+3)

Consider this relational schema for part of the database of an online role-playing game.

Players(name, level, money)

Items(id, itemname, value)

Equippable(id, equipslot)

 id -> Items.id

PlayerInventory(item, player)

 item -> Items.id

 player -> Players.name

Equipped(item, player, equipslot)

 (item, equipslot) -> Equippable(id, equipslot)

 player -> Players.name

Players contains the name, levels and in-game money of all players.

Items describe all the items players can find in the game, each has an ID-number, a name

and an in-game value.

Equippable further describes items that can be worn as equipment by players, each such

item has an equipslot attribute e.g. 'armor', 'weapon' or such.

PlayerInventory contains the items all players are carrying (not including equipped items).

Equipped contains the equipment all players are wearing, note that a player can equip at

most one item in each equipslot.

a) Write a relational algebra expression for finding the names of all items with a value of at

least 1000 and equipped by at least one player with a level above 75. The result should have

a single column containing item names.

b) Write a relational algebra expression for finding for each player, the total combined value

of all items in its equipment and inventory. The result should have two columns, one for

player names and the other for total value. You may exclude players that have no items. You

may assume bag semantics for duplicate rows.

c) Write a relational algebra expression for finding all equippable items in player ‘Jonas’

inventory, whose equipslot is currently not occupied (i.e. every items Jonas is carrying that

Jonas can equip without removing any current equipment). The result should have two

columns, for item id and one for equipslot.

Hints: Do not use relational algebra expressions in conditions!

Hint: Don’t forget about set operations, they are often very useful.

Question 5: Views, constraints and triggers (12 p)

Database integrity can be improved by several techniques:

• Views: virtual tables that show useful information that would create redundancy if

stored in the actual tables

• SQL Constraints: conditions on attribute values and tuples

• Triggers (and assertions): automated checks and actions performed on entire tables

As a general rule, these methods should be applied in the above order: if a view or constraint

can adequately do the job, do not use a trigger.

The task in this question is to implement a small database. You may use any SQL features

we have covered in the course. While the description below gives requirements for what

should be in the database, you are allowed to divide it across as many tables and views as

you need to. Points will be deducted if your solution uses a trigger where a constraint or

view would suffice, or if your solution is drastically over-complicated. For triggers, it is

enough to specify which actions and tables it applies to, and PL/(pg)SQL pseudo-code of the

function it executes.

The database contains warehouses and shipments to/from those warehouses. The database

should have this public interface (may include tables and views):

Warehouses(address)

Inventory(warehouse, item, quantity)

Shipment(warehouse, item, quantity_change, time)

Here item specifies what is stored (as an item ID-number), quantity_change is a number

that is positive for incoming and negative for outgoing shipments, e.g. -3 means three items

were sent from the warehouse, 11 means eleven items were received. Implement the following

additional constraints in your design. Put letters in the margin of your code indicating where

each constraint is implemented (possibly the same letter in several places):

a) Any warehose/item pair can occur at most once in Inventory.

b) The quantities in Inventory should be consistent with Shipment, meaning no items

can magically appear or disappear without a registered shipment.

c) If an update query is executed on Inventory to change a quantity, a row should be

added to shipment that reflects the change. Use CURRENT_TIMESTAMP as time.

d) All warehouse values must refer to actual warehouses (present in Warehouses)

e) If two rows in Shipment have the same warehouse and item, they must have different

times.

f) A shipment must either send or receive at least one item.

Question 6: Semi-structured data and other topics (10 p, 3+4+3)

a) Give an example of a SQL Injection vulnerability in a Java (JDBC) application. You may

use the student portal domain from the lab without explaining it, or any other with a short

explanation. The example should include:

1. How is the vulnerability created? (Include pseudo-code)

2. How can an attacker exploit the vulnerability and what are the negative consequences?

3. How can the vulnerability be avoided?

b) Study this JSON Schema for a file system containing files and folders:
{

 "oneOf": [{"$ref": "#/definitions/file"},

 {"$ref": "#/definitions/folder"

 }],

 "definitions": {

 "file": {

 "type": "object",

 "properties": {

 "filename": {"type": "string"},

 "size": {"type": "integer"}

 },

 "required": ["filename", "size"]

 },

 "folder": {

 "type": "object",

 "properties": {

 "foldername": {"type": "string"},

 "contents": {

 "type": "array",

 "items": {"$ref": "#"}

 }

 },

 "required": ["foldername", "contents"]

 }

 }

}

Write a JSON document encoding a file system that is valid w.r.t. the schema above, and

contains the following:

1. A folder called “root”

2. An empty folder in root called “temp”

3. A folder in “root” called “img”

4. A file in “img” called “pic.jpg” of size 1234

5. A file in “root” called “notes” of size 100.

c) Using the same JSON Schema, write a JSON Path expression that finds the sizes of all

files located (directly) in all folders named “temp” (throughout the queried JSON document).

The result should be an array of sizes (integers).

root

 temp

 img

 pic.jpg (1234)

 notes (100)

