
TDA357/DIT621 – Databases
Lecture 1B to 3 – Tables, Relations, SQL, More SQL, Even more SQL

Jonas Duregård

Gold star if you can spot the Stanley Kubrick reference

Relational database
• Simple and familiar data model
• The database is a collection of tables
• Each table has columns and rows
• Example: Tiny database for a school
• Cross referencing: What grade did Bart

get in Programmerade System?
• Answer: 3

• The underlined column names are called
primary keys, each row must have
unique values for these columns

Table: Students

idNumber name CID

790401-1234 Bart Simpson barsimp

810509-0123 Lisa Simpson simpsol

Table: Grades

student course grade

790401-1234 TDA357 0

790401-1234 TDA143 3

810509-0123 TDA143 5

Table: Courses

code coursename points

TDA357 Databases 7.5

TDA143 Programmerade system 7.5

The concept of relations
• A mathematical relation is a set of fixed length tuples (a,b,c,...)
• Example: the mathematical operator < (less than) is a relation on pairs of

numbers where e.g. the tuple (3,9) is included, but not (9,3)
• A table is basically a relation, with some extra information like column names
• Relations give a simple but powerful theoretical foundation for databases

Table: Grades

student course grade

790401-1234 TDA357 0

790401-1234 TDA143 3

810509-0123 TDA143 5

{ (790401-1234, TDA357, 0)
, (790401-1234, TDA143, 3)
, (810509-0123, TDA143, 5)
}

Table Mathematical relation

Constraints

• A constraints is a limitation on what values you can put in a table
• Some constraints we may have:

• Uniqueness constraints (values must be unique in the table)
• Value constraints (a value must satisfy some simple condition)
• Reference constraint (a value must be present in another table)

• If we have to strong constraints, we can not model all the data we want
(e.g. a student can only have a single grade in a single course)

• If we have to weak constraints, we can accidentally model unintended
data (e.g. a student having multiple grades in the same course)

SQL

SQL Basics

• SQL ("sequel"), Structured Query Language allows you to do lots of
things, including:
• Create tables
• Insert or modify values in tables
• Query tables for data

Easy

Trivial

Kinda' tricky…

"Hello World" in SQL

postgres=# CREATE TABLE Words (word1 TEXT, word2 TEXT);
CREATE TABLE

postgres=# INSERT INTO Words VALUES ('Hello', 'World!');
INSERT 0 1

postgres=# SELECT * FROM Words;
word1 | word2
-------+--------
Hello | World!
(1 row)

Create a table with two text columns

Insert a single row in the new table

Query for the whole contents of the table

I'm running these commands in psql,
the postgres REPL-interface

Check out the postgres tips on the course webpage to try this yourself

Look, it's a little table!

Case convention
• SQL is completely case insensitive (except in text values)
• We will use case in the following way to make code readable:

• UPPERCASE marks keywords of the SQL language.
• lowercase marks the name of an attribute.
• Capitalized marks the name of a table.

• These queries do the same thing, but only the first follows our convention:

SELECT attribute FROM Data WHERE attribute2 = something;

select attRibutE from Data wheRe attribUte2 = soMething;







select attribute from data where attribute2 = something;

PostgreSQL

• Chalmers postgresql server (check Fire for your credentials):
psql -h ate.ita.chalmers.se -U <username>

• I advice you all to install postgres on your own machines
• Access local postgresql installation:

psql –U <username> <dbname>

• Semicolon and postgres prompt:
• postgres=> select 1+1
• postgres-> ;

You always have to end queries with ;
Otherwise they continue on the next
input line

Did I tell you to check out the postgres tips on the course webpage?

A good postgres workflow
• Create a file called whatever.sql
• Open the file in your favourite editor and write your SQL code there

• Start the file with commands to automatically delete everything
every time the file is executed (see tips page)

• Run \i whatever.sql in psql (run psql in the right directory) to
execute the file and enjoy all the error messages

• DO NOT WRITE 500 LINES OF SQL AND THEN RUN IT!
• This is the #1 rookie mistake
• Work incrementally: Write one query and re-run the file until it

works without errors, then start writing the next one

Changes are persistant

• When you run an SQL statement that modifies the database, that
modification remains until altered again

• Running your .sql files is not like compiling and running a Java program
• Old stuff may be causing unexpected behavior
• Your .sql file may work on your database, but not on a clean

database because it inadvertantly depends on previous alterations
• A good workflow is to start your main .sql file by deleting everything

SQL: CREATE TABLE

• The subset of SQL that deals with creating tables is called the Data
Definition Language, SQL DDL

• The basic syntax is:
CREATE TABLE TableName (
 <list of table elements>
);

• Where every table element is either:
• a column
• a constraint

Types
• Basic table elements (columns) consist of a name and a type.

• Like courseCode CHAR(6) or salary INT
• Most common types:

• INT – (a.k.a. INTEGER) for 32 bit signed integers
• REAL – (a.k.a. FLOAT) for 32 bit floating point values
• NUMERIC(p,s) – numbers with p digits before and s digits after '.'
• CHAR(n) – for fixed size strings of size n (like character arrays)
• TEXT – for variable sized strings
• VARCHAR(n) – for variable sized strings with max size n
• TIMESTAMP – for date+time (microsecond resolution)
• DATE and TIME – for dates and times of days independently

Types in different databases

• Unfortunately types are poorly standardized between different DBMS
• Which types are available differ a lot
• Technical details of common types also differ

• For PostgreSQL, this link covers the available datatypes:
https://www.postgresql.org/docs/12/static/datatype.html

Primary key constraints
• Every table should have a single primary key constraint
• The primary key is the set of attributes used to identify individual rows

CREATE TABLE Students (
 idNumber TEXT,
 name TEXT,
 cid CHAR(7),
 PRIMARY KEY (idNumber)
);

CREATE TABLE Grades (
 student TEXT,
 course CHAR(6),
 grade INT,
 PRIMARY KEY (student, course)
)

idNumber is the primary
key of Students

student and course together
form the key of grades
(called a compound key)

Reference constraints
• What is the problem here?

• A student that does not exist has a grade
• More technical: one of the values in the student column of Grades

does not exist in the idNumber column of Students
Table: Grades

student course grade

790401-1234 TDA143 0

790401-1234 TDA357 3

424242-4242 TDA143 4

Table: Students

idNumber name CID

790401-1234 Bart Simpson barsimp

810509-0123 Lisa Simpson simpsol

This row should not be allowed!

FOREIGN KEYs, reference constraints in SQL

CREATE TABLE Students (
 idNumber TEXT,
 name TEXT,
 cid CHAR(7),
 PRIMARY KEY (idNumber)
);

CREATE TABLE Grades (
 student TEXT,
 course CHAR(6),
 grade INT,
 PRIMARY KEY (student, course),
 FOREIGN KEY (student) REFERENCES Students(idNumber)
);

"student must exist in the
idNumber column of Students"

Here, student is both part of the primary key, and a foreign key

INSERT INTO Grades VALUES ('424242-4242', 'TDA357', 5);
ERROR: insert or update on table "grades" violates
foreign key constraint "grades_student_fkey"
Key (student)=(424242-4242) not present in "students".

Multiple foreign keys

CREATE TABLE Grades (
 student TEXT,
 course CHAR(6),
 grade INT,
 PRIMARY KEY (student, course),
 FOREIGN KEY (student) REFERENCES Students(idNumber),
 FOREIGN KEY (course) REFERENCES Courses(courseCode)
);

Unlike primary keys, a table can have any
number of foreign key constraints

Each constraint is checked independently
and valid data must satisfy all constraints

Informally: "student must be an actual student,
course must be an actual course"

Compound references

CREATE TABLE Player (
 pname TEXT,
 team TEXT,
 pnumber INT,
 PRIMARY KEY (team,pnumber)
);

CREATE TABLE Penalties (
 incidentTime TIMESTAMP,
 player INT,
 team TEXT,
 PRIMARY KEY (incidentTime, player, team),
 FOREIGN KEY (player,team) REFERENCES Player(pnumber,team)
);

A player has a player-number and
belongs to a team (within each
team, players have unique numbers)

A penalty can be given to a player
Constraint: player and team
together identify an existing player

Unique constraints
• Some tables have several keys (but one of them is always primary)
• Additional keys can be marked as UNIQUE, and the DBMS will prevent

inserting rows with duplicate values
CREATE TABLE Students (
 idNumber TEXT,
 name TEXT,
 cid CHAR(7),
 UNIQUE (cid),
 PRIMARY KEY (idNumber)
);

INSERT INTO Students VALUES ('111111-1111','Jonas','jonasdu');
INSERT INTO Students VALUES ('222222-2222','Evil Jonas','jonasdu');

ERROR: duplicate key value violates unique constraint "students_cid_key"
Key (cid)=(jonasdu) already exists.

Works (no collisions)

cid (username) must have
unique values for each student

Value constraints

• Value constraints are the simplest type of constraints
CREATE TABLE Player (
 team TEXT,
 pnumber INT,
 CHECK (pnumber > 0 AND pnumber < 100),
 PRIMARY KEY (team,pnumber)
);

INSERT INTO Player VALUES ('Team Edward',666);
ERROR: new row for relation "player" violates check constraint
"player_pnumber_check"
Failing row contains (Team Edward, 666).

More value constraints
CREATE TABLE Grades (
 student TEXT,
 course CHAR(6),
 grade INT,
 CHECK (grade IN (0,3,4,5)),
 PRIMARY KEY (student, course),
 FOREIGN KEY (student) REFERENCES Students(idNumber)
);

CREATE TABLE Products (
 product_no INTEGER,
 PRIMARY KEY (product_no),
 name text,
 price NUMERIC,
 CHECK (price > 0),
 discounted_price NUMERIC,
 CHECK (discounted_price > 0),
 CHECK (price > discounted_price)
);

Compares two attributes

The value for grade is one of the listed values

Products has 4 columns
and 4 constraints

Things you can NOT do with value constraints

• Anything that checks outside the values in the row being inserted,
• E.g. you can not have a check that makes sure the grade in course

B is never higher than the grade for the same student in course A

NOT NULL constraint
• The NOT NULL constraint is a special constraint that says that a column can

not have the magic NULL non-value
• Should be added everywhere, unless you specifically want NULL-values

• Rule of thumb: NULL values are evil and will corrupt your data and soul
• Added after the type of each column
• Not needed for primary key attributes, they are automatically NOT NULL

CREATE TABLE Students (
 idNumber TEXT,
 name TEXT NOT NULL,
 cid CHAR(7) NOT NULL,
 PRIMARY KEY (idNumber)
);

A student can not be named NULL

Implicitly means idNumber is NOT NULL

A student must have a cid

Short hands for common operations

• Inlined constraints:
• PRIMARY KEY can be merged into a column definition:
 idNumber TEXT PRIMARY KEY,

• REFERENCES can be merged into column definitions
course CHAR(6) NOT NULL REFERENCES Courses(code)

• References to primary keys can omit the attribute list:
course CHAR(6) NOT NULL REFERENCES Courses

• None of these short hands work for compound keys/references!

Default values
• You can add default values when creating columns:

 lastName TEXT NOT NULL DEFAULT 'Doe',,

• In inserts you can write DEFAULT instead of any value (or omit it if it's last)
• Example: Make incident default to the time when the INSERT is executed
 incident TIMESTAMP DEFAULT CURRENT_TIMESTAMP,

• Defining a column with the type SERIAL gives it a default value that increases
by one for each inserted row (Postgres specific)
id SERIAL PRIMARY KEY,
• Common way of introducing synthetic keys.

• The "default default value" for nullable columns is NULL 

Schemas
• Schemas are compact 'blueprints' of relations, not part of SQL
• Like CREATE TABLE, but with less technical detail and informal syntax
• Format we use is
tablename(<attributes, primary key underlined>)

<list of additional constraints>

Students(idNumber, name, CID)
CID unique

Courses(code, coursename, points)
Grades(student, course, grade)

student -> Students.idNumber
course -> Courses.code
grade ∈ {0,3,4,5}

Schema with 3 relations
and 9 attributes

Reference constraints

Value constraint

Uniqueness constraint

Primary key constraint

Translating schemas into SQL
• Each relation becomes a table
• Each attribute becomes a column, decide an appropriate type
• All underlined attributes together make a single PRIMARY KEY
• References become foreign keys
• Unique/value constraints become UNIQUE/CHECK
• Add NOT NULL everywhere(for now)

Grades(student, course, grade)
student -> Students.idNumber
course -> Courses.code
grade ∈ {0,3,4,5}

 CREATE TABLE Grades (
 student TEXT,
 course CHAR(6),
 grade INT NOT NULL,
 PRIMARY KEY (student, course),
 FOREIGN KEY (student) REFERENCES Students(idNumber),
 FOREIGN KEY (course) REFERENCES Courses(courseCode),
 CHECK (grade IN (0,3,4,5))
);

Types must match
referenced columns!

The art of selecting primary keys
• Recall: Every relation has a set of attributes that together identify values

• This set of attributes is called the primary key of the relation
• Every row must have a pairwise unique value for these attributes

• Shown in the schema by underlining the attributes in the primary key
• Note that there is a single primary key, possibly with multiple attributes

Students(idNumber, name, CID)
Courses(code, coursename, points)
Grades(student, course, grade)

Every student is identified by their personal number

Every course has a unique code

Every (student, course)-pair is associated with at most one grade

Primary key problem 1

• What is the problem with this relation?
Grades(student, course, grade)

• Consequence: Each student can have at most a single grade in a single
course (or no grades at all) 

student course grade

790401-1234 TDA357 0

790401-1234 TDA143 3

810509-0123 TDA143 5

Key collision!
(Two rows have the
same key values)

Primary key problem 2

• What is the problem with this relation?
Grades(student, course, grade)

• Each course can only give at most one grade to a single student 

student course grade

790401-1234 TDA357 0

790401-1234 TDA143 3

810509-0123 TDA143 5

Key collision!
(Two rows have the
same key values)

Primary key problem 3
• What is the problem with this relation?

Grades(student, course, grade)

• A student can have multiple different grades in the same course
• But not several identical grades!
• Something that should cause a key violation is accepted, we need

a stronger constraint

student course grade

790401-1234 TDA357 0

790401-1234 TDA143 3

810509-0123 TDA143 5

student course grade

790401-1234 TDA143 0

790401-1234 TDA143 3

790401-1234 TDA143 4

Works – no collisions Also works

Exactly the primary key we want

• Grades(student, course, grade)

student course grade

790401-1234 TDA143 0

790401-1234 TDA143 3

790401-1234 TDA143 4

student course grade

790401-1234 TDA357 0

790401-1234 TDA143 3

810509-0123 TDA143 5

Works!

Collision (which is a good thing!)

Other Data Definition Language statements

(other than CREATE TABLE)

Very briefly on creating Views
General form:
CREATE VIEW <name> AS <query>;
Example:
CREATE VIEW Cheap AS SELECT name FROM Products WHERE price < 100;
A view is a way of giving a name to a query. Views can be used much like tables
(I can write SELECT … FROM Cheap … after creating the view above)
When the data in the underlying table is changed, so is the data in the view.
The first Assignment task is mostly about creating views!
You can also drop (delete) views: DROP VIEW <name>;
This does not delete any actual data, since the view does not contain data, it
only displays data from actual tables.

Removing tables

• The SQL command DROP TABLE <table name>; removes a table,
including all the data stored in it.
• This will fail if other tables have references to the removed table
• There is no confirmation dialogue, no undo-button. Only the light

humming of your harddrive as it deletes your carefully collected data

Summary SQL DDL (Data Definition Language)
• Mostly about CREATE TABLE (<list of columns+types and constraints>)
• On an abstract level there are three important kind of constraints:

• Key constraints (PRIMARY KEY and UNIQUE)
• Reference constraint (FOREIGN KEY)
• Value constraints (CHECK)

• Combined, these constraints can provide powerful integrity guarantees
• Schemas can be semi-mechanically translated into CREATE TABLE
• The art of constructing sensible schemas will be covered in the design part

of the course
• A view is just a query (topic for later this week) given a name

SQL DML: INSERT/MODIFY/DELETE

• The subset of SQL that deals with inserting, modifying or deleting
rows from tables is called the Data Manipulation Language (SQL DML)

INSERT

• We have already seen several examples of INSERT
• General form INSERT INTO <table name> VALUES (<expressions>);
• Can fail due to constraints on the table

DELETE

• General form:
DELETE FROM <table name> WHERE <condition on rows>

• Examples:

DELETE FROM Students;

DELETE FROM Students WHERE name = 'Jonas';

DELETE FROM Grades
WHERE course = 'TDA357' AND student='111111-1111';

Deletes all rows (!)

Can use AND/OR/NOT and a bunch of other stuff (e.g. IN)

Quiz

• Describe in english what this statement does:
DELETE FROM Grades
 WHERE grade < 3 AND grade > 5;
• Answer: Nothing (condition is always false)

• Describe in english what this statement does:
 DELETE FROM Grades
 WHERE grade < 3 OR grade > 5;

• Answer: Delete all recorded grades below 3 and all above 5

UPDATE
• Used to modify any number of values in a table. General form:
UPDATE <table name> SET <attribute = expression>
 WHERE <condition on rows>

• Can update multiple attributes, e.g.
UPDATE Students SET name = 'Jonas', cid='jonasdu'
 WHERE idNumber = '840118-4893';

• Condition can be omitted to change all rows:
 UPDATE Grades SET grade = 0;

• Sets all grades in all courses to 0 
• UPDATE never removes or adds any rows

Quiz

• Do you think an update can trigger errors? How?
• The updated value may violate uniqueness/value constraints
• The updated value may be referenced in other tables
• Types may be incorrect (like giving a TEXT value to an INT)
• …

Quiz

• What does this statement do?
UPDATE Grades SET grade = grade + 1
 WHERE course = 'TDA357' AND grade IN (3,4);

• Answer: Everyone with a 3 or 4 in databases gets a higher grade
(yay!)

• What happens if you run it twice?
• Everyone who had a passing grade will have a 5.

SQL: SELECT (Queries)

• The main part of using SQL is writing queries
• Probably 80% or more of your time on Assignment part 1 is writing queries

• Spoiler alert: The last view takes *a lot* longer than the earlier ones

SQL Queries
• The result of each query is essentially a table*

*Has columns and rows of data, but no constraints and is not persistant

• Example: Fetch personal number for each student that has a grade in TDA143:

Table: Grades

student course grade

790401-1234 TDA357 0

790401-1234 TDA143 0

810509-0123 TDA143 5

SELECT student FROM Grades WHERE course = 'TDA143';

student

790401-1234

810509-0123

Which columns? From what table? Condition that each row must satisfy

Execution of a SQL-Query

SELECT student
FROM Grades
WHERE course = 'TDA143';

student course grade

790401-1234 TDA357 0

790401-1234 TDA143 0

810509-0123 TDA143 5

student course grade

790401-1234 TDA357 0

790401-1234 TDA143 0

810509-0123 TDA143 5

WHERE course = 'TDA143'

FROM Grades

SELECT student

student course grade

790401-1234 TDA357 0

790401-1234 TDA143 0

810509-0123 TDA143 5

student

790401-1234

810509-0123

• EXAMPLE: Write a query that selects every student that passed TDA143
(grade 3 or higher) along with the grade they got

Table: Grades

student course grade

790401-1234 TDA357 3

790401-1234 TDA143 0

810509-0123 TDA143 5

SELECT student, grade
FROM Grades
WHERE course = 'TDA143' AND (grade >= 3);

student grade

810509-0123 5

Cartesian product
• Operation in set theory (thus applicable to relations!)
• If S = {1,2,3} T = {A, B, C} then the product S ✕ T is all combinations (pairs):

{(1,A), (1,B), (1,C), (2,A), (2,B), (2,C), (3,A), (3,B), (3,C)}
• In general, if N=|S| and M=|T| then N*M = |S✕T|

(Example: if S has three elements and T has four, S✕T has twelve element)

student course

790401-1234 TDA357

790401-1234 TDA143

810509-0123 TDA143

code points

TDA357 7.5

TDA143 7.5
✕

student course code points

790401-1234 TDA357 TDA357 7.5

790401-1234 TDA357 TDA143 7.5

790401-1234 TDA143 TDA357 7.5

790401-1234 TDA143 TDA143 7.5

810509-0123 TDA143 TDA357 7.5

810509-0123 TDA143 TDA143 7.5

=

3 rows * 2 rows = 6 rows
2 columns + 2 columns = 4 columns

Cartesian product in SQL

Table: Grades

student course grade

790401-1234 TDA357 0

790401-1234 TDA143 3

810509-0123 TDA143 5

Table: Courses

code coursename points

TDA357 Databases 6.5

TDA143 Programmerade system 7.5

SELECT *
 FROM Courses, Grades;

All columns
From the Cartesian product
of courses and grades

code coursename points student course grade

TDA357 Databases 6.5 790401-1234 TDA357 0

TDA357 Databases 6.5 790401-1234 TDA143 3

TDA357 Databases 6.5 810509-0123 TDA143 5

TDA143 Programmerade system 7.5 790401-1234 TDA357 0

TDA143 Programmerade system 7.5 790401-1234 TDA143 3

TDA143 Programmerade system 7.5 810509-0123 TDA143 5

2*3=6 rows

3+3 = 6 columns

Join-operation
• Suppose we want the name of everyone with a

grade in TDA143
• Look at the Cartesian product of Students and

Grades (Students ✕ Grades)
• The rows where the personal numbers match are

the relevant ones, the rest are nonsense

Table: Students

idNumber name CID

790401-1234 Bart Simpson barsimp

810509-0123 Lisa Simpson simpsol

Table: Grades

student course grade

790401-1234 TDA357 0

790401-1234 TDA143 0

810509-0123 TDA143 5

idNumber name CID student course grade

790401-1234 Bart Simpson barsimp 790401-1234 TDA357 0

790401-1234 Bart Simpson barsimp 790401-1234 TDA143 0

790401-1234 Bart Simpson barsimp 810509-0123 TDA143 5

810509-0123 Lisa Simpson simpsol 790401-1234 TDA357 0

810509-0123 Lisa Simpson simpsol 790401-1234 TDA143 0

810509-0123 Lisa Simpson simpsol 810509-0123 TDA143 5

idNumber name CID student course grade

790401-1234 Bart Simpson barsimp 790401-1234 TDA357 0

790401-1234 Bart Simpson barsimp 790401-1234 TDA143 0

790401-1234 Bart Simpson barsimp 810509-0123 TDA143 5

810509-0123 Lisa Simpson simpsol 790401-1234 TDA357 0

810509-0123 Lisa Simpson simpsol 790401-1234 TDA143 0

810509-0123 Lisa Simpson simpsol 810509-0123 TDA143 5

SELECT idNumber, name, grade
FROM Students, Grades
WHERE (idNumber=student) AND (course='TDA143');

SELECT idNumber, name, grade

idNumber name grade

790401-1234 Bart Simpson 0

810509-0123 Lisa Simpson 5

Qualified names

• This doesn't work (ambiguous column name):
SELECT idNumber, name, grade
 FROM Students, Grades
 WHERE (idNumber=idNumber);

• One (sometimes) solution: Use unique names in tables
• Another solution: Use qualified names to distinguish attributes:
SELECT Students.idNumber, name, grade
 FROM Students, Grades
 WHERE (Students.idNumber=Grades.idNumber);

Table: Students

idNumber name CID

790401-1234 Bart Simpson barsimp

810509-0123 Lisa Simpson simpsol

Table: Grades

idNumber course grade

790401-1234 TDA357 0

790401-1234 TDA143 0

810509-0123 TDA143 5

namechange

both in select/where

Regarding duplicates
• Note that results may contain duplicate rows

• There are no primary keys in results (only in created tables)

SELECT name
FROM Students, Grades
WHERE (Students.idNumber = Grades.student);

name

Bart Simpson

Bart Simpson

Lisa Simpson

Each name is repeated for every
course taken by a student with
that name

Summary: basic SQL-expressions
SELECT attribute1, attrubute2 ...
FROM Table1, Table2 ...
WHERE Condition (attribute1 = attrubute2 OR attribute3 = 'text')

Compute the result by:
• Taking the Cartesian product of the tables in FROM
• Removing rows not matching WHERE
• Removing columns not in SELECT

JOIN keyword
SELECT *
 FROM Students JOIN Grades ON (idNumber=student);
is the same as
SELECT *
 FROM Students, Grades
 WHERE (idNumber=student);

• In general:
FROM TableA,TableB WHERE x=y
is the same as
FROM TableA JOIN TableB ON (x=y)

Using
Instead of:
SELECT Students.idNumber, name, grade
 FROM Students, Grades
 WHERE Students.idNumber=Grades.idNumber;

I can write:
SELECT idNumber, name, grade
 FROM Students JOIN Grades USING (idNumber);

• Translates to the condition
Students.idNumber=Grades.idNumber

• Also magically removes the duplicate occurence of idNumber in the
cartesian product! (So I don't need to use qualified names in SELECT)

Magic!

NATUAL JOIN – the least natural join in the world
• Writing
SELECT *
 FROM Students NATURAL JOIN Grades;

Translates into
USING <all attribute with the same name in both tables>
• May accidentally join on the wrong attributes (Course.name = Student.name)
• Sensitive to renaming – it may work one day and fail horribly the next
• Very difficult to describe in terms of simple operations (and thus unnatural)
• Loved by the masses because it is the most compact way of joining tables

(Especially for things like "A NATURAL JOIN B NATURAL JOIN C" …)

Aliasing tables and columns
• Both columns in SELECT and tables in FROM can be named/renamed:
 SELECT C.name AS theName FROM Courses AS C;

• Sometimes useful when selecting constants:
SELECT name, 'hello!' AS Message FROM Courses;

Select from courses,
but call it C

Shorter qualified names

Column name is 'theName'
in result

Selects each course name, along with the text 'hello!' on each row…

Quiz: Self join 1

• What does this query yield? (how many rows?)
SELECT N1.num, N2.num, N1.owner
 FROM Numbers AS N1, Numbers AS N2
 WHERE N1.owner = N2.owner;

• Answer:

Table: Numbers

owner num

Bart 11111

Lisa 22222

Bart 33333

N1.num N2.num N1.owner

11111 11111 Bart

11111 33333 Bart

22222 22222 Lisa

33333 11111 Bart

33333 33333 Bart

Quiz: Self join 2

SELECT N1.num, N2.num, N1.owner
 FROM Numbers AS N1, Numbers AS N2
 WHERE N1.owner = N2.owner
 AND N1.num != N2.num;

• Answer: 2 rows

Table: Numbers

owner num

Bart 11111

Lisa 22222

Bart 33333

N1.num N2.num N1.owner

11111 11111 Bart

11111 33333 Bart

22222 22222 Lisa

33333 11111 Bart

33333 33333 Bart

Quiz: Self join 3
SELECT N1.num, N2.num, N1.owner
FROM Numbers AS N1, Numbers AS N2
WHERE N1.owner = N2.owner
 AND N1.num < N2.num;

Table: Numbers

owner num

Bart 11111

Lisa 22222

Bart 33333

N1.num N2.num N1.owner

11111 33333 Bart

Table: Numbers

owner num

Bart 11111

Bart 22222

Bart 33333

N1.num N2.num N1.owner

11111 22222 Bart

11111 33333 Bart

22222 33333 Bart

What about this one:

Quiz

• We have a table of names+phone numbers, and one of names+email
• What do we get from the following expression?
SELECT Phones.name, phone, email
 FROM Phones, Emails
 WHERE Phones.name = Emails.name;
(Or semi-equivalently FROM Phones NATURAL JOIN Emails)

• Do we get all the data from both tables?
• No! Only the names that have both a phone number and an email

appear in the result! (example on next slide)

Phones(name,phone)
Emails(name,email)

Inner join

Table: Phones

name phone

Bart 11111

Lisa 22222

Maggie 33333

Table: Emails

name email

Bart bart

Lisa lisa

Homer homer
SELECT *
 FROM Phones, Emails
 WHERE Phones.name = Emails.name;

Result:

Phones.name phone Emails.name email

Bart 11111 Bart bart

Lisa 22222 Lisa lisa

Result says nothing about Maggie and Homer 

(full) outer joins

• Outer joins are intended to solve exactly this kind of problems: we want
everyone who has a phone number OR an email

• Basic idea: Take the 'missing rows' from both joined tables (the ones that
are not matched with any rows from the other in the result of the join)
and add them with NULL for the attributes of the other table

SELECT * FROM Phones FULL OUTER JOIN Emails
 ON (Phones.name=Emails.name);

Table: Phones

name phone

Bart 11111

Lisa 22222

Maggie 33333

Table: Emails

name email

Bart bart

Lisa lisa

Homer homer

Phones.name phone Emails.name email

Bart 11111 Bart bart

Lisa 22222 Lisa lisa

Maggie 33333 (null) (null)

(null) (null) Homer homer

Regular (inner) join

Extra outer-join rows

Natural join to the rescue

• The weird column-merging stuff that NATURAL JOIN (and USING) does works
sort of nicely here:
SELECT * FROM Phones NATURAL FULL OUTER JOIN Emails;

• No nulls in joined columns
• Looks like what I'd expect a combination

of the two tables to look like

Table: Phones

name phone

Bart 11111

Lisa 22222

Maggie 33333

Table: Emails

name email

Bart bart

Lisa lisa

Homer homer

name phone email

Bart 11111 bart

Lisa 22222 lisa

Maggie 33333 (null)

Homer (null) homer

Left/Right outer join

• Specifying left/right outer join (instead of full) means only missing
rows from the left/right operand of JOIN are added

SELECT * FROM Phones LEFT OUTER JOIN Emails
 ON (Phones.name=Emails.name);

• No extra row for homer
• Never any new null

values in Phones.x
(left side of result)

Phones.name phone Emails.name email

Bart 11111 Bart bart

Lisa 22222 Lisa lisa

Maggie 33333 (null) (null)

Table: Phones

name phone

Bart 11111

Lisa 22222

Maggie 33333

Table: Emails

name email

Bart bart

Lisa lisa

Homer homer

Experiment with outer joins

• Play around with OUTER joins, and get some unexpected results
• For instance, these queries give slightly different results:
SELECT Emails.name,phone,email
FROM Phones LEFT OUTER JOIN Emails
 ON (Phones.name=Emails.name);

SELECT name,phone,email
 FROM Phones LEFT OUTER JOIN Emails USING (name);

COALESCE

• COALESCE takes a list of values and returns the first non-null value
• Typical use case: Replaces null values with constants (of matching type)
SELECT name, COALESCE(email, 'no email') AS email
 FROM Emails FULL OUTER JOIN …

SELECT id,COALESCE(totalCredits, 0) AS credits FROM …

Use aliasing to give the coalesced values proper names

Summary, Outer/inner joins
• Informally, which names are included in these queries?
SELECT * FROM Phones NATURAL JOIN Emails;

• Answer: Everyone with a phone and an email
SELECT * FROM Phones NATURAL LEFT OUTER JOIN Emails;

• Answer: Everyone with a phone
SELECT * FROM Phones NATURAL RIGHT OUTER JOIN Emails;

• Answer: Everyone with an email
SELECT * FROM Phones NATURAL FULL OUTER JOIN Emails;

• Answer: Everyone with a phone or an email
• In each case, the magical nature of NATURAL JOIN makes sure that the name

columns are merged (result has three columns)

Phones(name,phone)
Emails(name,email)

Sets, Bags or Lists?

• Sets, Bags and Lists are three data structures for simple collections:
• Sets have no internal ordering and no duplicates
• Bags (a.k.a. multisets) have no ordering but can have duplicates
• Lists have ordering (each value has a position in the list) and duplicates

• An SQL table is typically considered a Set (primary key ensures unique rows)
• SQL Query results are often "morally" Sets, but can also be bags or lists
• Often we can ignore the difference, but sometimes this is important (when

we care about ordering or there is a risk of duplicates)

Removing duplicates

• By adding DISTINCT after SELECT, duplicate rows will be removed

• Gives the query set-semantics

Table: Grades

idNumber course grade

750202-2345 TDA357 4

790401-1234 TDA357 3

810509-0123 TDA357 3

SELECT DISTINCT course, grade
 FROM Grades;

SELECT course, grade
 FROM Grades;

course grade

TDA357 4

TDA357 3

TDA357 3

course grade

TDA357 4

TDA357 3

Set operations

• There are three set-opertions in SQL: UNION, INTERSECT and EXCEPT
• You use <query1> UNION <query2>
• Union example:
(SELECT room FROM Lectures)
UNION
(SELECT eroom FROM Exercises);

A query containting queries!

Must have matching
column types

UNION
• Union just combines all rows from two queries
• Removes all duplicate rows (because it's a set operation)
• Does not preserve ordering (because it's a set operation)
• Uses column names from left operator

(SELECT lroom,ltime,'lecture' AS topic
 FROM Lectures
 WHERE teacher = 'Matti')
UNION
(SELECT eroom,etime,subject
 FROM Exercises);

Table: Lectures

ltime lroom teacher

11-06 8:00 GD Jonas

11-08 10:00 GD Matti

Table: Exercises

etime eroom subject

11-06 8:00 GD SQL

11-06 13:00 HB ER

Result:

lroom ltime topic

GD 11-06 8:00 SQL

GD 11-10 10:00 lecture

HB 11-06 13:00 ER

1 row

2 rows

INTERSECT

• Takes the intersection of two queries (all rows that appear in both)

Table: Lectures

ltime lroom teacher

11-06 8:00 GD Jonas

11-08 10:00 GD Matti

Table: Exercises

etime eroom subject

11-06 8:00 GD SQL

11-06 13:00 HB ER

(SELECT lroom,ltime FROM Lectures)
INTERSECT
(SELECT eroom,etime FROM Exercises);

Result:

lroom ltime

GD 11-06 8:00

EXCEPT

• Takes the difference of two queries (removing the contents of the
second from the first)

Table: Lectures

ltime lroom teacher

11-06 8:00 GD Jonas

11-08 10:00 GD Matti

Table: Exercises

etime eroom subject

11-06 8:00 GD SQL

11-06 13:00 HB ER

(SELECT lroom,ltime FROM Lectures)
EXCEPT
(SELECT eroom,etime FROM Exercises);

Result:

lroom ltime

GD 11-08 10:00

UNION ALL

• If we don't care about duplicates, we can use UNION ALL (also
INTERSECT ALL and EXCEPT ALL) to keep duplicates (bag-semantics)

(SELECT room FROM Lectures)
UNION ALL
(SELECT eroom FROM Exercises);

• The query above may give the same room multiple times
• Presumably, it is more efficient
• Ordering is not necessarily preserved

Ordering
• Sometimes, the order of rows in the result is important

for the user
• An ORDER BY [ASC/DESC] clause can be added at the end of any SELECT
SELECT *
 FROM Numbers
 ORDER BY num DESC;

SELECT *
 FROM Numbers
 ORDER BY (owner,num) ASC;

Table: Numbers

owner num

Bart 44444

Lisa 22222

Bart 33333

Homer 11111

Descending order

Ascending order (first by owner, then num)

owner num

Bart 44444

Bart 33333

Lisa 22222

Homer 11111

owner num

Bart 33333

Bart 44444

Homer 11111

Lisa 22222

Aggregation
You know it's important because it has a vertically centered headline

Aggregation

• Some data we cant quite compute yet:
• How many courses has Bart passed?
• What is the average grade in Databases?
• How many points does Lisa have in total?
• What is Barts maximum grade?

• These operations are called aggregates
• Require us to process groups of values together
• Aggregate a set of values into a single value (like the average or sum)

Table: Grades

student course grade

Lisa Databases 4

Lisa Project 5

Bart Databases 3

Bart Project 0

Table: Courses

name points

Databases 10

Project 15

Simple aggregates
• Aggregate functions:

• COUNT counts rows, AVG computes averages

SELECT COUNT(*) AS Passing
 FROM Grades
 WHERE grade >= 3;

SELECT AVG(grade)
 FROM Grades
 WHERE grade >= 3;

SELECT MAX(points), MIN(points)
 FROM Courses;

Table: Grades

student course grade

Lisa Databases 4

Lisa Project 5

Bart Databases 3

Bart Project 0

Table: Courses

name points

Databases 10

Project 15

Passing

3

MAX MIN

15 10

AVG

4.0

• Always gives a single row
• WHERE applied before aggregation
• Can not mix columns and aggregates

(SELECT student, AVG(grade))

Quiz

• How do I write a query that computes Lisas total points?
• Hint: There is an aggregation function called SUM
• Take one clause at the time, starting with FROM, then WHERE, then SELECT
SELECT SUM(points) AS total

 FROM Courses, Grades

 WHERE name = course

 AND grade >= 3

 AND student = 'Lisa';

Table: Grades

student course grade

Lisa Databases 4

Lisa Project 5

Bart Databases 3

Bart Project 0

Table: Courses

name points

Databases 10

Project 15

total

25

Intermediate result before aggregation, after WHERE

name points student course grade

Databases 10 Lisa Databases 4

Project 15 Lisa Project 5

Grouping
• I want the average (passing) grade for each student

• To do this, I need to tell SQL to group all the values in Grades by the student
attribute (two groups) then for each group select the (unique) student and
compute the average of the grades in the group

SELECT student, AVG(grade)
 FROM Grades
 WHERE grade >= 3
 GROUP BY student;

Table: Grades

student course grade

Lisa Databases 4

Lisa Project 5

Bart Databases 3

Bart Project 0

Table: Courses

student AVG

Bart 3.0

Lisa 4.5

The selected columns must be a subset of
the columns we group by!
(Selecting course here would not make sense)

Quiz

• For each course, lists its name, points and number of passed students
• Start with FROM, then WHERE, then SELECT and GROUP BY

Table: Grades

student course grade

Lisa Databases 4

Lisa Project 5

Bart Databases 3

Bart Project 0

Table: Courses

name points

Databases 10

Project 15

SELECT name, points, COUNT(*) AS passed
 FROM Courses, Grades
 WHERE course = name
 AND grade >= 3
 GROUP BY (name,points);

name points passed

Databases 10 2

Project 15 1

HAVING
• What if I want to list all students with an average above 4?
• This does not work (the WHERE-clause resolves before the grouping!)
SELECT student
 FROM Grades
 WHERE grade >= 3 AND AVG(grade) > 4
 GROUP BY student;

• SQL has a special clause for conditions on groups, called HAVING
SELECT student
 FROM Grades
 WHERE grade >= 3
 GROUP BY student
 HAVING AVG(grade) > 4;

Resolved before grouping (to exclude 0)

Resolved during grouping
(condition for each group)

Not allowed to use AVG here!

Subqueries
Wouldn't our queries be even more awesome if we had queries in them?

This is possibly the most dreaded and most powerful feature of SQL

Where can you have subqueries?
• It’s more like where can you not have them?!
• You can have them in FROM
SELECT name
 FROM Courses, (SELECT course, COUNT(*) AS graded
 FROM Grades GROUP BY course) AS Q
 WHERE Courses.name = Q.course AND Q.graded > 100;

• You can have them in WHERE
SELECT * FROM Grades
 WHERE grade > (SELECT AVG(grade) FROM Grades);

• You can even have them in SELECT!
• And of course -my personal favorite- you can have them in subqueries

Comparison only works if subquery gives a single row

Select all above average grades

Cartesian product of a table and a query result

Using subqueries to filter results of set operations

• You can not attach a WHERE-clause directy to a UNION (only SELECT)
• But you can have the UNION in a FROM clause:

 SELECT time,room FROM Lectures
 UNION
 SELECT time,room FROM Exercises

Gets the time of all lectures and exercises in room GD

SELECT time
FROM (

) AS U
WHERE room='GD';

EXISTS and NOT EXISTS and correlated queries
• A common use of subqueries is something like this:
SELECT name FROM Courses AS C
 WHERE NOT EXISTS
 (SELECT * FROM Grades WHERE grade=5 AND course = C.name)

• This query selects all courses that have no student with a grade of 5
(NOT EXIST (<query>) is true if <query> gives zero result rows)

• Note how the condition in the inner query refers to a value in the outer query
(C.name), we say that the subquery is a correlated query.
• The subquery can not be executed by itself
• The qualified name is not needed but highly recommended for readability

Refers to a value in the superquery

WITH

• The WITH clause offers a nice way to structure subqeries, by creating
"helper tables" (similar to views, but only existing locally)

• General syntax:
WITH <query1> AS <Name1>,
 <query2> AS <Name2>
SELECT … FROM <Name1>, <Name2>;

• Compare to how you may create helper methods in java to split up a
complicated piece of code

• Note that the whole thing is a single query that gives one result table,
but it contains subqueries

"helper queries"

Final result query

WITH-example
WITH
 DivisionTotals AS
 (SELECT company, division, SUM(salary) as total
 FROM Employees GROUP BY company, division),
 CompanyAverage AS
 (SELECT company, AVG(total) as average
 FROM DivisionTotals GROUP BY company)

SELECT company, division
 FROM DivisionTotals JOIN CompanyAverage USING (company)
 WHERE total > average;

Employees(idnr,company,division,salary)

"Find all divisions whose total salary exceeds
the average total division salary in its company"

Two helper tables
(DivisionTotals and
CompanyAverage)

Final result

One helper table uses the other!

Using WITH to make one column at a time
WITH
 Col1 AS <query>,
 Col2 AS <query>,
 Col3 AS <query>
SELECT <attribute list>
 FROM Col1
 NATURAL LEFT OUTER JOIN Col2
 NATURAL LEFT OUTER JOIN Col3;

• Good way of building complex queries (like the last view in Task 1)
• Each of the column-queries can be executed and tested separately
• You can do this by creating views, but that "pollutes the namespace"

Each helper table has one or a few columns
for the end result, and a common identifier

Chain of LEFT-joins, the leftmost one
needs to have all rows we want

Use better names!

A world of possibilities
• With the basic SELECT … FROM … WHERE … GROUP BY … queries, there is

usually only one straightforward way of solving a task
• Subqueries changes that, and there are almost always multiple correct ways

of solving a task
• Examples:

• You can always replace EXCLUDING (set subtraction) with NOT IN <query>
• You can always replace outer joins with UNION (but don’t do that)

• This flexibility is sometimes necessary, but it makes SQL programming a fair
bit harder

Weird stuff in SQL conditions
What do we get if we have WHERE x=y and x is NULL?
• NULL is not a value so FALSE? NULL is a wildcard value so TRUE?
• The SQL designers couldn't decide, so they added a third value to the boolean

type, UNKNOWN, and any comparisons to null give this value
• This can be very confusing. For instance:

• x=x is not always true (if x is NULL it is UNKNOWN)
• p OR NOT p is not always true
• TRUE OR UNKNOWN is TRUE, FALSE OR UNKNOWN is UNKNOWN
• Truth tables for binary logical operators now have 9 rows instead of 4

• UNKNOWN is counted as FALSE (excluded) in WHERE-clauses
• Use "x IS NULL" to check if attribute x is null (always TRUE/FALSE), or COALESCE

Comments in SQL-files

-- This is a single line comment (starts with --)

/* This is a
multiline comment
*/

• Writing comments is good for yourself, your lab partner, and graders
• Can also be used to comment out SQL code that currently doesn't work,

write TODO:s etc (just clean it up before submitting!)

SQL Querys
• A query with almost everything:
SELECT <columns/expressions>
 FROM <tables/subqueries/JOINS>
 WHERE <condition on rows>
 GROUP BY <columns>
 HAVING <condition on groups>
 ORDER BY (<columns/expressions>) [ASC/DESC];

• Set operations: <query1> [UNION/INTERSECT/EXCEPT] <query2>
• Expressions are built from: columns, constants (0,'hello',…), operators(+,-,…),

functions (COALESCE, aggregates, …)
• Conditions can use columns,constants,AND/OR/NOT,IN,EXISTS,<,>,=, IS NULL …

Workflow for writing a complicated query
• Start with some data and an understanding of what your query should

result in for the test data you have in your tables (add more if needed)
• Write a simple query that shows some of the data you want (e.g. some

of the column and most of the rows)
• Wrong number of rows?

• Sometimes: Modify your WHERE/HAVING conditions
• Sometimes: Add another table/query to FROM
• Rarely: Use UNION to add what is missing

• Missing columns?
• join in another table or subquery, add aggregations …

You now know everything needed for Task 1

• Go forth and solve!

Friday exercises

• Today after lunch there are two exercise sessions
• The 13-15 one will be in this room, the 15-17 one in Vasa A also here!

• The later one is mainly for the I-students and anyone else who is busy 13-15
• In this weeks sessions you will learn the practicalities of working in SQL by

working together with me on a set of problems (find them on the webpage)

This is slide 100!

• It contains nothing useful, I just wanted 100 slides.

