3.1
a) $\{a, c, e\}\{b, c, e\}\{d, c, e\}$

Note (not part of answer): Set notation $(\{\}$,$) is not required as long as it is clear which attributes are$ in each key.
b) $\{b, c, d\}\{a, b, c, d\}\{a, b, d, e\}$
c) Example:

a	b	c	d	e
0	0	0	0	0
0	0	0	1	1

Note (not part of answer): b and c must be the same in both rows, and d differ to violate the functional dependency. Column a is essentially irrelevant and e must be different to respect the keys. Having additional rows is OK as long as the keys are respected.

Another correct solution where values are "as unique as possible":

a	b	c	d	e
0	1	2	3	4
5	1	2	6	7

d)
$a \rightarrow b$
b c \rightarrow d
$\mathrm{de} \rightarrow \mathrm{a}$
Additional derived dependencies (just a few examples, there are a lot of derived dependencies):
$\mathrm{a} c \rightarrow \mathrm{~d}, \mathrm{~b}$ ce $\rightarrow \mathrm{a}$

$\mathbf{R}(a, b, c, d, e)$

Decomposing on $\mathrm{a} \rightarrow \mathrm{b},\{\mathrm{a}\}^{+}=\{\mathrm{a}, \mathrm{b}\}$
R1(a,b) - BCNF

R2(a,c,d,e)
Decomposing on $\mathrm{de} \rightarrow \mathrm{a},\{\mathrm{d}, \mathrm{e}\}^{+}=\{\mathrm{d}, \mathrm{e}, \mathrm{a},(\mathrm{b})\}$

$$
\begin{aligned}
& \text { R21(d, e, a) - BCNF } \\
& \text { R22(d, e, c) - BCNF }
\end{aligned}
$$

Final schema with keys:
R1 (a, b)
R21($\underline{\text { d }}, \underline{e}, ~ a)$
R22(d, e, c)

3.2

We can note that the two sets A, B, E and C, D are not interconnected at all and can essentially be separate relations.
C, D can be email and name or any other pair of attributes where the first determines the second but not the other way around.

A, B, E
We have $E->A$ and $A->B$. This could be something like $A=$ model, $B=$ manufacturer, $E=$ licensePlate for cars or any other hierarchy where E is the most specific then A then B. Another example:
$E=$ planet, $A=$ solarSystem, $B=$ galaxy.
3.3

MVDs:
flightNo, departure ->> airport
flightNo, departure ->> passenger, movie
Note: The two above are equivalent and express "the airports a flight lands at are independent from the passengers and the movies they can watch"
passenger ->> movie
passenger ->> airport, flightNo, departure
Note: These two are also equivalent and express "The movies a passenger can watch are independent from the flights they are booked on and airports those flights land at"

R(flight, departure, airport, passenger, movie)
decomposing on flightNo, departure ->> airport
R1(flightNo, departure, airport)
R2(flightNo, departure, passenger, movie)
decomposing on passenger ->> movie
R21(passenger, movie)
R22(passenger, flightNo, departure)

Final relations with keys (only trivial FDs):
R1(flightNo, departure, airport)
R21(passenger, movie)
R22(passenger, flightNo, departure)
Logically, the first ones lists where flights land, the second what movies passengers have and the third what passengers are on what flights.

