
3.1

a) {a,c,e} {b,c,e} {d,c,e}
Note (not part of answer): Set notation ({,}) is not required as long as it is clear which attributes are
in each key.

b) {b,c,d} {a,b,c,d} {a,b,d,e}

c) Example:

a b c d e
0 0 0 0 0
0 0 0 1 1

Note (not part of answer): b and c must be the same in both rows, and d differ to violate the
functional dependency. Column a is essentially irrelevant and e must be different to respect the
keys. Having additional rows is OK as long as the keys are respected.

Another correct solution where values are "as unique as possible":

a b c d e
0 1 2 3 4
5 1 2 6 7

d)

a → b
b c → d
d e → a

Additional derived dependencies (just a few examples, there are a lot of derived dependencies):

a c → d, b c e → a

R(a,b,c,d,e)
Decomposing on a → b, {a}+ = {a, b}
 R1(a,b) - BCNF
 R2(a,c,d,e)
 Decomposing on d e → a, {d, e}+ = {d,e,a,(b)}
 R21(d, e, a) - BCNF
 R22(d, e, c) - BCNF

Final schema with keys:

R1(a,b)
R21(d, e, a)
R22(d, e, c)

3.2

We can note that the two sets A, B, E and C, D are not interconnected at all and can essentially be
separate relations.

C, D can be email and name or any other pair of attributes where the first determines the second but
not the other way around.

A, B, E
We have E -> A and A -> B. This could be something like A=model, B=manufacturer, E=licensePlate
for cars or any other hierarchy where E is the most specific then A then B. Another example:
E=planet, A=solarSystem, B=galaxy.

3.3

MVDs:

flightNo, departure ->> airport
flightNo, departure ->> passenger, movie
Note: The two above are equivalent and express “the airports a flight lands at are independent from
the passengers and the movies they can watch”

passenger ->> movie
passenger ->> airport, flightNo, departure
Note: These two are also equivalent and express “The movies a passenger can watch are
independent from the flights they are booked on and airports those flights land at”

R(flight, departure, airport, passenger, movie)
decomposing on flightNo, departure ->> airport
 R1(flightNo, departure, airport)
 R2(flightNo, departure, passenger, movie)
 decomposing on passenger ->> movie
 R21(passenger, movie)
 R22(passenger, flightNo, departure)

Final relations with keys (only trivial FDs):

R1(flightNo, departure, airport)

R21(passenger, movie)

R22(passenger, flightNo, departure)

Logically, the first ones lists where flights land, the second what movies passengers have and the
third what passengers are on what flights.

