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Another high level design approach
• This week we will look at functional dependencies (FDs) and normal forms
• This is an alternative (and to some degree complementary) approach to ER 

that we studied last week
• We start in a domain description and end in a database schema

• A single lecture, and Friday exercises as usual

Domain Schema

FDs

ER



Normalisation in a nutshell

• Extract a bunch of formal statements from the domain description
• Compute a normalised database schema from the formal statements

• Highly systematic, almost mechanical process
• By a carefully constructed normalization algorithm, the normal form 

the schema ends up in will satisfy some important properties

Attributes +
Bunch of facts Ready-to-use schemaDomain NormalizationModelling



Functional Dependencies (FDs)
• A func onal dependency is wri en as <set of a ributes> → <a ribute>
• Example: room  me→course
• Pronounced "room and time determines course"
• It is a statement that can be true or false
• A few ways of understanding the meaning of the statement above:

• If we know room and a time, we can uniquely determine course
• There can be at most one course value for each (room,time)-pair
• There exists a partial function f that takes a room and a time and 

yields a course
• In a domain it might have said something like "courses can book rooms 

at any free times"

Do not confuse with references!



Three ways we can use functional dependencies

• Check if they hold for a specific data set
• Check if a design ensures they hold for all data sets
• Express desired properties of a design

• I will explain each of these in turn



Functional dependency as a property of data

• One way of formally defining functional dependency x1 x2 … → y  :
For R(y x1 x2 …), if two rows agree on x1, x2 … they must also agree on y

• In other words, there can not exist two rows where the left hand side 
attributes are the same, but the right hand side attribute differs
• "X → y = rows that agree on X must agree on y"

Two rows "agreeing on x" just means 
the x-column(s) have the same value 



• Which FDs hold for this data?

courseCode → name?
• Yes! (TDA357 maps to Databases, ERE033 to Reglerteknik)

day → timeslot?
• No! (Tuesday maps to both 0 and 1)

day timeslot room → courseCode?
• Yes! (There are no rows where all three LHS columns match) 

seats → room?
• Yes! 236 for GD, 224 for HB4, 
• This might not be intentional given what we know of the domain…

Table: Bookings

courseCode name day timeslot room seats

TDA357 Databases Tuesday 0 GD 236

TDA357 Databases Tuesday 1 GD 236

ERE033 Reglerteknik Tuesday 0 HB4 224

ERE033 Reglerteknik Friday 0 GD 236

LHS = Left hand side (of arrow)
RHS = Right hand side



FDs as a properties of designs
• Knowing what it means for an FD to hold for a data set, we can

determine if a design (schema) guarantees that it holds for all valid 
data sets 

• Example: Does the schema below guarantee that …
code → cname?

• Yes! (by primary key constraint in courses)
cname → code?

• No! (Counterexample: any two courses with the same name)
code → email

• Yes! (teacher is just another name for email)
code → tname

• Yes! (by primary key + reference)
Teachers(email, tname)
Courses(code, cname, teacher)

teacher -> Teachers.email



Bookings(courseCode, name, day, timeslot, room, seats)
(day, timeslot, room) UNIQUE

• Does the schema above guarantee …
• day timeslot room → courseCode

• Yes (through UNIQUE constraint)
• day timeslot room coursCode → seats

• Yes (through primary key and/or UNIQUE)
• room → seats

• No 
• courseCode → name

• No 

Counterexample of room → seats and courseCode → name
courseCode name day timeslot room seats
CC1 N1 Tuesday 0 R1 0
CC1 N2 Tuesday 1 R1 1

Different timeslot, so no key violation



FDs as intention for designs

• Since we can verify that an FD holds for a schema, we can also use
them to specify desired properties of our schema

• This is what makes FDs a design tool
• A sentence like "every course has a teacher" can be modelled as the 

FD course → teacher (or whatever attributes we use)
• If this FD does not hold for our design, maybe the design is bad?



Formal properties of FDs

• FDs have lots of interesting mathematical properties
• I will explain some of the more useful ones:

• Transitivity
• Augmentation
• Reflexivity

• These three are commonly referred to as Armstrongs axioms and they 
can be formulated in a few different but equivalent ways*

*But the way I formulate them is -of course- the best way

Warning: Things may get slightly 
mathsy from this point 



Side note: Single/Multiple FDs

• It is common to have multiple attributes on the right hand side of FDs
x y z → a b c

• This means exactly the same as these three FDs:
x y z → a
x y z → b
x y z → c

• I find it most useful to think of the first as a convenient way of writing 
multiple FDs, rather than thinking of it as single FD with multiple attributes

• It is not the same with the le  hand side! x y → a does not mean x → a!

Notation: I use lowercase 
x/y/z for single attributes 
and uppercase X/Y/Z for 
attribute sets



Transitivity of functional dependencies

• Functional dependency is a transitive relation
• This means that if X → Y and Y → Z then X → Z

• Note that Y is an a ribute set here, so X → Y may be mul ple FDs with 
the same LHS

• Proof sketch: Look at any rows that agree on X. Since X → Y, they must 
also agree on Y, and since Y → Z they must further agree on Z. 
Thus X → Z.

Recall: X → y = rows that agree on X must agree on y



Augmentation

• If x1 x2 … → y, then for all z: z x1 x2 … → y
• Intuitively: You can add any attributes you want to the LHS of a valid FD 

and still get a valid FD
• Think: "knowing an extra attribute never prevent us from finding y"

• Proof sketch: Since all rows that agree on the xs must agree on y, then 
particularly all rows that agree on z as well as the xs must do so.

Recall: X → y = rows that agree on X must agree on y



Reflexivity and trivial FDs
• For all x: x → x 

(x determines itself)

• By augmenta on, X → y whenever y X 
• Example: a b c → b
• We call these depencies trivial
• Rule of thumb: Ignore trivial dependencies

• Proof sketch: Any values that agree on x will agree on x 

Recall: X → y = rows that agree on X must agree on y



Example: Deriving functional dependencies

• For any attributes x, y, z, w, and q:
x → y, z → w, and y w → q implies x z → q

• Proof: 
x → y implies x z → y (by augmentation)
z → w implies x z → w (by augmentation)
x z → y w and y w → q implies x z → q (by transitivity)

• Note that in the third step we merge x z → y and x z → w into x z → y w
(See slide on Single/Multiple FDs)

x → y
z → w

y w → q 
x z → q



Minimal basis

• The minimal basis F- of a set of functional dependencies F is a set 
equivalent to F but with the following conditions:
• F- has no trivial dependenices
• No dependency in F- follow from other dependencies in F- through 

transitivity or augmentation

• Used for a lot of algorithms and to express a set of FDs in a compact 
form



Minimal basis
• Suppose we are given this set of FDs (5 total), what is a minimal basis?

a → b
b → c
a d → b c d

• a d → d is removed because it is trivial
• a d → b is removed because it is implied by a → b (augmentation)
• a d → c is removed because it is implied by a → b and b → c 

(transitivity and augmentation)
• Final set: a → b, b → c



Transitive closure
• The transitive closure X+ of a set of attributes X, is the set of attributes that 

can be functionally determined by X
• In other words X+ = All attributes y such that X → y

• Includes ALL derived functional dependencies
• Includes trivial dependencies
• X+ is closed in the sense that any FD from attributes in X+ lead back to X+

• Can be computed by a simple algorithm from any set of FDs:
• Start with X+ = X (an under-approximation) 
• Repeat until done: For any FD Y → z such that Y X+, add z to X+



Transitive closure, example

• Given these FDs, compute the closure {x,z}+

• Initially we know {x,z} {x,z}+ (from trivial FDs)
• Add y because x → y and {x} {x,z}+ {x,z,y} {x,z}+

• Add w because z → w and {x} {x,z}+ {x,z,y,w} {x,z}+

• Add q because y w → q and {y,w} {x,z}+ {x,z,y,w,q} {x,z}+

• No more FDs add attributes, so {x,z}+ = {x,z,y,w,q} is our result
• This proves all these non-trivial FDs:

x z → y x z → w x z → q

x → y 
y w → q
z → w 
q → x 
r → s



Keys and superkeys
• We can define the property of being a key of a relation using FDs
• Intuitively: A set of attributes is a superkey if it determines all other attributes
• Formally: The attribute set X is a superkey of R if X+ contains all attributes of R 

• X is a (minimal) key if removing any attribute from X makes it a non-superkey
• Saying only "key" usually means minimal key
• Each superkey is a superset of at least one minimal key
• Each key is a superkey (but not the other way around)
• Adding any attribute to a superkey makes a new superkey



Summary so far
• An FD X → y means any rows that agree on X also agree on Y
• We can extend a set of FDs with additional implied FDs using transitivity, 

augmentation, and reflexivity
• Conversely, we can reduce a set of FDs to a minimal basis by removing

all implied FDs
• The closure X+ is the set of all attributes that can be determined by X
• A superkey is a set of attributes that determine all other, keys are 

minimal superkeys
• To find a key: Start with all attributes (a superkey) and remove attributes 

until it is a key – finding all keys is more work though



Normal forms and normalization

Attributes +
FDs Ready-to-use schemaDomain NormalizationModelling



Normal forms and normalization
• Normal form is a very important concept in database design
• Identify all the attributes in the domain and place them in one big 

relation D(x, y, z, …), collect FDS, then normalize D to get your design
• Normalizing is a recursive procedure, to normalize relation R:

• Check if R is already a normal form, if it is we are done
• Otherwise decompose R into relations R1 and R2 and normalize both

• Note: A normal form is not the same as a canonical form, there may be 
multiple normal forms derived from the same initial domain



BCNF, the Boyce-Codd Normal Form

Arguably the most well known normal form



BCNF Normalisation algorithm

To normalize relation R: 

Find a non-trivial FD X → y such that X+ ≠ R (X is not a superkey)
If there is no such FD you are done
Otherwise decompose R into R1(X+) and R2(X (R - X+)) and normalize them

Note: R is replaced by R1 and R2 (so R is not present in the final schema)

This FD is referred to as a BCNF-violation



Example

• Normalise this relation using the FDs above:

courseCode → name
room → seats
day timeslot courseCode → room
day meslot room → courseCode

R(courseCode, name, day, timeslot, room, seats)

R1(courseCode, name)

Decompose on courseCode → name
courseCode+ = {courseCode, name}

R2(courseCode, day, timeslot, room, seats)

R1(X+) R2(X ∪ (R - X+)) 

Decompose on room → seats
room+ = {room, seats}

R21(X+) R22(X ∪ (R - X+)) 

R21(room, seats) R22(courseCode, day, timeslot, room)

All of R1, R21, and R22 are now BCNF!

1. Find violation
2. Decompose
3. Repeat



Wait, why not split on day timeslot course → room? 

Recall: Find a non-trivial FD X → y such that X+ ≠ R (X is no superkey)

R22(courseCode, day, timeslot, room)
day timeslot courseCode → room
day meslot room → courseCode

{day, timeslot, room}+ = { day, timeslot, room, courseCode} = R22

{day, timeslot, courseCode}+ = { day, timeslot, courseCode, room} = R22

Both {day, timeslot, courseCode} and {day, timeslot, room} are keys! 



What about keys?
• Keys can be determined using FDs (and closures) after decomposing
• Much of it is already done as part of the algorithm (we found two

keys for R22 for instance)

R1(courseCode, name)
R21(room, seats)

R22(courseCode, day, timeslot, room)
(day, timeslot, room) UNIQUE 

Multiple keys: Use one as primary key, the other(s) UNIQUE

courseCode → name
room → seats
day timeslot courseCode → room
day meslot room → courseCode



What about references?
• In this case it's fairly easy to see that these are sensible references:

• General pattern: When decomposing R, add a reference X -> R1.X to R2

• This will not always work, particularly if R1 or R2 is later decomposed

R1(courseCode, name)
R21(room, seats)

R22(courseCode, day, timeslot, room)
(day, timeslot, room) UNIQUE 
courseCode -> R1.courseCode
room -> R21.room



Decomposition of data
Table: Bookings

courseCode name day timeslot room seats

TDA357 Databases Tuesday 0 GD 236

TDA357 Databases Tuesday 1 GD 236

ERE033 Reglerteknik Tuesday 0 HB4 224

ERE033 Reglerteknik Friday 0 GD 236

Table: R1 (Courses)

courseCode name

TDA357 Databases

ERE033 Reglerteknik

Table: R22 (Bookings)

courseCode day timeslot room

TDA357 Tuesday 0 GD

TDA357 Tuesday 1 GD

ERE033 Tuesday 0 HB4

ERE033 Friday 0 GD

Table R21 (Rooms)

room seats

HB4 224

GD 236

No redundancy, no anomalies 



Lossless join
• Note that if we join along the references, we get the original table

• Means we did not loose any
data in the decomposition

Table: R1 (Courses)

courseCode name

TDA357 Databases

ERE033 Reglerteknik

Table: R22 (Bookings)

courseCode day timeslot room

TDA357 Tuesday 0 GD

TDA357 Tuesday 1 GD

ERE033 Tuesday 0 HB4

ERE033 Friday 0 GD

Table R21 (Rooms)

room seats

HB4 224

GD 236

Query: R1 NATURAL JOIN R22 NATURAL JOIN R21

courseCode name day timeslot room seats

TDA357 Databases Tuesday 0 GD 236

TDA357 Databases Tuesday 1 GD 236

ERE033 Reglerteknik Tuesday 0 HB4 224

ERE033 Reglerteknik Friday 0 GD 236

Joins ON (courseCode) and ON (room)



Finding all FDs

• Consider this simple situation with four attributes R(x,y,z,w) and two 
func onal dependencies: x → z and y z → w

• When normalizing R it may be important to know that there is 
another FD that can be derived from these: x y → w

• In principle, you should consider all non-trivial derived FDs but 
sometimes this a large set and it is easy to miss FDs
• Essentially you have to consider every LHS and compute closures
• There are some clever tricks you can use, but we will not have 

time for those today



A flaw of BCNF
• Same example as before: R(x,y,z,w) where x → z and y z → w
• If we decompose on x → z ({x}+ = {x,z}) we get

• R1(x,z) {x} is the only key
• R2(x,y,w) {x,y} is the only key

• Both of these relations are in BCNF w.r.t. the given FDs
• But now y z → w is not guaranteed by the schema 
• There is a weaker normal form called third normal form (3NF) that 

does not have this problem, but it has other problems instead…
• There is no "silver bullet" for design work

Because x y → w 



Yet another issue with BCNF
• This relation has no non-trivial functional dependencies, so is in BCNF:

• The domain said something like "each course has a number of teachers 
and a number of books with one or more authors" (no FDs at all!)

• The data above says Databases has one book and two teachers, and 
Reglerteknik has two books and one teacher

• Clearly there is redundancy here, and potential for anomalies

Table: Courses

course book author teacher

Databases DTCB Ullman Jonas

Databases DTCB Ullman Aarne

Reglerteknik RTB 1 Author1 Teacher3

Reglerteknik RTB 2 Author2 Teacher3

Deletion anomaly: Deleting all course
books also deletes all teachers

Update anomaly: Changing some value
can cause inconsistencies



Looks like we need another normal form!

• This one is called the fourth normal form (4NF)
• Since the problematic table had no FDs at all, this form will need some

additional source of facts
• We call these facts multivalued dependencies (MVDs)*
• We write x1 x2 x3 … y1 y2 y3 …

• Note that both sides are sets of values and we can not split the RHS

*The term multivalued dependency is really quite unfortunate, but it is what it is



Multivalued dependencies, informally

• For our example, we would say course teacher
• This means that if we fix a course value, the teacher value is 

independent from all other values (author and book)

• This is exactly the same as saying course book author

Table: Courses

course book author teacher

Databases DTCB Ullman Jonas

Databases DTCB Ullman Aarne

Reglerteknik RTB 1 Author1 Teacher3

Reglerteknik RTB 2 Author2 Teacher3



Table: Courses

course book author teacher

Multivalued dependencies, formally
• The claim that X Y holds for relation R means:
For every pair of rows row t and u in R that agree on X we can find a row v s.t:

v agrees with both t and u on X
v agrees with t on Y
v agrees with u on R – X – Y (all attributes not in the MVD)

• Example: course teacher
Table: Courses

course book author teacher

Databases DTCB Ullman Jonas

Databases DTCB Ullman Aarne

Databases DTCB Widom Jonas

Databases DTCB Widom Aarne

Row t

Row u

Row v:
v.(book,author)=u.(book,author)
v.teacher = t.teacher

If we remove any row, the MVD won’t hold



Verifying MVDs on data is hard
• To check if an FD holds: Just group values up by the LHS and check 

that all rows in each group have the same value for the RHS
• To check if an MVD holds: Check every individual pair of values with 

identical LHS and search for a row with correct values
• I find a more intuitive way of thinking is this: For X Y, every X needs

to have every possible combination of Y and other attributes (R–X–Y)
• Essentially the rows for a given X must be a cartesian product!
• If teacher Jonas occurs with one book/autor, it must occur with all 

book/author combinations for that course
• This is what makes (book,author) independent from teacher



Fourth normal form

• For a relation R to be in fourth normal:
• R must be in BCNF
• For all non-trivial MVDs X Y on R, X is a superkey of R

• If X Y and X is not a superkey, we say X Y is a 4NF violation

• To normalize: Find a violation X Y and break R into
• R1(X Y) (”every attribute in the MVD”)
• R2(R – Y) (”LHS and every attribute not in the MVD”)
• Then normalize both R1 and R2



4NF normalisation

• Normalizing R(course, book, author, teacher) on course teacher

R(course, book, author, teacher)

R1(course, teacher) R1(course, book, author)

R1(X ∪ Y) R2(R–Y)



Normalising the data
Table: Courses

course book author teacher

Databases DTCB Ullman Jonas

Databases DTCB Ullman Aarne

Databases DTCB Widom Jonas

Databases DTCB Widom Aarne

Reglerteknik RTB 1 AuthorX TeacherX

Reglerteknik RTB 2 AuthorX TeacherX

Table: R1 (a.k.a. CourseTeacher)

course teacher

Databases Jonas

Databases Aarne

Reglerteknik Teacher3

Table: R2 (a.k.a. CourseBooks)

course book author

Databases DTCB Ullman

Databases DTCB Widom

Reglerteknik RTB 1 AuthorX

Reglerteknik RTB 2 AuthorX

Exercise: Find another
MVD here?



Lossless join
Note that if we join the two tables using course … 

Table: R1 (a.k.a. CourseTeacher)

course teacher

Databases Jonas

Databases Aarne

Reglerteknik TeacherX

Table: R2 (a.k.a. CourseBooks)

course book author

Databases DTCB Ullman

Databases DTCB Widom

Reglerteknik RTB 1 AuthorX

Reglerteknik RTB 2 AuthorX

course book author teacher

Databases DTCB Ullman Jonas

Databases DTCB Ullman Aarne

Databases DTCB Widom Jonas

Databases DTCB Widom Aarne

Reglerteknik RTB 1 AuthorX TeacherX

Reglerteknik RTB 2 AuthorX TeacherX

NATURAL JOIN

We get the original 
table back!

Sanity check: 
We did not loose
any information



Functional dependencies vs. ER-design

• FDs can find some things that ER can not find
• ER can find a lot of things that FDs can not find

• Most many-to-many relationships can not be expressed using FDs
• Sentences like ”students can register for courses” do not express 

any FDs (but possibly some MVDs?)
• The two approaches complement eachother, and confirm eachother

(or sometimes contradict eachother which may indicate a problem)
• So doing both an ER-design and a FD analysis may be useful

• This is what you will do in Task 2



Practical use of FDs combined with ER

• FDs can be used to verify the correctness of an ER-design
• Is the result in BCNF w.r.t. the dependencies you have identified?
• Are the primary keys you identified sensible from your FDs?
• If not there may be an error in your ER-translation or your

understanding/modelling of the domain
• Sometimes FDs can be used to patch things up in your ER-design, 

particularly they are useful for finding secondary keys (UNIQUE 
constraints)
• Every (minimal) key of each relation should be either the primary

key or unique



Finding functional dependencies

• Determine all attributes
• Discover FD's either by looking at each attribute and ask "what do i 

need to know to determine this?" or by looking at each fact in the 
domain description and asking "does this express a dependency?"

• You can find multiple FDs determining the same attribute



Mining attributes (and FDs) from ER-design

• If you already have an ER-design, that may help you determine a 
useful set of attributes

• Looking at the relational schema is less helpful, because it contains
multiple attributes that have different names but are conceptually the 
same (i.e. because of references)

• You can also extract some FDs by studying the diagram/schema, but
that sort of misses the point of finding them since you will never find
any FDs that can improve your design
• We want to find FDs that express things our ER-design is missing
• We should look for FDs in the domain description



Other normal forms
• There is a whole little hierarchy of normal forms
Higly simplified:
• 1NF: basically means "only has actual tables"
• 2NF: 1NF + has valid primary key
• 3NF: 2NF + no FDs between attributes not in keys
• BCNF a.k.a. 3½NF: 3NF + attributes depend only on keys
• 4NF: 3NF + No violating MVDs
• 5NF, 6NF, DK/NF ...: Outside the scope of this course
• I expect you to know how to normalize to BCNF and 4NF



I somehow doubt I will actually reach this slide

• So who cares what I write here? 
• If a tree falls in the forest and nobody hears, does it make a sound? If a 

slide is the 50th slide of a 40 slide lecture, does it even exist?
• Well, there's the course page I guess, but who uses Canvas, am I right?

• Live and learn people: Don't make slides late at night or things are 
bound to get silly towards the end. 


