TDA357/DIT621 - Databases

Lecture 6 - Design using Functional Dependencies and normal forms Jonas Duregård

Another high level design approach

- This week we will look at functional dependencies (FDs) and normal forms
- This is an alternative (and to some degree complementary) approach to ER that we studied last week
- We start in a domain description and end in a database schema
- A single lecture, and Friday exercises as usual

Normalisation in a nutshell

- Extract a bunch of formal statements from the domain description
- Compute a normalised database schema from the formal statements

Domain Modelling

Attributes +
 Bunch of facts

- Highly systematic, almost mechanical process
- By a carefully constructed normalization algorithm, the normal form the schema ends up in will satisfy some important properties

Functional Dependencies (FDs)

- A functional dependency is written as <set of attributes> \rightarrow <attribute>
- Example: room time \rightarrow course \longleftarrow Do not confuse with references!
- Pronounced "room and time determines course"
- It is a statement that can be true or false
- A few ways of understanding the meaning of the statement above:
- If we know room and a time, we can uniquely determine course
- There can be at most one course value for each (room,time)-pair
- There exists a partial function f that takes a room and a time and yields a course
- In a domain it might have said something like "courses can book rooms at any free times"

Three ways we can use functional dependencies

- Check if they hold for a specific data set
- Check if a design ensures they hold for all data sets
- Express desired properties of a design
- I will explain each of these in turn

Functional dependency as a property of data

- One way of formally defining functional dependency $x_{1} x_{2} \ldots \rightarrow y$:

For $R\left(\mathrm{y} \mathrm{x}_{1} \mathrm{x}_{2} \ldots\right)$, if two rows agree on $\mathrm{x}_{1}, \mathrm{x}_{2} \ldots$ they must also agree on y

- In other words, there can not exist two rows where the left hand side attributes are the same, but the right hand side attribute differs
- " $\mathrm{X} \rightarrow \mathrm{y}=$ rows that agree on X must agree on y "

Two rows "agreeing on x " just means the x-column(s) have the same value

Table: Bookings

- Which FDs hold for this data?

courseCode	name	day	timeslot	room	seats
TDA357	Databases	Tuesday	0	GD	236
TDA357	Databases	Tuesday	1	GD	236
ERE033	Reglerteknik	Tuesday	0	HB4	224
ERE033	Reglerteknik	Friday	0	GD	236

courseCode \rightarrow name?

- Yes! (TDA357 maps to Databases, EREO33 to Reglerteknik)
day \rightarrow timeslot?
- No! (Tuesday maps to both 0 and 1) day timeslot room \rightarrow courseCode?

LHS = Left hand side (of arrow)
RHS $=$ Right hand side

- Yes! (There are no rows where all three LHS columns match) seats \rightarrow room?
- Yes! 236 for GD, 224 for HB4,
- This might not be intentional given what we know of the domain...

FDs as a properties of designs

- Knowing what it means for an FD to hold for a data set, we can determine if a design (schema) guarantees that it holds for all valid data sets
- Example: Does the schema below guarantee that ... code \rightarrow cname?
- Yes! (by primary key constraint in courses) cname \rightarrow code?
- No! (Counterexample: any two courses with the same name) code \rightarrow email
- Yes! (teacher is just another name for email) code \rightarrow tname
- Yes! (by primary key + reference)

Teachers(email, tname)
Courses(code, cname, teacher) teacher -> Teachers.email

Bookings (courseCode, name, day, timeslot, room, seats) (day, timeslot, room) UNIQUE

- Does the schema above guarantee ...
- day timeslot room \rightarrow courseCode
- Yes (through UNIQUE constraint)
- day timeslot room coursCode \rightarrow seats
- Yes (through primary key and/or UNIQUE)
- room \rightarrow seats
- No $)^{\circ}$
- courseCode \rightarrow name
- No ${ }^{\circ}$

Counterexample of room \rightarrow seats and courseCode \rightarrow name

courseCode	name	day	timeslot	room	seats
CC1	N1	Tuesday	0	R1	0
CC1	N2	Tuesday	1	R1	1

Different timeslot, so no key violation

FDs as intention for designs

- Since we can verify that an FD holds for a schema, we can also use them to specify desired properties of our schema
- This is what makes FDs a design tool
- A sentence like "every course has a teacher" can be modelled as the FD course \rightarrow teacher (or whatever attributes we use)
- If this FD does not hold for our design, maybe the design is bad?

Formal properties of FDs

Warning: Things may get slightly mathsy from this point

- FDs have lots of interesting mathematical properties
- I will explain some of the more useful ones:
- Transitivity
- Augmentation
- Reflexivity
- These three are commonly referred to as Armstrongs axioms and they can be formulated in a few different but equivalent ways*
*But the way I formulate them is -of course- the best way

Side note: Single/Multiple FDs

Notation: I use lowercase $\mathrm{x} / \mathrm{y} / \mathrm{z}$ for single attributes and uppercase $\mathrm{X} / \mathrm{Y} / \mathrm{Z}$ for attribute sets

- It is common to have multiple attributes on the right hand side of FDs $x y z \rightarrow a b c$
- This means exactly the same as these three FDs:
$\mathrm{xyz} \rightarrow \mathrm{a}$
$x y z \rightarrow b$
$x y z \rightarrow c$
- I find it most useful to think of the first as a convenient way of writing multiple FDs, rather than thinking of it as single FD with multiple attributes
- It is not the same with the left hand side! $x y \rightarrow$ a does not mean $x \rightarrow a$!

Recall: $\mathrm{X} \rightarrow \mathrm{y}=$ rows that agree on X must agree on y

Transitivity of functional dependencies

- Functional dependency is a transitive relation
- This means that if $X \rightarrow Y$ and $Y \rightarrow Z$ then $X \rightarrow Z$
- Note that Y is an attribute set here, so $X \rightarrow Y$ may be multiple FDs with the same LHS
- Proof sketch: Look at any rows that agree on X. Since $X \rightarrow Y$, they must also agree on Y, and since $Y \rightarrow Z$ they must further agree on Z. Thus $\mathrm{X} \rightarrow \mathrm{Z}$.

Recall: $\mathrm{X} \rightarrow \mathrm{y}=$ rows that agree on X must agree on y

Augmentation

- If $x_{1} x_{2} \ldots \rightarrow y$, then for all $z: \mathrm{zx}_{1} \mathrm{x}_{2} \ldots \rightarrow \mathrm{y}$
- Intuitively: You can add any attributes you want to the LHS of a valid FD and still get a valid FD
- Think: "knowing an extra attribute never prevent us from finding y"
- Proof sketch: Since all rows that agree on the xs must agree on y, then particularly all rows that agree on z as well as the xs must do so.

Recall: $X \rightarrow y=$ rows that agree on X must agree on y

Reflexivity and trivial FDs

- For all $\mathrm{x}: \mathrm{x} \rightarrow \mathrm{x}$ (x determines itself)
- By augmentation, $X \rightarrow y$ whenever $y \in X$
- Example: a b c \rightarrow b
- We call these depencies trivial
- Rule of thumb: Ignore trivial dependencies
- Proof sketch: Any values that agree on x will agree on x ©

Example: Deriving functional dependencies

- For any attributes x, y, z, w, and q : $x \rightarrow y, z \rightarrow w$, and $y w \rightarrow q$ implies $x z \rightarrow q$
- Proof:
$\mathrm{x} \rightarrow \mathrm{y}$ implies $\mathrm{x} \mathrm{z} \rightarrow \mathrm{y}$ (by augmentation)

$$
\begin{aligned}
& x \rightarrow y \\
& z \rightarrow w \\
& y w \rightarrow q \\
& y z \rightarrow q
\end{aligned}
$$

$z \rightarrow \mathrm{w}$ implies $\mathrm{xz} \rightarrow \mathrm{w}$ (by augmentation)
$\mathrm{xz} \rightarrow \mathrm{yw}$ and $\mathrm{y} \mathrm{w} \rightarrow \mathrm{q}$ implies $\mathrm{xz} \rightarrow \mathrm{q}$ (by transitivity)

- Note that in the third step we merge $\mathrm{x} z \rightarrow \mathrm{y}$ and $\mathrm{x} z \rightarrow \mathrm{w}$ into $\mathrm{xz} \rightarrow \mathrm{y} w$ (See slide on Single/Multiple FDs)

Minimal basis

- The minimal basis F - of a set of functional dependencies F is a set equivalent to F but with the following conditions:
- F - has no trivial dependenices
- No dependency in F^{-}follow from other dependencies in F^{-}through transitivity or augmentation
- Used for a lot of algorithms and to express a set of FDs in a compact form

Minimal basis

- Suppose we are given this set of FDs (5 total), what is a minimal basis? $\mathrm{a} \rightarrow \mathrm{b}$
$\mathrm{b} \rightarrow \mathrm{c}$
$a d \rightarrow b c d$
- ad $\rightarrow d$ is removed because it is trivial
- $a d \rightarrow b$ is removed because it is implied by $a \rightarrow b$ (augmentation)
- $a d \rightarrow c$ is removed because it is implied by $a \rightarrow b$ and $b \rightarrow c$ (transitivity and augmentation)
- Final set: $a \rightarrow b, b \rightarrow c$

Transitive closure

- The transitive closure X^{+}of a set of attributes X, is the set of attributes that can be functionally determined by X
- In other words $\mathrm{X}^{+}=\mathrm{All}$ attributes y such that $\mathrm{X} \rightarrow \mathrm{y}$
- Includes ALL derived functional dependencies
- Includes trivial dependencies
- X^{+}is closed in the sense that any FD from attributes in X^{+}lead back to X^{+}
- Can be computed by a simple algorithm from any set of FDs:
- Start with $\mathrm{X}^{+}=\mathrm{X}$ (an under-approximation)
- Repeat until done: For any FD $Y \rightarrow z$ such that $Y \subseteq X^{+}$, add z to X^{+}

Transitive closure, example

- Given these FDs, compute the closure $\{x, z\}^{+}$

$$
\begin{aligned}
& x \rightarrow y \\
& y w \rightarrow q \\
& z \rightarrow w \\
& q \rightarrow x \\
& r \rightarrow s
\end{aligned}
$$

- Initially we know $\{x, z\} \subseteq\{x, z\}^{+}$(from trivial FDs)
- Add y because $x \rightarrow y$ and $\{x\} \subseteq\{x, z\}^{+}$

$$
\begin{aligned}
& \{x, z, y\} \subseteq\{x, z\}^{+} \\
& \{x, z, y, w\} \subseteq\{x, z\}^{+} \\
& \{x, z, y, w, q\} \subseteq\{x, z\}^{+}
\end{aligned}
$$

- Add w because $z \rightarrow w$ and $\{x\} \subseteq\{x, z\}^{+}$
- Add q because $y \mathrm{w} \rightarrow \mathrm{q}$ and $\{y, w\} \subseteq\{x, z\}^{+}$
- No more FDs add attributes, so $\{x, z\}^{+}=\{x, z, y, w, q\}$ is our result
- This proves all these non-trivial FDs:

$$
x z \rightarrow y \quad x z \rightarrow w \quad x z \rightarrow q
$$

Keys and superkeys

- We can define the property of being a key of a relation using FDs
- Intuitively: A set of attributes is a superkey if it determines all other attributes
- Formally: The attribute set X is a superkey of R if X^{+}contains all attributes of R
- X is a (minimal) key if removing any attribute from X makes it a non-superkey
- Saying only "key" usually means minimal key
- Each superkey is a superset of at least one minimal key
- Each key is a superkey (but not the other way around)
- Adding any attribute to a superkey makes a new superkey

Summary so far

- An FD X \rightarrow y means any rows that agree on X also agree on Y
- We can extend a set of FDs with additional implied FDs using transitivity, augmentation, and reflexivity
- Conversely, we can reduce a set of FDs to a minimal basis by removing all implied FDs
- The closure X^{+}is the set of all attributes that can be determined by X
- A superkey is a set of attributes that determine all other, keys are minimal superkeys
- To find a key: Start with all attributes (a superkey) and remove attributes until it is a key - finding all keys is more work though

Normal forms and normalization

Domain

Modelling

Attributes +
FDs

Normal forms and normalization

- Normal form is a very important concept in database design
- Identify all the attributes in the domain and place them in one big relation $D(x, y, z, \ldots)$, collect FDS, then normalize D to get your design
- Normalizing is a recursive procedure, to normalize relation R :
- Check if R is already a normal form, if it is we are done
- Otherwise decompose R into relations R_{1} and R_{2} and normalize both
- Note: A normal form is not the same as a canonical form, there may be multiple normal forms derived from the same initial domain

BCNF, the Boyce-Codd Normal Form

Arguably the most well known normal form

BCNF Normalisation algorithm

To normalize relation R :
This FD is referred to as a BCNF-violation

Find a non-trivial FD $X \rightarrow y$ such that $X^{+} \neq \mathrm{R}(\mathrm{X}$ is not a superkey) If there is no such FD you are done
Otherwise decompose R into $R_{1}\left(X^{+}\right)$and $R_{2}\left(X \cup\left(R-X^{+}\right)\right)$and normalize them

Note: R is replaced by R_{1} and R_{2} (so R is not present in the final schema)

Example \begin{tabular}{l|l}

1. Find violation \& | courseCode \rightarrow name |
| :--- |
| 2. Decompose |
| 3. Repeat |

room \rightarrow seats

day timeslot courseCode \rightarrow room

day timeslot room \rightarrow courseCode
\end{tabular}

- Normalise this relation using the FDs above:
$R^{\prime}(c o u r s e C o d e, ~ n a m e, ~ d a y, ~ t i m e s l o t, ~ r o o m, ~ s e a t s) ~$

Decompose on courseCode \rightarrow name courseCode ${ }^{+}=\{$courseCode, name $\}$
R_{1} (courseCode, name) \mathbb{R}_{2} (courseCode, day, timeslot, room, seats)

All of R_{1}, R_{21}, and R_{22} are now BCNF!

Wait, why not split on day timeslot course \rightarrow room?

R_{22} (courseCode, day, timeslot, room)
day timeslot courseCode \rightarrow room
day timeslot room \rightarrow courseCode

Recall: Find a non-trivial FD $X \rightarrow y$ such that $X^{+} \neq R$ (X is no superkey)
$\{\text { day, timeslot, courseCode }\}^{+}=\{$day, timeslot, courseCode, room $\}=R_{22}$
$\{\text { day, timeslot, room }\}^{+}=\{$day, timeslot, room, courseCode $\}=R_{22}$
Both \{day, timeslot, courseCode\} and \{day, timeslot, room\} are keys!

What about keys?

```
courseCode }->\mathrm{ name
room }->\mathrm{ seats
day timeslot courseCode }->\mathrm{ room
day timeslot room }->\mathrm{ courseCode
```

- Keys can be determined using FDs (and closures) after decomposing
- Much of it is already done as part of the algorithm (we found two keys for R_{22} for instance)
R_{1} (courseCode, name)
R_{21} (room, seats)
R_{22} (courseCode, day, timeslot, room)
(day, timeslot, room) UNIQUE

Multiple keys: Use one as primary key, the other(s) UNIQUE

What about references?

- In this case it's fairly easy to see that these are sensible references:

```
R1
R21 (room, seats)
R22 (courseCode, day, timeslot, room)
    (day, timeslot, room) UNIQUE
    courseCode -> R R.courseCode
    room -> R R21.room
```

- General pattern: When decomposing R, add a reference $X->R_{1}$. X to R_{2}
- This will not always work, particularly if R_{1} or R_{2} is later decomposed $\left.:\right)$

Decomposition of data

Table: Bookings

courseCode	name	day	timeslot	room	seats
TDA357	Databases	Tuesday	0	GD	236
TDA357	Databases	Tuesday	1	GD	236
ERE033	Reglerteknik	Tuesday	0	HB4	224
ERE033	Reglerteknik	Friday	0	GD	236

Table: \mathbf{R}_{22} (Bookings)

courseCode	day	timeslot	room
TDA357	Tuesday	0	GD
TDA357	Tuesday	1	GD
ERE033	Tuesday	0	HB4
ERE033	Friday	0	GD

Table R_{21} (Rooms)

room	seats
HB4	224
GD	236

Table: \mathbf{R}_{1} (Courses)

courseCode	name
TDA357	Databases
ERE033	Reglerteknik

Lossless join

- Note that if we join along the references, we get the original table

Table: \mathbf{R}_{1} (Courses)

courseCode	name
TDA357	Databases
ERE033	Reglerteknik

Table: R_{22} (Bookings)

courseCode	day	timeslot	room
TDA357	Tuesday	0	GD
TDA357	Tuesday	1	GD
ERE033	Tuesday	0	HB4
ERE033	Friday	0	GD

Table $\mathbf{R}_{\mathbf{2 1}}$ (Rooms)

room	seats
HB4	224
GD	236

Joins ON (courseCode) and ON (room)
Query: \mathbf{R}_{1} NATURAL JOIN R_{22} NATURAL JOIN \mathbf{R}_{21}

- Means we did not loose any data in the decomposition

courseCode	name	day	timeslot	room	seats
TDA357	Databases	Tuesday	0	GD	236
TDA357	Databases	Tuesday	1	GD	236
ERE033	Reglerteknik	Tuesday	0	HB4	224
ERE033	Reglerteknik	Friday	0	GD	236

Finding all FDs

- Consider this simple situation with four attributes $R(x, y, z, w)$ and two functional dependencies: $x \rightarrow z$ and $y z \rightarrow w$
- When normalizing R it may be important to know that there is another FD that can be derived from these: $\mathrm{x} \mathrm{y} \rightarrow \mathrm{w}$
- In principle, you should consider all non-trivial derived FDs but sometimes this a large set and it is easy to miss FDs
- Essentially you have to consider every LHS and compute closures
- There are some clever tricks you can use, but we will not have time for those today

A flaw of BCNF

- Same example as before: $R(x, y, z, w)$ where $x \rightarrow z$ and $y z \rightarrow w$
- If we decompose on $x \rightarrow z\left(\{x\}^{+}=\{x, z\}\right)$ we get
- $R_{1}(\underline{x}, z)$ $\{x\}$ is the only key Because $\mathrm{x} y \rightarrow \mathrm{w}$
- $R_{2}(\underline{x}, \underline{y}, w) \quad\{x, y\}$ is the only key
- Both of these relations are in BCNF w.r.t. the given FDs
- But now y $\mathrm{z} \rightarrow \mathrm{w}$ is not guaranteed by the schema $:$
- There is a weaker normal form called third normal form (3NF) that does not have this problem, but it has other problems instead...
- There is no "silver bullet" for design work

Yet another issue with BCNF

- This relation has no non-trivial functional dependencies, so is in BCNF:

Table: Courses

course	book	author	teacher
Databases	DTCB	Ullman	Jonas
Databases	DTCB	Ullman	Aarne
Reglerteknik	RTB 1	Author1	Teacher3
Reglerteknik	RTB 2	Author2	Teacher3

Deletion anomaly: Deleting all course books also deletes all teachers

Update anomaly: Changing some value can cause inconsistencies

- The domain said something like "each course has a number of teachers and a number of books with one or more authors" (no FDs at all!)
- The data above says Databases has one book and two teachers, and Reglerteknik has two books and one teacher
- Clearly there is redundancy here, and potential for anomalies

Looks like we need another normal form!

- This one is called the fourth normal form (4NF)
- Since the problematic table had no FDs at all, this form will need some additional source of facts
- We call these facts multivalued dependencies (MVDs)*
- We write $\mathrm{x}_{1} \mathrm{x}_{2} \mathrm{x}_{3} \ldots \rightarrow \mathrm{y}_{1} \mathrm{y}_{2} \mathrm{y}_{3} \ldots$
- Note that both sides are sets of values and we can not split the RHS
*The term multivalued dependency is really quite unfortunate, but it is what it is

Multivalued dependencies, informally

- For our example, we would say course \rightarrow teacher
- This means that if we fix a course value, the teacher value is independent from all other values (author and book)

Table: Courses

course	book	author	teacher
Databases	DTCB	Ullman	Jonas
Databases	DTCB	Ullman	Aarne
Reglerteknik	RTB 1	Author1	Teacher3
Reglerteknik	RTB 2	Author2	Teacher3

- This is exactly the same as saying course \rightarrow book author

Multivalued dependencies, formally

- The claim that $X \rightarrow Y$ holds for relation R means:

For every pair of rows row t and u in R that agree on X we can find a row v s.t:
v agrees with both t and u on X
v agrees with t on Y
v agrees with u on $R-X-Y$ (all attributes not in the MVD)

- Example: course \rightarrow teacher

Table: Courses
If we remove any row, the MVD won't hold

Row t	course	book	author	teacher	
	Databases	DTCB	Ullman	Jonas	Row v: v.(book,author)=u.(book,author) v.teacher = t.teacher
	Databases	DTCB	Ullman	Aarne	
	Databases	DTCB	Widom	Jonas	
Row U	Databases	DTCB	Widom	Aarne	

Verifying MVDs on data is hard

- To check if an FD holds: Just group values up by the LHS and check that all rows in each group have the same value for the RHS
- To check if an MVD holds: Check every individual pair of values with identical LHS and search for a row with correct values
- I find a more intuitive way of thinking is this: For $X \rightarrow Y$, every X needs to have every possible combination of Y and other attributes ($R-X-Y$)
- Essentially the rows for a given X must be a cartesian product!
- If teacher Jonas occurs with one book/autor, it must occur with all book/author combinations for that course
- This is what makes (book,author) independent from teacher

Fourth normal form

- For a relation R to be in fourth normal:
- R must be in BCNF
- For all non-trivial MVDs $X \rightarrow Y$ on R, X is a superkey of R
- If $X \rightarrow Y$ and X is not a superkey, we say $X \rightarrow Y$ is a 4NF violation
- To normalize: Find a violation $\mathrm{X} \rightarrow \mathrm{Y}$ and break R into
- $R_{1}(X \cup Y)$ ("every attribute in the MVD")
- $R_{2}(R-Y)$
("LHS and every attribute not in the MVD")
- Then normalize both R_{1} and R_{2}

4NF normalisation

- Normalizing R(course, book, author, teacher) on course \rightarrow teacher

Normalising the data

Table: Courses

course	book	author	teacher
Databases	DTCB	Ullman	Jonas
Databases	DTCB	Ullman	Aarne
Databases	DTCB	Widom	Jonas
Databases	DTCB	Widom	Aarne
Reglerteknik	RTB 1	AuthorX	TeacherX
Reglerteknik	RTB 2	AuthorX	TeacherX

Exercise: Find another MVD here?

Table: \mathbf{R}_{1} (a.k.a. CourseTeacher)

course	teacher
Databases	Jonas
Databases	Aarne
Reglerteknik	Teacher3

Table: R2 (a.k.a. CourseBooks)

course	book	author
Databases	DTCB	Ullman
Databases	DTCB	Widom
Reglerteknik	RTB 1	AuthorX
Reglerteknik	RTB 2	AuthorX

Lossless join

Note that if we join the two tables using course ...
Table: \mathbf{R}_{1} (a.k.a. CourseTeacher)

course	teacher
Databases	Jonas
Databases	Aarne
Reglerteknik	TeacherX

Table: R2 (a.k.a. CourseBooks)

course	book	author
Databases	DTCB	Ullman
Databases	DTCB	Widom
Reglerteknik	RTB 1	AuthorX
Reglerteknik	RTB 2	AuthorX

NATURAL JOIN

We get the original table back!

course	book	author	teacher
Databases	DTCB	Ullman	Jonas
Databases	DTCB	Ullman	Aarne
Databases	DTCB	Widom	Jonas
Databases	DTCB	Widom	Aarne
Reglerteknik	RTB 1	AuthorX	TeacherX
Reglerteknik	RTB 2	AuthorX	TeacherX

Sanity check: We did not loose any information

Functional dependencies vs. ER-design

- FDs can find some things that ER can not find
- ER can find a lot of things that FDs can not find
- Most many-to-many relationships can not be expressed using FDs
- Sentences like "students can register for courses" do not express any FDs (but possibly some MVDs?)
- The two approaches complement eachother, and confirm eachother (or sometimes contradict eachother which may indicate a problem)
- So doing both an ER-design and a FD analysis may be useful
- This is what you will do in Task 2

Practical use of FDs combined with ER

- FDs can be used to verify the correctness of an ER-design
- Is the result in BCNF w.r.t. the dependencies you have identified?
- Are the primary keys you identified sensible from your FDs?
- If not there may be an error in your ER-translation or your understanding/modelling of the domain
- Sometimes FDs can be used to patch things up in your ER-design, particularly they are useful for finding secondary keys (UNIQUE constraints)
- Every (minimal) key of each relation should be either the primary key or unique

Finding functional dependencies

- Determine all attributes
- Discover FD's either by looking at each attribute and ask "what do i need to know to determine this?" or by looking at each fact in the domain description and asking "does this express a dependency?"
- You can find multiple FDs determining the same attribute

Mining attributes (and FDs) from ER-design

- If you already have an ER-design, that may help you determine a useful set of attributes
- Looking at the relational schema is less helpful, because it contains multiple attributes that have different names but are conceptually the same (i.e. because of references)
- You can also extract some FDs by studying the diagram/schema, but that sort of misses the point of finding them since you will never find any FDs that can improve your design
- We want to find FDs that express things our ER-design is missing
- We should look for FDs in the domain description

Other normal forms

- There is a whole little hierarchy of normal forms Higly simplified:
- 1NF: basically means "only has actual tables"
- 2NF: 1NF + has valid primary key
- 3NF: 2NF + no FDs between attributes not in keys
- BCNF a.k.a. 3½NF: 3NF + attributes depend only on keys
- 4NF: 3NF + No violating MVDs
- 5NF, 6NF, DK/NF ...: Outside the scope of this course

- I expect you to know how to normalize to BCNF and 4NF

I somehow doubt I will actually reach this slide

- So who cares what I write here?
- If a tree falls in the forest and nobody hears, does it make a sound? If a slide is the $50^{\text {th }}$ slide of a 40 slide lecture, does it even exist?
- Well, there's the course page I guess, but who uses Canvas, am I right?
- Live and learn people: Don't make slides late at night or things are bound to get silly towards the end.

