E-R diagrams and database schemas

A(al,az,a3)

B(bl,b2)

R(al,a2,b)
(al,a2) -> A.(al,a2)
b -> B.bl

A(al,b)

b -> B.bl
B(bl)

b -> B.bl
B(bl)

ER-Approach:
e A(al) Null Approach:
B(bl) A(al,b (or Null))

R(a,b) b -> B.bl
] "t aa sen
b -> B.bl

Null-Approach:

ER-Approach: B(bl,b2,al (or Null))
B(bl,b2)
A(bl,al) 00-Approach:
bl -> B.bl A(bl,b2,al)

B (bl,b2)

Functional dependencies

Definition (tuple, attribute, value). A tuple has the form
{A1 :’Ul,...,An :’Un}

where Aq,..., A, are attributes and vy,...,v, are their values.

Definition (signature, relation). The signature of a tuple, S, is the set of all its attributes, {A4;,..., A, }. A relation
R of signature S is a set of tuples with signature S. But we will sometimes also say ”relation” when we mean the
signature itself.

Definition (projection). If ¢ is a tuple of a relation with signature S, the projection t.A; computes to the value v;.
Definition (simultaneous projection). If X is a set of attributes {By,..., B, } € S and ¢ is a tuple of a relation with
signature S, we can form a simultaneous projection,

t.X ={B,=t.By,...,By =t.B,}

Definition (functional dependency, FD). Assume X is a set of attributes and A an attribute, all belonging to a
signature S. Then A is functionally dependent on X in the relation R, written X — A, if

e for all tuples t,u in R, if t.X = u.X then t.A = u.A.
If Y is a set of attributes, we write X — Y to mean that X — A for every A in Y.
Definition (multivalued dependency, MVD). Let X,Y,Z be disjoint subsets of a signature S such that S = XUY UZ.
Then Y has a multivalued dependency on X in R, written X — Y if

e for all tuples t,u in R, if £.X = w.X then there is a tuple v in R such that

—vX =tX
—0Y=tY
— vz =uZ

Definition. An attribute A follows from a set of attributes Y, if there is an FD X — A such that X C Y.
Definition (closure of a set of attributes under FDs). The closure of a set of attributes X C S under a set FD of
functional dependencies, denoted X+, is the set of those attributes that follow from X.
Definition (trivial functional dependencies). An FD X — A is trivial, if A € X.
Definition (superkey, key). A set of attributes X C S is a superkey of S, if S C X+.
A set of attributes X C S is a key of S if
e X is a superkey of S
e 1o proper subset of X is a superkey of S
Definition (Boyce-Codd Normal Form, BCNF violation). A functional dependency X — A violates BCNF if
e X is not a superkey
e the dependency is not trivial
A relation is in Boyce-Codd Normal Form (BCNF) if it has no BCNF violations.
Definition (prime). An attribute A is prime if it belongs to some key.
Definition (Third Normal Form, 3NF violation). A functional dependency X — A violates 3NF if
e X is not a superkey
e the dependency is not trivial
e A is not prime
Definition (trivial multivalued dependency). A multivalued dependency X —» A is trivial if Y C X or X UY = S.
Definition (Fourth Normal Form, 4NF violation). A multivalued dependency X —» A violates 4NF if
e X is not a superkey
e the MVD is not trivial.
Algorithm (BCNF decomposition). Consider a relation R with signature S and a set F of functional dependencies.
R can be brought to BCNF by the following steps:
1. If R has no BCNF violations, return R
2. If R has a violating functional dependency X — A, decompose R to two relations

e R, with signature X
e Ry with signature X U (S — X™T)

3. Apply the above steps to R; and Ry with functional dependencies projected to the attributes contained in each
of them.
Algorithm (4NF decomposition). Consider a relation R with signature S and a set M of multivalued dependencies.
R can be brought to 4NF by the following steps:
1. If R has no 4NF violations, return R
2. If R has a violating multivalued dependency X — Y, decompose R to two relations

e Ry with signature X UY
e Ry with signature S — Y

3. Apply the above steps to RI and R2
Concept (minimal basis of a set of functional dependencies; not a rigorous definition). A minimal basis of a set F'
of functional dependencies is a set F- that implies all dependencies in F. It is obtained by first weakening the left hand
sides and then dropping out dependencies that follow by transitivity. Weakening an LHS in X — A means finding a
minimal subset of X such that A can still be derived from F-.
Algorithm (3NF decomposition). Consider a relation R with a set F' of functional dependencies.

1. If R has no 3NF violations, return R.

2. If R has 3NF violations,

e compute a minimal basis of F- of F'

group F- by the left hand side, i.e. so that all depenencies X — A are grouped together
for each of the groups, return the schema X A; ... A, with the common LHS and all the RHSs
if one of the schemas contains a key of R, these groups are enough; otherwise, add a schema containing just
some key

Relational algebra

relation =
relname name of relation (can be used alone)
| ocondition relation selection (sigma) WHERE
| Tprojection+ relation projection (pi) SELECT
| Prelname (attribute+)? relation renaming (rho) AS
relation

| Tattribute* aggregationexp-+
grouping (gamma) GROUP BY, HAVING

| Texpressiont relation sorting (tau) ORDER BY
| § relation removing duplicates (delta) DISTINCT
| relation x relation cartesian product FROM, CROSS JOIN
| relation U relation union UNION
| relation N relation intersection INTERSECT
| relation — relation difference EXCEPT
| relation > relation NATURAL JOIN
| relation >, dition relation theta join JOIN ON
| relation >yt tet relation INNER JOIN

relation <2, . relation FULL OUTER JOIN

attribute+
. oL .
| relation Do Ctributet relation LEFT OUTER JOIN
| relation [X];It%tribut o Telation RIGHT OUTER JOIN
projection ::=

expression
| expression — attribute

aggregationexp ::=

aggregation(*|attribute)
| aggregation(*|attribute) — attribute

expression, condition, aggregation, attribute ::

as in SQL, but excluding subqueries

expression, can be just an attribute

rename projected expression AS

without renaming

with renaming AS

SQL

statement ::=

CREATE TABLE tablename (

* attribute type inlineconstraint*

query ::

NN N N N

table ::

* [CONSTRAINT name]? constraint deferrable?

s

DROP TABLE tablename ;
INSERT INTO tablename tableplaces? values ;

DELETE FROM tablename
WHERE condition ;

UPDATE tablename
SET setting+
WHERE condition ;

query ;

CREATE VIEW viewname
AS (query) ;

ALTER TABLE tablename
alteration ;

COPY tablename FROM filepath ;
postgresql-specific, tab-separated

SELECT DISTINCT? columns
FROM table+

WHERE condition

GROUP BY attribute+
HAVING condition

ORDER BY attributeorder+

query setoperation query

query ORDER BY attributeorder+
no previous ORDER in query

WITH localdef+ query

tablename

table AS? tablename ## only one iteration allowed
(query) AS? tablename

table jointype JOIN table ON condition

table jointype JOIN table USING (attribute+)

table NATURAL jointype JOIN table

condition ::=

expression comparison compared

expression NOT? BETWEEN expression AND expression
condition boolean condition

expression NOT? LIKE ’pattern*’

expression NOT? IN values

NOT? EXISTS (query)

expression IS NOT? NULL

NOT (condition)

type ::=
CHAR (integer) | VARCHAR (integer) | TEXT
| INT | FLOAT
inlineconstraint ::= ## not separated by commas!

PRIMARY KEY

REFERENCES tablename (attribute) policyx*
UNIQUE | NOT NULL

CHECK (condition)

DEFAULT value

constraint ::=
PRIMARY KEY (attribute+)
| FOREIGN KEY (attribute+)
REFERENCES tablename (attribute+) policy*
| UNIQUE (attribute+) | NOT NULL (attribute)
| CHECK (condition)

policy ::=

ON DELETE|UPDATE CASCADE|SET NULL
deferrable ::=

NOT? DEFERRABLE (INITIALLY DEFERRED|IMMEDIATE)?
tableplaces ::=

(attribute+)

values ::=
VALUES (value+)
| (query)

VALUES only in INSERT

setting ::=
attribute = value

alteration ::=
ADD COLUMN attribute type inlineconstraint*
| DROP COLUMN attribute

localdef ::=
WITH tablename AS (query)

columns ::=
* ## literal asterisk
| column+

column ::=
expression
| expression AS name

attributeorder ::=
attribute (DESC|ASC)?

setoperation ::=
UNION | INTERSECT | EXCEPT

jointype ::=
LEFT|RIGHT |FULL OUTER?
| INNER?
comparison ::=
= <> <> <=]>=

expression ::=
attribute
| tablename.attribute
| value
| expression operation expression
| aggregation (DISTINCT? *|attribute)
| (query)

value ::=

integer | float | string ## string in single quotes

| value operation value
| NULL

boolean ::=
AND | OR

triggers

functiondefinition ::=
CREATE FUNCTION functionname() RETURNS TRIGGER AS $$
BEGIN
* triggerstatement
END
$$ LANGUAGE ’plpgsql’

>

triggerdefinition ::=
CREATE TRIGGER triggernane
whentriggered
FOR EACH ROW|STATEMENT
? WHEN (condition)
EXECUTE PROCEDURE functionname

3

whentriggered ::=
BEFORE | AFTER events ON tablename
| INSTEAD OF events ON viewname

events ::= event | event OR events
event INSERT | UPDATE | DELETE

triggerstatement ::=
IF (condition) THEN statement+ elsif* END IF ;
| RAISE EXCEPTION ’message’ ;
| statement ; ## INSERT, UPDATE or DELETE
| RETURN NEW|OLD|NULL ;

elsif ::= ELSIF (condition) THEN statement+

compared ::=
expression
| ALL|ANY values

operation ::=
ngn | n_n Ny | ll/ll | Il%ll
| ll| |II
pattern ::=
% | _ | character ## match any string/char

| [character*]
| [~ characterx*]

aggregation ::=
MAX | MIN | AVG | COUNT | SUM

privileges

statement ::=
GRANT privilege+ ON object TO user+ grantoption?
| REVOKE privilege+ ON object FROM user+ CASCADE?
| REVOKE GRANT OPTION FOR privilege
ON object FROM user+ CASCADE?
| GRANT rolename TO username adminoption?

privilege ::=
SELECT | INSERT | DELETE | UPDATE | REFERENCES
| ALL PRIVILEGES ## |

object ::=
tablename (attribute+)+ | viewname (attribute+)+
| trigger ## |

user ::= username | rolename | PUBLIC
grantoption ::= WITH GRANT OPTION
adminoption ::= WITH ADMIN OPTION

transactions

statement ::=
START TRANSACTION mode* | BEGIN | COMMIT | ROLLBACK

mode ::=
ISOLATION LEVEL level
| READ WRITE | READ ONLY

level ::=
SERIALIZABLE | REPEATABLE READ | READ COMMITTED
| READ UNCOMMITTED

indexes

statement ::=
CREATE INDEX indexname ON tablename (attribute+)?

JSON

Both json* and member* indicate comma-separated lists. Strings are in double-quotes, numbers use decimal dot.

json ::= object | array | string | number | boolean
object ::= "{" memberx "1}"

member ::= string ":" json

array ::= "[" json* "]"

JSON Path: Expressions are built from operators, the result is an array with all matching json elements. The syntax below
is from Postgres JSON Paths, using .. instead of .** and ?[(condition)] instead of ?(condition) is also allowed.

$ is the path for the root of the document

. is the child access operator (e.g. $.name gives the value of the name attribute of the root node)

.* is the wild-card access operator, it selects all attribute values of an object, or all items in an array

.*x ig the recursive descent operator (e.g. $.**.name gives the value of the name attribute of all objects in the document)
[n] is array indexing (n is an integer)

[*] is the wild-card indexing operator, it selects all items in arrays

[a,b,c] selects multiple attributes (in double quotes) or array indexes

?(condition) is used to filter values

@ is the current object in conditions ($.*?(@.x>1) gets attributes of the root node whose x attribute exceeds 1)

JSON Schema: Each schema is a JSON document.
false matches nothing
true matches everything (same as {})
Objects contain any number of keywords (as keys), that limit what is accepted. Keywords and types of values:
e "enum" (array) accepts only the listed values.
e "type" (string) accepts only the given type, one of object/array/string/number/integer/boolean.
e "minimum","maximum","minLength","maxLength","minProperties","maxProperties","minItems","maxItems" (integer)
specifies bounds for numbers, string lengths, array lengths and number of attributes respectively.
e "properties" (object with name:schema pairs) specifies schemas for attributes of objects.
E.g. {"properties":{"x":{"type":"string"}, "y":false}} accepts only objects where the type of attribute "x” is a
string (or ”x” does not exist) and attribute ”y” does not exist.
"additionalProperties" (schema) specifies the schema for all attributes not mentioned in ”properties”.
"required" (array of strings) accepts only objects that have all the listed attributes
"items" (schema) accepts only arrays where all items are accepted by the given schema
"contains" (schema) accepts only arrays that where at least one item is accepted by the given schema
"uniqueItems" (boolean) if boolean is true, accepts only arrays where items are unique
"all0f", "anyOf", "oneOf" (array of schemas) accepts only what is accepted by all of, at least one of, or exactly one of
the given schemas.
e "not" (schema) accepts only what is not accepted by the given schema.
e "definitions" (object with name:schema pairs) specifies named schemas, that can be used with "$ref". Only used in
the root object of a schema.
e "$ref" (string) accepts values that are accepted by the referenced schema. Use "#" to refer back to the root of the
schema. Use "#\definitions\x" to refer to definition "x”.

