TDA357/DIT621 - Databases

Lecture 12 - Relational Algebra
Jonas Duregård

What is an algebra?

- An algebra is a set of values, and a collection of operations on those values
- Formulas built from those operations (and constants) are called expressions
- Example: The set of natural numbers and the operations addition and multiplication form a tiny algebra
- Expressions are arithmetic expression like 5+3*2
- The result of every expression (and subexpressions like 3*2 here) is also a natural number
- Another example: Boolean algebra has 2 values and operators like AND, OR ...
- SQL logic has 3 values though... (FALSE, TRUE and UNKNOWN)
- We can also have variables in our expressions like a+3

What is relational algebra (RA)?

- An algebra on the infinite set of relations, and operations like Cartesian product, union, etc.
- Relational algebra expressions are essentially queries (but not in SQL)
- Just like arithmetic and Booleans, this algebra is closed under its operations
- If I apply addition to two numbers, I get a number
- If I apply AND to two Booleans I get a Boolean
- If I apply Cartesian product to two relations I get a relation

Relational algebra

- Our goal today is to define operations in relational algebra, that allow us to write expressions corresponding to most SQL queries
- There are at least two advantages to using Relational Algebra over SQL:
- Reasoning: We can use hundreds of years of mathematical results and methods to prove that our queries do what we intend for them to do
- Simplification: Similarly to how we can simplify (a+b*0+a) to (2*a), we can sometimes simplify complicated relational algebra expressions
- Uses proven simplification rules
- Can be used to make queries faster

Query optimization in practice

- There are often different ways of writing queries to solve a particular task
- A query optimizer is a part of a DBMS that tries to transform each query into its most efficient form, often (but not always) transforming equivalent queries into the same form
- This allows users to write queries the way they find most intuitive, and rely on the DBMS to deal with efficiency
- Also makes it hard to answer "which of these SQL queries is most efficient", since the answer is always "depends on what the query optimizer does"
- Query optimizers are based on relational algebra

What exactly is a relation?

- The first thing you need to do when defining an algebra, is define the set of values it operates on
- Good enough informal definition for relational algebra: Relations are tables.
- Slightly more formal: A relation is a schema (relation name + attribute list) and a collection of tuples, such that all tuples match the schema
- Typically we abstract away the tuples, focusing on the structure/schema of the relation when writing relational algebra expressions
- Some things that are not quite standardized for relational algebra:
- Controversy 1: Is the collection a set, a bag or a list?
- Controversy 2: How does naming work? Are there qualified names?
- We will deal with these issues as we encounter them

It's all Greek!

- For historical reasons, operators in relational algebra use Greek letters
- Some symbols that everyone knows like π (pi)
- Some less familiar ones like ρ (rho)
- May take some getting used to if you do not write Greek on a regular basis

Projection - Our first RA operator!

- The π (pi) operator corresponds to the SELECT clause in SQL
- Syntax: $\pi_{\text {<attribute list }}(R)$, where R is any relational algebra expression
- In SQL: SELECT <attribute list> FROM (<SQL for R>);
- Example: $\pi_{\text {id,name }}$ (Students)
- In SQL: SELECT id, name FROM Students;
- Called the projection operator (we project a certain view of the relation)

Sets, bags or lists? (Again)

- Remember: A set has no duplicates or internal ordering, bags allow duplicates, lists allow duplicates and each value has a position
- Traditionally, relations are considered sets of tuples in relational algebra
- This makes them harder to translate to/from SQL where results are bags
- There are also things like sorting operators in most Relational Algebra definitions, which is not really compatible with either sets or bags
- In this course we use bag semantics
- Semantics \approx what expressions mean, as opposed to how they look (syntax)
- You will need to understand the implications of this choice

Projection on sets/bags

- Projection is one of the operators where set/bag semantics differ
- The intuition of projection is that you just remove a few attributes
- If using set semantics, the number of tuples/rows may decrease, because duplicates are introduced when removing the attributes!
- One way to explain this in terms of SQL:
- With bag semantics, projection corresponds to the SELECT clause
- With set semantics, projection corresponds to SELECT DISTINCT
- In this course, we follow the intuition and use bag semantics for π
Table: WL

student	course	position
Student1	TDA357	1
Student2	TDA357	2
Student1	TDA143	1

set semantics	bag semantics
student	student Student1 Student1
Student2	
Student1	

Selection

- The σ (sigma) operator corresponds to the WHERE-clause in SQL
- Syntax: $\sigma_{\text {<condition on rows }}(\mathrm{R})$
- In SQL: SELECT * FROM <SQL for R> WHERE <condition on rows>
- Conditions should be simple row-wise checks, do not put RA-expressions in your conditions (unlike in SQL where subqueries are allowed)
- Boolean syntax from SQL (AND, OR, NOT ...) or logical symbols ($\wedge, \vee, \neg \ldots$)
- Comparisons like <, >, = on constants and attributes
- Called the selection operator because it selects which rows to keep

The most unfortunate naming mismatch ever

- Selection (σ) does not correspond to the SELECT clause in SQL!
- σ corresponds more closely to the WHERE clause
- Projection (π) corresponds to SELECT
$\pi_{\text {student }}$ (Grades)

SELECT student FROM Grades
$\sigma_{\text {student }=1}$ (Grades)
SELECT * FROM Grades WHERE student=1

Base relations/tables

- Base relations like Students in $\pi_{i d, n a m e}$ (Students) are part of the algebra
- In one way they are like constants: The schema of the relations are known
- In one way they are like variables: The tuples in the relations are unknown
- Intuitively they are like created tables in SQL, not considering INSERTS
- A typical problem: "Using the schema Student(idnr,year,name), find the name of all students in the third year"
- Solution: $\pi_{\text {name }}\left(\sigma_{\text {year }=3}\right.$ (Student))
- The schema is important for the solution to work, but the data is not
- Base relations in expressions are simply table names in SQL

Cartesian product

- The relational algebra syntax for Cartesian product is $\mathrm{R} 1 \times \mathrm{R} 2$
- In SQL: SELECT * FROM <SQL for R1>, <SQL for R2>
- We can now join relations:
$\sigma_{\text {<join condition> }}(\mathrm{T} 1 \times \mathrm{T} 2)$
- Equivalent SQL:

SELECT * FROM T1, T2 WHERE <join condition>;

Compositional expressions, monolithic queries

- Consider this SQL query and an equivalent relational algebra expression:

SELECT name, credits FROM Students, Grades
WHERE idnr = student AND Grade >= 3

- $\pi_{\text {name, credits }}\left(\sigma_{\text {idnr=student AND grade >=3 }}\right.$ (Students \times Grades))
- The SQL code is a single query performing projection, selection and Cartesian product, whereas the expression does each of those in separate steps
- This is a fundamental difference of RA and SQL
- In RA each subexpression results in a relation, SQL "does everything at once" and gets a single results
- We could also express the same query as, for instance:
$\pi_{\text {name, credits }}\left(\sigma_{\text {idnr=student }}\left(\right.\right.$ Students $\times \sigma_{\text {grade }}>=3($ Grades $\left.\left.)\right)\right)$

Translating ER to SQL using subqueries

- Consider the expression: $\pi_{\text {name, credits }}\left(\sigma_{\text {idnr=student }}\left(\right.\right.$ Students $\times \sigma_{\text {grade }>=3}($ Grades $\left.\left.)\right)\right)$
- The most literal way to translate this into SQL is:

```
SELECT name, credits FROM -- Projection
    (SELECT * FROM -- Selection: idnr=student
    (SELECT * FROM -- Cartesian product
    Students,
    (SELECT * -- Selection: grade >= 3
    FROM Grades -- Base table Grades
    WHERE grade >= 3) AS r3
    ) AS r2 WHERE idnr=student) AS r1;
```

- Here we have translated each subexpression (except tables) into a subquery
- Highlights the difference between compositional RA and monolithic SQL
- A more compact translation would be better in practice

Other set operations

- Just like in SQL, we have the three set operations:
- Union: R1 U R2
- Intersection: R1 n R2
- Difference/subtraction: R1 - R2
- Example (idnr of all students that have not passed any courses):

$$
\pi_{\text {idnr }}(\text { Student })-\pi_{\text {student }}\left(\sigma_{\text {grade }>=3}(\text { Grades })\right)
$$

- "Take all idnr from students, and remove all idnr with a passing grade"
- Like in SQL, schemas must be compatible (same number of attributes)

Extending set operations to bags

- In sets, each tuple is either in or not in each relation
- In bags, each tuple occurs a number of times in each relation
- Assuming x occurs n times in R1 and m times in R2
- x occurs n+m times in R1 U R2
- x occurs min(n,m) times in R1 \cap R2
- x occurs n-m times in R1-R2 (minimal of 0 times)
- Translates to UNION ALL, INTERSECT ALL and EXCEPT ALL
- This is the semantics we use for union, intersection and difference in this course

Grouping

- The grouping operator γ (gamma) is like a combined SELECT and GROUP BY
- Syntax: $\gamma_{\text {<attributes/aggregates> }}(R)$
- Example: $Y_{\text {student, AVG(grade) } \rightarrow \text { average }}$ (Grades)

Table: Grades

student	course	grade
S1	TDA357	3
S2	TDA357	3
S1	TDA143	5

student	average
S1	4
S2	3

- In SQL: SELECT student, AVG(grade) AS average FROM Grades GROUP BY student;
- Automatically groups by and projects all attributes in the subscript
- The arrow indicates naming (required for all aggregates)
- Result has exactly one attribute for each attribute/aggregate!

Example

```
Students(idnr, name)
Grades(student, course, grade)
    student -> Students.idnr
```

- Select the name of all students that have passed at least 2 courses
- One solution (join first, group later):
$\pi_{\text {name }}\left(\sigma_{\text {passed }>=2}\left(\gamma_{\text {student, name, count }(*) \rightarrow \text { passed }}\left(\sigma_{\text {grade }>=3 \text { AND iddr=student }}\right.\right.\right.$ (Students \times Grades $\left.\left.\left.)\right)\right)\right)$ Describing the expression from right to left:

1) Take the product of students and grades
2) Select the rows with passing grades and matching id-numbers
3) Group what remains by student and calculate the number of passed
4) Select the rows with at least two passed
5) Project the name attribute

- Another solution (group first, join later)
$\pi_{\text {name }}\left(\sigma_{\text {passed }>=2 \text { AND idnr=student }}\left(\right.\right.$ Students $\times{V_{\text {student, counT }}(*) \rightarrow \text { passed }}\left(\sigma_{\text {grade }>3}(\right.$ Grades $\left.\left.\left.)\right)\right)\right)$

Analyzing expressions

```
Students(idnr, name)
Grades(student, course, grade)
    student -> Students.idnr
```

- To make sure our expression is correct, we can compute the schema of the result for any subexpression (=result of any operator)

- Sanity check: All our conditions, projections etc. only mention attributes that actually exist in their operands

Sanity check

```
Students(idnr, name)
Grades(student, course, grade)
    student -> Students.idnr
```

- What is wrong with this expression?

- Not doing this simple sanity check is probably the most common way to unnecessarily loose points on the exam

What about HAVING?

- In SQL the HAVING-clause is like an extra WHERE-clause that happens after/during grouping, having such an operator in RA does not make sense
- This is only a feature of SQL to avoid using subqueries all the time
- This query:

SELECT student FROM Grades
GROUP BY student HAVING AVG (grade) >4;

Corresponds to this expression:
$\pi_{\text {student }}\left(\sigma_{\text {average>4 }}\left(\gamma_{\text {student, AVG(grade) } \rightarrow \text { average }}(\right.\right.$ Grades $\left.\left.)\right)\right)$

- No need for a separate operator working on aggregates
- But it is important to do the selection after the grouping when translating a HAVING-clause to relational algebra
- Do the sanity check!

Qualified names

- Base relations have names that can be used in conditions etc.
- The results of expressions do not have names though
- Technically, expressions like $\pi_{R 1 . x}(R 1 \times R 2)$ are invalid, because the result of (R1 \times R2) does not have a name
- Like SELECT R1.x FROM (SELECT * FROM R1 \times R2), which is invalid
- Essentially means qualified names are never useful in projections
- This is often ignored in examples of relational algebra and each attribute is understood to retain its qualified name
- I will allow this in this course

Qualified names

```
Students(idnr, name)
Grades(idnr, course, grade)
    student -> Students.idnr
```

- If there are name clashes, it makes sense to sanity check with qualified names
$\pi_{\text {name }}\left(\sigma_{\text {Student.idnr=Grades.idnr AND average>4 }}\left(\right.\right.$ Students $\times \gamma_{\text {idnr, AVG(grade) } \rightarrow \text { average }}($ Grades $\left.\left.\left.)\right)\right)\right)$
(Grades.idnr, average)
(Students.idnr, Students.name, Grades.idnr, average)
- Note that the attribute average does not have any qualified name

Renaming

- The ρ (rho) operator renames the result of an expression
- Syntax: $\rho_{\text {<new schema> }}(R)$
- Example $\rho_{\text {S(idnr,studentname) }}$ (Students) Renames both the relation (for qualified names) and attributes

idnr	name
1	Jonas
2	Emilia
3	Emil

idnr	studentname
1	Jonas
2	Emilia
3	Emil

- Use ρ_{s} (Students) to only rename the relation and keep attribute names

Renaming example

- Consider this query (self join)

Table: Numbers

owner	num
Bart	11111
Lisa	22222
Bart	33333

SELECT N1.num, N2.num, N1.owner FROM Numbers AS N1, Numbers AS N2 WHERE N1. owner $=$ N2. owner;

- Here the ρ operator is essential
$\pi_{\mathrm{N} 1 . \text { num, } \mathrm{N} 2 \text {.num, } \mathrm{N} 1 . \mathrm{owner}}\left(\sigma\left(_{\mathrm{N} 1 . \mathrm{owner}=\mathrm{N} 2 . \mathrm{owner}}\left(\rho_{\mathrm{N} 1}\right.\right.\right.$ (Numbers) $\times \rho_{\mathrm{N} 2}($ Numbers $\left.\left.\left.)\right)\right)\right)$ Sanity check: (N1.owner, N1.num, N2.owner, N2.num)

Query optimization

- In relational algebra we can express (and prove) rules like:

$$
\begin{aligned}
\sigma_{c 1}\left(\sigma_{c 2}(R)\right) & =\sigma_{c 1 \text { AND } 12}(R) \\
\pi_{p 1}\left(\pi_{p 2}(R)\right) & =\pi_{p 1}(R) \\
R 1 \cap R 2 & =R 1-(R 1-R 2) \\
\sigma_{c}(R 1 \times R 2) & =\sigma_{c}(R 1) \times R 2, \text { assuming } c \text { uses only attributes of } R 1
\end{aligned}
$$

- These rules can be used by DBMS to simplify or optimize queries

Join operator

- Like in SQL, there is a special join operator: R1 $\bowtie_{\text {<condition> }}$ R2
- This is purely a convenience operator, we can define it using:
$R 1 \bowtie_{c} R 2=\sigma_{c}(R 1 \times R 2)$

Expression layout

- When writing relational algebra expressions on paper, it is convenient to start each operator on its own row
- It's often a good idea to start in the middle of the paper with a join, then add operators above it
- You can easily extend conditions with an extra AND etc.

```
\piname
        ( }\mp@subsup{\sigma}{\mathrm{ passed>=2}}{
    (Students
    凶 idnr=student
    Ystudent, COUNT(*)-> passed
            ( }\mp@subsup{\sigma}{\mathrm{ grade>=3}}{
            (Grades))))
```


Splitting up expressions

- You can break out and name parts of your expressions for readability

R1 $=\gamma_{\text {student, counT }(*) \rightarrow \text { passed }}\left(\sigma_{\text {grade }>=3}(\right.$ Grades $\left.)\right)$
R2 $=\left(\right.$ Students $\bowtie_{\text {idnr=student }}$ R1
Result $=\pi_{\text {name }}\left(\sigma_{\text {passed }>2}(R 2)\right)$

- Can simplify expression writing a lot, especially on paper
- Helps the thought process when incrementally solving problems
- Names are not part of the algebra, just a convenience for writing expressions
- Like saying "let $x=\min (y, z)$ in $x^{*}(x+1)$ ", x can be substituted for its definition
- The names can not be used as qualified name (unless you use ρ)
- Remember to still do the sanity check! (What attributes do R1 and R2 have?)

Expression trees

- The best way to understand an expression in any algebra, is as a syntax tree

- Each node in the tree can be computed into a value (or a schema), bottom up

All basic operators (a few more on next slide)

- Selection, "Sigma": $\sigma_{\text {<selection condition> }}(\mathrm{R})$
- Projection, "Pi": $\pi_{\text {<attribute list }}(\mathrm{R})$
- Cartesian product: R1 \times R2
- Other set operations: R1 U R2, R1 \cap R2, R1 - R2
- Grouping, "Gamma": $\gamma_{\text {cattributes/agregates }}(\mathrm{R})$
- Join: R1 $\bowtie_{\text {<condition> }}$ R2
- Renaming, "Rho": $\rho_{\text {<Relation name>(<optional attribute names>) }}(\mathrm{R})$

Additional operators

- Apart from the operators we have seen so far there are a number of extensions to match various features of SQL
- NATURAL JOIN: R1 \bowtie R2 (Just omit the Join-condition)
- JOIN USING: R1 $\bowtie_{\text {idnr }}$ R2 (replace Join-condition with attribute)
- Outer joins:
- Full outer join: R1 $\bowtie^{0}{ }_{\text {<join condition> }}$ R2
- Left/right join: R1 $\bowtie^{\mathrm{OL}}{ }_{\text {<join condition> }} \mathrm{R} 2$ and R1 $\bowtie^{\circ \mathrm{R}}{ }_{\text {<join condition> }} \mathrm{R} 2$
- DISTINCT: δ (delta), for converting from a bag to a set e.g. R1 U R2 is UNION ALL in SQL, $\delta(R 1 \cup R 2)$ is UNION
- τ (tau), for ORDER BY on an expression. Examples:
$\tau_{\text {grade }}$ (Grades) for SELECT * FROM Grades ORDER BY grade ASC $\tau_{\text {-grade }}$ (Grades) for SELECT * FROM Grades ORDER BY grade DESC

Is it OK if I just learn SQL and translate that to RA?

- Yes!
- But the translation is not always trivial
- Relational algebra is not just SQL in Greek!

Translating a single query

- A query with almost everything:

```
SELECT a1, MAX(a2) AS mx
    FROM T1, T2
    WHERE a3=5
    GROUP BY a1,a3
    HAVING COUNT(*) > 10
    ORDER BY al ASC;
```

- A relational algebra expression for it: $\tau_{\mathrm{a} 1}\left(\pi_{\mathrm{a} 1, \mathrm{mx}}\left(\sigma_{\mathrm{temp}>10}\left(\mathrm{Y}_{\mathrm{a} 1, \mathrm{a} 3, \mathrm{MAX}(\mathrm{a} 2) \rightarrow \mathrm{mx}, \operatorname{COUNT}(*) \rightarrow \mathrm{temp}}\left(\sigma_{\mathrm{a} 3=5}(\mathrm{~T} 1 \times \mathrm{T} 2)\right)\right)\right)\right)$
- The sanity check is even more important when "blindly" translating

Translating correlated queries

- Consider a query like

Correlation: subquery refers to outer query
SELECT name FROM Students AS
WHERE $4<(S E L E C T$ AVG(grade) FROM Grades WHERE student=S.idnr);

- This is very easy to mistranslate (if you don't sanity check!)
- The correlation needs to be replaced with a join:
$\pi_{\text {name }}\left(\sigma_{4<\text { average }}\left(\gamma_{\text {student, AVG(grade) } \rightarrow \text { average }}\left(\right.\right.\right.$ Grades $\bowtie_{\text {idnr=student }}$ Students)))

What about things like NOT IN and NOT EXISTS?

- Set subtraction can often (always?) be used to replace NOT IN
- Example: Select students that have no grades

SELECT idnr, name FROM Students
WHERE idnr NOT IN (SELECT student FROM Grades);

- In relational algebra (one of many possible solutions):

R1 $=\rho_{\text {NoGrades(s) }}\left(\pi_{\text {idnr }}\right.$ (Students) $-\pi_{\text {student }}($ Grades $\left.)\right)$
Result $=\pi_{\text {idnr,name }}$ (Students $\bowtie_{\text {sidnr }}$ R1)

- Use set subtraction to get the ID of all students without grades, then join back with Students to recover names
(uses renaming to avoid having two Students.idnr for the join)

