DA357/DIT621 — Databases

Lecture 12 — Relational Algebra

Jonas Duregard

What is an algebra?

* An algebra is a set of values, and a collection of operations on those values
* Formulas built from those operations (and constants) are called expressions

 Example: The set of natural numbers and the operations addition and
multiplication form a tiny algebra
e Expressions are arithmetic expression like 5+3*2
* The result of every expression (and subexpressions like 3*2 here) is also a
natural number
* Another example: Boolean algebra has 2 values and operators like AND, OR ...
* SQL logic has 3 values though... (FALSE, TRUE and UNKNOWN)

* We can also have variables in our expressions like a+3

What is relational algebra (RA)?

* An algebra on the infinite set of relations, and operations like Cartesian
product, union, etc.

* Relational algebra expressions are essentially queries (but not in SQL)

* Just like arithmetic and Booleans, this algebra is closed under its operations
* If | apply addition to two numbers, | get a number
* If | apply AND to two Booleans | get a Boolean
* If | apply Cartesian product to two relations | get a relation

Relational algebra

e Our goal today is to define operations in relational algebra, that allow us to
write expressions corresponding to most SQL queries
* There are at least two advantages to using Relational Algebra over SQL:

e Reasoning: We can use hundreds of years of mathematical results and
methods to prove that our queries do what we intend for them to do

* Simplification: Similarly to how we can simplify (a+b*0+a) to (2*a), we can
sometimes simplify complicated relational algebra expressions
e Uses proven simplification rules
e Can be used to make queries faster

Query optimization in practice

* There are often different ways of writing queries to solve a particular task

e A query optimizer is a part of a DBMS that tries to transform each query into
its most efficient form, often (but not always) transforming equivalent
gueries into the same form

* This allows users to write queries the way they find most intuitive, and rely
on the DBMS to deal with efficiency

* Also makes it hard to answer "which of these SQL queries is most efficient”,
since the answer is always "depends on what the query optimizer does"

e Query optimizers are based on relational algebra

What exactly is a relation?

* The first thing you need to do when defining an algebra, is define the set of
values it operates on

* Good enough informal definition for relational algebra: Relations are tables.

* Slightly more formal: A relation is a schema (relation name + attribute list) and
a collection of tuples, such that all tuples match the schema

* Typically we abstract away the tuples, focusing on the structure/schema of the
relation when writing relational algebra expressions
* Some things that are not quite standardized for relational algebra:
e Controversy 1: Is the collection a set, a bag or a list?
e Controversy 2: How does naming work? Are there qualified names?
* We will deal with these issues as we encounter them

It's all Greek!

* For historical reasons, operators in relational algebra use Greek letters

* Some symbols that everyone knows like 1t (pi)

* Some less familiar ones like p (rho)

* May take some getting used to if you do not write Greek on a regular basis

Projection — Our first RA operator!

* The it (pi) operator corresponds to the SELECT clause in SQL
* Syntax: M__..bute 1ist-(R), Where R is any relational algebra expression

* InSQL: SELECT <attribute list> FROM (<SQL for R>);
* Example: 1y . me(Students)

* InSQL: SELECT id, name FROM Students;

 Called the projection operator (we project a certain view of the relation)

Sets, bags or lists? (Again)

« Remember: A set has no duplicates or internal ordering, bags allow duplicates,
lists allow duplicates and each value has a position

* Traditionally, relations are considered sets of tuples in relational algebra
* This makes them harder to translate to/from SQL where results are bags

* There are also things like sorting operators in most Relational Algebra
definitions, which is not really compatible with either sets or bags
* In this course we use bag semantics
e Semantics = what expressions mean, as opposed to how they look (syntax)
* You will need to understand the implications of this choice

Projection on sets/bags

* Projection is one of the operators where set/bag semantics differ
* The intuition of projection is that you just remove a few attributes

* |If using set semantics, the number of tuples/rows may decrease,
because duplicates are introduced when removing the attributes!

* One way to explain this in terms of SQL:
* With bag semantics, projection corresponds to the SELECT clause
e With set semantics, projection corresponds to SELECT DISTINCT

* In this course, we follow the intuition and use bag semantics for it

Table: WL

student

course

position

Studentl

TDA357

1

Student2

TDA357

2

Studentl

TDA143

1

T[student(WL)

set semantics

bag semantics

student

student

Studentl

Studentl

Student?2

Student?2

Studentl

Selection

* The o (sigma) operator corresponds to the WHERE-clause in SQL
e Syntax: o R)
* In SQL:
SELECT * FROM <SQL for R> WHERE <condition on rows>
* Conditions should be simple row-wise checks, do not put RA-expressions in
your conditions (unlike in SQL where subqueries are allowed)
* Boolean syntax from SQL (AND, OR, NOT ...) or logical symbols (A,V,-...)

 Comparisons like <, >, = on constants and attributes

<condition on rows>(

 Called the selection operator because it selects which rows to keep

The most unfortunate naming mismatch ever

* Selection (o) does not correspond to the SELECT clause in SQL!
e g corresponds more closely to the WHERE clause
* Projection (mt) corresponds to SELECT

student(GradeS) cjstudent=1(GradeS)

SELECT student FROM Grades SELECT * FROM Grades WHERE student=1

Base relations/tables

* Base relations like Students in 1y ...(Students) are part of the algebra
* In one way they are like constants: The schema of the relations are known
* In one way they are like variables: The tuples in the relations are unknown
* Intuitively they are like created tables in SQL, not considering INSERTS
A typical problem: "Using the schema Student(idnr,year,name), find the name
of all students in the third year"
* Solution: 1, ,e(0,c,r-3(Student))

 The schema is important for the solution to work, but the data is not
e Base relations in expressions are simply table names in SQL

Cartesian product

* The relational algebra syntax for Cartesian product is R1 x R2

* InSQL: SELECT * FROM <SQL for R1>,<SQL for R2>
* We can now join relations:

<join conditions(T1 % T2)

e Equivalent SQL:

SELECT * FROM T1, T2 WHERE <join condition>;

0]

Compositional expressions, monolithic queries

* Consider this SQL query and an equivalent relational algebra expression:

SELECT name, credits FROM Students, Grades
WHERE 1dnr = student AND Grade >=

*n (Gidnr=student AND grade >= 3(StudeﬂtS X Grades))

name,credits

 The SQL code is a single query performing projection, selection and Cartesian
product, whereas the expression does each of those in separate steps

 This is a fundamental difference of RA and SQL

* In RA each subexpression results in a relation, SQL "does everything at
once'" and gets a single results

e We could also express the same query as, for instance:
n (Gidnr=student(s’u’|der‘tS X Ggrade >= 3(Grades)))

name,credits

Translating ER to SQL using subqueries

* Consider the expression:

T[name,credits(Gidnr=student(5tudents X c)-grade >= 3(Grades)))

* The most literal way to translate this into SQL is:

SELECT name, credits FROM —-
(SELECT * FROM ——
(SELECT * FROM ——
Students, ——
(SELECT * ——

FROM Grades ——

WHERE grade >= 3) AS

) AS r2 WHERE idnr=student)

Projection

Selection: i1dnr=student
Cartesian product

Base table Students
Selection: grade >= 3
Base table Grades

r3

AS rl;

* Here we have translated each subexpression (except tables) into a subquery
* Highlights the difference between compositional RA and monolithic SQL
* A more compact translation would be better in practice

Other set operations

e Just like in SQL, we have the three set operations:
* Union: R1 U R2
* Intersection: R1 N R2
 Difference/subtraction: R1 - R2

* Example (idnr of all students that have not passed any courses):

nidnr(StUdent) B T[student(ograde>=3(G rades))

e "Take all idnr from students, and remove all idnr with a passing grade"
* Like in SQL, schemas must be compatible (same number of attributes)

Extending set operations to bags

* In sets, each tuple is either in or not in each relation
* In bags, each tuple occurs a number of times in each relation

e Assuming x occurs n times in R1 and m times in R2
e X occurs n+m times in R1 U R2
e x occurs min(n,m) times in R1 N R2
e x occurs n-m times in R1 - R2 (minimal of O times)

* Translates to UNION ALL, INTERSECT ALL and EXCEPT ALL

e This is the semantics we use for union, intersection and difference in
this course

Grouping
* The grouping operator y (gamma) is like a combined SELECT and GROUP BY
* Syntax: v<attributes/aggregates>(R)

* Example: vstudent, AVG(grade) - average(GradeS)
Table: Grades

student

course

grade

S1

TDA357

3

S2

TDA357

3

S1

TDA143

5

student

average

S1

4

S2

3

* InSQL: SELECT student, AVG(grade) AS average
FROM Grades GROUP BY student;

e Automatically groups by and projects all attributes in the subscript
* The arrow indicates naming (required for all aggregates)
* Result has exactly one attribute for each attribute/aggregate!

Students (1dnr, name)
Example Grades (student, course,' grade)
student —-> Students.idnr

 Select the name of all students that have passed at least 2 courses

e One solution (join first, group later):
T[name(0passed>=2(vstudent, name, COUNT(*)%passed(Ggrade>=3 AND idnr=student(StUdeﬂts X Grades))))

Describing the expression from right to left:
1) Take the product of students and grades
2) Select the rows with passing grades and matching id-numbers
3) Group what remains by student and calculate the number of passed

4) Select the rows with at least two passed
5) Project the name attribute

* Another solution (group first, join later)
T[name(cpassed>=2 ANDidnr=student(Students X Vstudent, COUNT(*)%passed(O-grade>=3(Grades))))

Analyzing expressions

Students (idnr, name)
Grades (student, course,

grade)

student —-> Students.idnr

* To make sure our expression is correct, we can compute the schema of
the result for any subexpression (=result of any operator)

(1dnr, name)

(student, passed)

T[name(o assed>=2 ANDidnr=student(StuCIentS X vstudent, COUNT(*)%passed(O-grade>=3(Grades))))

(student, course,

grade)

(name)

(1dnr, name, student, passed)

 Sanity check: All our conditions, projections etc. only mention attributes
that actually exist in their operands

Students (1dnr, name)
Grades (student, course, grade)
student —-> Students.idnr

Sanity check

* What is wrong with this expression?

T[name(cpassed>=2 AND idnr=student AND grade>=3(StUCIentS X vstudent, COUNT(*)%passed(Grades))))

(1dnr, name, student, passed)

Can not use grade here!

* Not doing this simple sanity check is probably the most common way
to unnecessarily loose points on the exam

What about HAVING?

* In SQL the HAVING-clause is like an extra WHERE-clause that happens
after/during grouping, having such an operator in RA does not make sense

* This is only a feature of SQL to avoid using subqueries all the time

e This query:
SELECT student FROM Grades
GROUP BY student
HAVING AVG (grade)>4;

Corresponds to this expression:
T[student(Gaverage>4(vstudent, AVG(grade)%average(G rades)))
* No need for a separate operator working on aggregates

e But it is important to do the selection after the grouping when
translating a HAVING-clause to relational algebra

* Do the sanity check!

Qualified names

* Base relations have names that can be used in conditions etc.

* The results of expressions do not have names though
* Technically, expressions like 1z, ,(R1 x R2) are invalid, because the result
of (R1 x R2) does not have a name
e Like SELECT R1.x FROM (SELECT * FROM R1 x R2), which is invalid
 Essentially means qualified names are never useful in projections
 This is often ignored in examples of relational algebra and each attribute
is understood to retain its qualified name
* | will allow this in this course

Students (1dnr, name)

Qualified names |¢rades(ianr, course, grade)

student —-> Students.idnr

* If there are name clashes, it makes sense to sanity check with qualified names

T[name(GStudent.idnr=Grades.idnr AND average>4 (StUdentS i V%AVG(grade)éaverage(Grades))))

(Grades.idnr, average)

(Students.idnr, Students.name, Grades.idnr, average)

* Note that the attribute average does not have any qualified name

Renaming

* The p (rho) operator renames the result of an expression

* SyntaX: P<new schema>(R)
* Example pS(idnr,studentname)(StUdents)

Renames both the relation (for
qualified names) and attributes

Students

idnr name
1 Jonas
2 Emilia
3 Emil

S

idnr | studentname
1 Jonas

2 Emilia

3 Emil

* Use p(Students) to only rename the relation and keep attribute names

Table: Numbers

Renaming example Bt ETen
Lisa 22222
* Consider this query (self join) Bart 33333

SELECT NI1.num, NZ2Z2.num, Nl.owner
FROM Numbers AS N1, Numbers AS N2
WHERE N1.owner N2 .owner;

* Here the p operator is essential

T[Nl.num, N2.num, N1.owner(G(N1.owner = N2.owner(pN1(NumberS) X pNZ(NumberS))))

Sanity check: (N1 .owner, NI1.num, N2.owner, NZ2.num)

Query optimization

* In relational algebra we can express (and prove) rules like:
0.1(0:2(R)) = Ocq anp 2(R)

1, (m,(R)) = m,(R)

R1 Nn R2

R1 - (R1-R2)

o.(R1 x R2) = o (R1) x R2, assuming c uses only attributes of R1

* These rules can be used by DBMS to simplify or optimize queries

Join operator

* Like in SQL, there is a special join operator: R1 ™X____4itions R2

 This is purely a convenience operator, we can define it using:
R1 x_R2 =0.(R1 x R2)

Expression layout

 When writing relational algebra expressions on paper, it is convenient
to start each operator on its own row

* It's often a good idea to start in the middle of the paper with a
join, then add operators above it

* You can easily extend conditions with an extra AND etc.

T[name

(Gpassed>=2

(Students

Nidnr=student

vstudent, COUNT(*)->passed
(Ggrade>=3

(Grades))))

Splitting up expressions

* You can break out and name parts of your expressions for readability

R1 = vstudent, COUNT(*)épassed(Ggrade>=3(Grades))
R2 = (Students ™., 4ent R1
Result=m__, . (R2))

e Can simplify expression writing a lot, especially on paper

(Gpassed>=2
* Helps the thought process when incrementally solving problems

 Names are not part of the algebra, just a convenience for writing expressions
* Like saying "let x = min(y,z) in x*(x+1)", x can be substituted for its definition
* The names can not be used as qualified name (unless you use p)

 Remember to still do the sanity check! (What attributes do R1 and R2 have?)

Expression trees

* The best way to understand an expression in any algebra, is as a syntax tree

1+2%*3 c)-a=b(R1 X RZ)
+ c)-a=b

1 * X
2 3 R1 R2

e Each node in the tree can be computed into a value (or a schema), bottom up

All basic operators (a few more on next slide)

 Selection, "Sigma": o R)

<selection condition>(
* Projection, P T[<attribute Iist>(R)
e Cartesian product: R1 x R2

e Other set operations: R1 U R2, R1 n R2, R1 - R2

* Grouping, "Gamma™: v<attributes/aggregates>(R)
 Join: R1 R2

<condition>

. n n,
* Renammg' Rho": p<ReIation name>(<optional attribute names>)(R)

Additional operators

e Apart from the operators we have seen so far there are a number of
extensions to match various features of SQL

« NATURAL JOIN: R1 @ R2 (Just omit the Join-condition)
* JOIN USING: R1 ., R2 (replace Join-condition with attribute)

* Outer joins:
* Full outer join: R1 ™°_; . onditions R2
* Left/right jOin: R1 MOI_<join condition> R2 and R1 MOR<join condition> R2

 DISTINCT: 6 (delta), for converting from a bag to a set
e.g. R1 U R2 is UNION ALL in SQL, & (R1 U R2) is UNION

T (tau), for ORDER BY on an expression. Examples:
(Grades) for SELECT * FROM Grades ORDER BY grade ASC

grade
(Grades) for SELECT * FROM Grades ORDER BY grade DESC

grade

s it OK if | just learn SQL and translate that to RA?

* Yes!
* But the translation is not always trivial
e Relational algebra is not just SQL in Greek!

Translating a single query

e A query with almost everything:

SELECT al, MAX(az) AS mx Some things, like HAVING
FROM T1, T2
WHERE a3=5
GROUP BY al, a3
HAVING COUNT (*) > 10
ORDER BY al ASC;

A relational algebra expression for it:

requires new names to
be introduced

Ta1(Ta1 mx (Gtemp>1o(\/a1,a3,MAX(az)emx,couNT(*)etemp(Ga_%:s(T 1xT2)))))

e The sanity check is even more important when "blindly" translating

Translating correlated queries

Correlation: subquery
* Consider a query like refers to outer query

SELECT name FROM Students AS S
WHERE ‘< (SELECT AVG(grade) FROM Grades WHERE student=S.idnr);

 This is very easy to mistranslate (if you don't sanity check!)
* The correlation needs to be replaced with a join:

T[name(04<average (vstudent, AVG(grade) - average(GradeS Nidnr=student StUdentS)))

What about things like NOT IN and NOT EXISTS?

 Set subtraction can often (always?) be used to replace NOT IN
* Example: Select students that have no grades

SELECT idnr,name FROM Students
WHERE idnr NOT IN (SELECT student FROM Grades);

* In relational algebra (one of many possible solutions):

R1 = pNoGrades(s)(T[idnr(StUdents) B nstudent(GradeS))

(Students R1)

e Use set subtraction to get the ID of all students without grades, then join back
with Students to recover names

(uses renaming to avoid having two Students.idnr for the join)

Result = 1t.

idnr,name s=idnr

