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What is an algebra?
• An algebra is a set of values, and a collection of operations on those values

• Formulas built from those operations (and constants) are called expressions

• Example: The set of natural numbers and the operations addition and 
multiplication form a tiny algebra

• Expressions are arithmetic expression like 5+3*2

• The result of every expression (and subexpressions like 3*2 here) is also a 
natural number

• Another example: Boolean algebra has 2 values and operators like AND, OR …

• SQL logic has 3 values though… (FALSE, TRUE and UNKNOWN)

• We can also have variables in our expressions like a+3



What is relational algebra (RA)?

• An algebra on the infinite set of relations, and operations like Cartesian 
product, union, etc.

• Relational algebra expressions are essentially queries (but not in SQL)

• Just like arithmetic and Booleans, this algebra is closed under its operations

• If I apply addition to two numbers, I get a number

• If I apply AND to two Booleans I get a Boolean

• If I apply Cartesian product to two relations I get a relation



Relational algebra

• Our goal today is to define operations in relational algebra, that allow us to 
write expressions corresponding to most SQL queries

• There are at least two advantages to using Relational Algebra over SQL:

• Reasoning: We can use hundreds of years of mathematical results and 
methods to prove that our queries do what we intend for them to do

• Simplification: Similarly to how we can simplify (a+b*0+a) to (2*a), we can 
sometimes simplify complicated relational algebra expressions

• Uses proven simplification rules  

• Can be used to make queries faster



Query optimization in practice

• There are often different ways of writing queries to solve a particular task

• A query optimizer is a part of a DBMS that tries to transform each query into 
its most efficient form, often (but not always) transforming equivalent 
queries into the same form

• This allows users to write queries the way they find most intuitive, and rely 
on the DBMS to deal with efficiency

• Also makes it hard to answer "which of these SQL queries is most efficient", 
since the answer is always "depends on what the query optimizer does"

• Query optimizers are based on relational algebra



What exactly is a relation?

• The first thing you need to do when defining an algebra, is define the set of 
values it operates on

• Good enough informal definition for relational algebra: Relations are tables. 

• Slightly more formal: A relation is a schema (relation name + attribute list) and 
a collection of tuples, such that all tuples match the schema

• Typically we abstract away the tuples, focusing on the structure/schema of the 
relation when writing relational algebra expressions

• Some things that are not quite standardized for relational algebra:

• Controversy 1: Is the collection a set, a bag or a list?

• Controversy 2: How does naming work? Are there qualified names?

• We will deal with these issues as we encounter them



It's all Greek!

• For historical reasons, operators in relational algebra use Greek letters

• Some symbols that everyone knows like π (pi)

• Some less familiar ones like ρ (rho)

• May take some getting used to if you do not write Greek on a regular basis



Projection – Our first RA operator!

• The π (pi) operator corresponds to the SELECT clause in SQL

• Syntax: π<attribute list>(R), where R is any relational algebra expression

• In SQL: SELECT <attribute list> FROM (<SQL for R>);

• Example: πid,name(Students)

• In SQL: SELECT id,name FROM Students;

• Called the projection operator (we project a certain view of the relation)



Sets, bags or lists? (Again)

• Remember: A set has no duplicates or internal ordering, bags allow duplicates, 
lists allow duplicates and each value has a position

• Traditionally, relations are considered sets of tuples in relational algebra

• This makes them harder to translate to/from SQL where results are bags

• There are also things like sorting operators in most Relational Algebra 
definitions, which is not really compatible with either sets or bags

• In this course we use bag semantics 

• Semantics ≈ what expressions mean, as opposed to how they look (syntax) 

• You will need to understand the implications of this choice



Projection on sets/bags
• Projection is one of the operators where set/bag semantics differ

• The intuition of projection is that you just remove a few attributes

• If using set semantics, the number of tuples/rows may decrease, 
because duplicates are introduced when removing the attributes!

• One way to explain this in terms of SQL: 

• With bag semantics, projection corresponds to the SELECT clause

• With set semantics, projection corresponds to SELECT DISTINCT

• In this course, we follow the intuition and use bag semantics for π

Table: WL

student course position

Student1 TDA357 1

Student2 TDA357 2

Student1 TDA143 1

πstudent(WL)

set semantics

student

Student1

Student2

bag semantics

student

Student1

Student2

Student1



Selection

• The σ (sigma) operator corresponds to the WHERE-clause in SQL

• Syntax: σ<condition on rows>(R)

• In SQL: 
SELECT * FROM <SQL for R> WHERE <condition on rows>

• Conditions should be simple row-wise checks, do not put RA-expressions in 
your conditions (unlike in SQL where subqueries are allowed)

• Boolean syntax from SQL (AND, OR, NOT ...) or logical symbols (∧,∨,¬...)

• Comparisons like <, >, = on constants and attributes

• Called the selection operator because it selects which rows to keep



The most unfortunate naming mismatch ever

• Selection (σ) does not correspond to the SELECT clause in SQL!

• σ corresponds more closely to the WHERE clause

• Projection (π) corresponds to SELECT

πstudent(Grades) σstudent=1(Grades)

SELECT student FROM Grades SELECT * FROM Grades WHERE student=1



Base relations/tables

• Base relations like Students in πid,name(Students) are part of the algebra

• In one way they are like constants: The schema of the relations are known

• In one way they are like variables: The tuples in the relations are unknown

• Intuitively they are like created tables in SQL, not considering INSERTS

• A typical problem: "Using the schema Student(idnr,year,name), find the name 
of all students in the third year"

• Solution: πname(σyear=3(Student))

• The schema is important for the solution to work, but the data is not

• Base relations in expressions are simply table names in SQL



Cartesian product

• The relational algebra syntax for Cartesian product is R1 ⨯ R2

• In SQL: SELECT * FROM <SQL for R1>,<SQL for R2>

• We can now join relations:

σ<join condition>(T1 ⨯ T2)

• Equivalent SQL:

SELECT * FROM T1, T2 WHERE <join condition>;



Compositional expressions, monolithic queries
• Consider this SQL query and an equivalent relational algebra expression:

SELECT name, credits FROM Students, Grades 

WHERE idnr = student AND Grade >= 3

• πname,credits(σidnr=student AND grade >= 3(Students ⨯ Grades))

• The SQL code is a single query performing projection, selection and Cartesian 
product, whereas the expression does each of those in separate steps

• This is a fundamental difference of RA and SQL

• In RA each subexpression results in a relation, SQL "does everything at 
once" and gets a single results

• We could also express the same query as, for instance:
πname,credits(σidnr=student(Students ⨯ σgrade >= 3(Grades)))



Translating ER to SQL using subqueries
• Consider the expression:

πname,credits(σidnr=student(Students ⨯ σgrade >= 3(Grades)))

• The most literal way to translate this into SQL is:
SELECT name, credits FROM –- Projection

(SELECT * FROM -- Selection: idnr=student

(SELECT * FROM -- Cartesian product

Students, -- Base table Students

(SELECT * -- Selection: grade >= 3

FROM Grades       -- Base table Grades

WHERE grade >= 3) AS r3

) AS r2 WHERE idnr=student) AS r1;

• Here we have translated each subexpression (except tables) into a subquery

• Highlights the difference between compositional RA and monolithic SQL

• A more compact translation would be better in practice



Other set operations

• Just like in SQL, we have the three set operations:

• Union: R1 U R2

• IntersecQon: R1 ∩ R2 

• Difference/subtraction: R1 - R2

• Example (idnr of all students that have not passed any courses):

• "Take all idnr from students, and remove all idnr with a passing grade"

• Like in SQL, schemas must be compatible (same number of attributes)

πidnr(Student) - πstudent(σgrade>=3(Grades))



Extending set operations to bags

• In sets, each tuple is either in or not in each relation

• In bags, each tuple occurs a number of times in each relation

• Assuming x occurs n times in R1 and m times in R2

• x occurs n+m times in R1 U R2

• x occurs min(n,m) Qmes in R1 ∩ R2

• x occurs n-m times in R1 - R2 (minimal of 0 times)

• Translates to UNION ALL, INTERSECT ALL and EXCEPT ALL

• This is the semantics we use for union, intersection and difference in 
this course



Grouping
• The grouping operator γ (gamma) is like a combined SELECT and GROUP BY

• Syntax: γ<attributes/aggregates>(R)

• Example: γstudent, AVG(grade) → average(Grades)

• In SQL: SELECT student, AVG(grade) AS average

FROM Grades GROUP BY student;

• Automatically groups by and projects all attributes in the subscript

• The arrow indicates naming (required for all aggregates)

• Result has exactly one attribute for each attribute/aggregate!

Table: Grades

student course grade

S1 TDA357 3

S2 TDA357 3

S1 TDA143 5

student average

S1 4

S2 3



Example

• Select the name of all students that have passed at least 2 courses

• One solution (join first, group later):

Describing the expression from right to left: 
1) Take the product of students and grades
2) Select the rows with passing grades and matching id-numbers 
3) Group what remains by student and calculate the number of passed
4) Select the rows with at least two passed
5) Project the name attribute

• Another solution (group first, join later)

Students(idnr, name)

Grades(student, course, grade)

student -> Students.idnr

πname(σpassed>=2(γstudent, name, COUNT(*)→passed(σgrade>=3 AND idnr=student(Students⨯Grades))))

πname(σpassed>=2 AND idnr=student(Students ⨯ γstudent, COUNT(*)→passed(σgrade>=3(Grades))))



Analyzing expressions

• To make sure our expression is correct, we can compute the schema of 
the result for any subexpression (=result of any operator)

• Sanity check: All our conditions, projections etc. only mention attributes 
that actually exist in their operands

πname(σpassed>=2 AND idnr=student(Students ⨯ γstudent, COUNT(*)→passed(σgrade>=3(Grades))))

(student, course, grade)

(idnr,name,student,passed)(name)

(student, passed)

Students(idnr, name)

Grades(student, course, grade)

student -> Students.idnr

(idnr, name)



Sanity check

• What is wrong with this expression?

• Not doing this simple sanity check is probably the most common way 
to unnecessarily loose points on the exam

πname(σpassed>=2 AND idnr=student AND grade>=3(Students ⨯ γstudent, COUNT(*)→passed(Grades))))

(idnr,name,student,passed)Can not use grade here!

Students(idnr, name)

Grades(student, course, grade)

student -> Students.idnr



What about HAVING?
• In SQL the HAVING-clause is like an extra WHERE-clause that happens 

after/during grouping, having such an operator in RA does not make sense

• This is only a feature of SQL to avoid using subqueries all the time

• This query: 
SELECT student FROM Grades 
GROUP BY student 
HAVING AVG(grade)>4;

Corresponds to this expression: 
πstudent(σaverage>4(γstudent, AVG(grade)→average(Grades)))

• No need for a separate operator working on aggregates

• But it is important to do the selection after the grouping when 
translating a HAVING-clause to relational algebra

• Do the sanity check!



Qualified names
• Base relations have names that can be used in conditions etc.

• The results of expressions do not have names though

• Technically, expressions like πR1.x(R1 ⨯ R2) are invalid, because the result 
of (R1 ⨯ R2) does not have a name

• Like SELECT R1.x FROM (SELECT * FROM R1 ⨯ R2), which is invalid

• Essentially means qualified names are never useful in projections

• This is often ignored in examples of relational algebra and each attribute 
is understood to retain its qualified name

• I will allow this in this course



Qualified names

• If there are name clashes, it makes sense to sanity check with qualified names 

• Note that the attribute average does not have any qualified name

Students(idnr, name)

Grades(idnr, course, grade)

student -> Students.idnr

πname(σStudent.idnr=Grades.idnr AND average>4 (Students ⨯ γidnr, AVG(grade)→average(Grades))))

(Students.idnr, Students.name, Grades.idnr, average)

(Grades.idnr, average)



Renaming

• The ρ (rho) operator renames the result of an expression

• Syntax: ρ<new schema>(R)

• Example ρS(idnr,studentname)(Students)

• Use ρS(Students) to only rename the relation and keep attribute names

Students

idnr name

1 Jonas

2 Emilia

3 Emil

S

idnr studentname

1 Jonas

2 Emilia

3 Emil

Renames both the relation (for 

qualified names) and attributes



Renaming example

• Consider this query (self join)

SELECT N1.num, N2.num, N1.owner

FROM Numbers AS N1, Numbers AS N2

WHERE N1.owner = N2.owner;

• Here the ρ operator is essential

πN1.num, N2.num, N1.owner(σ(N1.owner = N2.owner(ρN1(Numbers) ⨯ ρN2(Numbers))))

Table: Numbers

owner num

Bart 11111

Lisa 22222

Bart 33333

Sanity check:(N1.owner, N1.num, N2.owner, N2.num)



Query optimization

• In relational algebra we can express (and prove) rules like:

σc1(σc2(R)) =  σc1 AND c2(R)

πp1(πp2(R)) =  πp1(R) 

R1 ∩ R2 =  R1 – (R1 – R2)

σc(R1 ⨯ R2) =  σc(R1) ⨯ R2, assuming c uses only attributes of R1  

• These rules can be used by DBMS to simplify or optimize queries



Join operator

• Like in SQL, there is a special join operator: R1 ⋈<condition> R2

• This is purely a convenience operator, we can define it using: 

R1 ⋈c R2 = σc(R1 ⨯ R2)



Expression layout
• When writing relational algebra expressions on paper, it is convenient 

to start each operator on its own row

• It's often a good idea to start in the middle of the paper with a 
join, then add operators above it

• You can easily extend conditions with an extra AND etc.

πname

(σpassed>=2

(Students 

⋈idnr=student

γstudent, COUNT(*)→passed

(σgrade>=3

(Grades))))



Splitting up expressions

• You can break out and name parts of your expressions for readability

R1 = γstudent, COUNT(*)→passed(σgrade>=3(Grades))   

R2 = (Students ⋈idnr=student R1

Result = πname (σpassed>=2(R2))

• Can simplify expression writing a lot, especially on paper

• Helps the thought process when incrementally solving problems

• Names are not part of the algebra, just a convenience for writing expressions

• Like saying "let x = min(y,z) in x*(x+1)", x can be substituted for its definition

• The names can not be used as qualified name (unless you use ρ)

• Remember to still do the sanity check! (What attributes do R1 and R2 have?)



Expression trees
• The best way to understand an expression in any algebra, is as a syntax tree

• Each node in the tree can be computed into a value (or a schema), bottom up

1+2*3

1

2 3

+

*

R1 R2

σa=b

⨯

σa=b(R1 ⨯ R2)



All basic operators (a few more on next slide)

• Selection, "Sigma": σ<selection condition>(R)

• Projection, "Pi": π<attribute list>(R)

• Cartesian product: R1 ⨯ R2

• Other set operations: R1 ∪ R2, R1 ∩ R2, R1 - R2

• Grouping, "Gamma": γ<attributes/aggregates>(R)

• Join: R1 ⋈<condition> R2

• Renaming, "Rho": ρ<Relation name>(<optional attribute names>)(R)



Additional operators
• Apart from the operators we have seen so far there are a number of 

extensions to match various features of SQL

• NATURAL JOIN: R1 ⋈ R2  (Just omit the Join-condition)

• JOIN USING: R1 ⋈idnr R2  (replace Join-condition with attribute)

• Outer joins: 

• Full outer join: R1 ⋈o
<join condition> R2

• Left/right join: R1 ⋈oL
<join condition> R2 and R1 ⋈oR

<join condition> R2

• DISTINCT: δ (delta), for converting from a bag to a set
e.g. R1 U R2 is UNION ALL in SQL, δ (R1 U R2) is UNION

• τ (tau), for ORDER BY on an expression. Examples: 
τgrade(Grades) for SELECT * FROM Grades ORDER BY grade ASC
τ-grade(Grades) for SELECT * FROM Grades ORDER BY grade DESC



Is it OK if I just learn SQL and translate that to RA?

• Yes!

• But the translation is not always trivial

• Relational algebra is not just SQL in Greek!



Translating a single query

• A query with almost everything:
SELECT a1, MAX(a2) AS mx

FROM T1, T2

WHERE a3=5

GROUP BY a1,a3

HAVING COUNT(*) > 10 

ORDER BY a1 ASC;

• A relational algebra expression for it:
τa1(πa1,mx (σtemp>10(γa1,a3,MAX(a2)→mx,COUNT(*)→temp(σa3=5(T1⨯T2)))))

• The sanity check is even more important when "blindly" translating

Some things, like HAVING 

requires new names to 

be introduced 



Translating correlated queries

• Consider a query like 

SELECT name FROM Students AS S

WHERE 4<(SELECT AVG(grade) FROM Grades WHERE student=S.idnr);

• This is very easy to mistranslate (if you don't sanity check!)

• The correlation needs to be replaced with a join:

πname(σ4<average (γstudent, AVG(grade) → average(Grades ⋈idnr=student Students)))

Correlation: subquery 

refers to outer query



What about things like NOT IN and NOT EXISTS?

• Set subtraction can often (always?) be used to replace NOT IN

• Example: Select students that have no grades

SELECT idnr,name FROM Students 

WHERE idnr NOT IN (SELECT student FROM Grades);

• In relational algebra (one of many possible solutions):

R1 = ρNoGrades(s)(πidnr(Students)  - πstudent(Grades)) 

Result = πidnr,name(Students ⋈s=idnr R1)

• Use set subtraction to get the ID of all students without grades, then join back 
with Students to recover names 
(uses renaming to avoid having two Students.idnr for the join)


