TDA357/DIT621 — Databases

Lecture ?? — Super-off-the-books exam revision session

If you can read this, you are sitting close enough the board

Please have all three 2019-mm-dd exams available
Start looking at 2019-01-16 question 1

Jonas Duregard



Exam prep!

« Remember: You are allowed to bring one A4 of hand-written notes to the exam

* You will also be given a standard reference that you can find on the course page
* The reference is printed with the exam, you are not allowed to bring it



Exam structure

* Fairly predictable pattern that will continue this year

* Six questions
* ER
* FDs+MVDs+NFs
* SQL
* RA
* Triggers, constraints etc. in SQL DDL
* Misc. topics including JSON



Curveball questions

* Last years questions didn’t have every possible
* For instance MVD/4NF and transactions where

topic
not on the exams

* Maybe that means you can safely ignore them this year?

* Having one or both of those this year would be

a bit of a curveball

* Is Jonas the kind of person to throw those kinds of curveballs?

INEQU

D0 LEEEL LUGKY:

T R R AN
ol R N

ESTION:




ER (From 2019-01-16)

a) Your task is to make an ER-diagram for the database of a gym company, managing their

facilities and their customer records.

The database should contain a set of current and past customers. Each customer has a name

and an email-address. Not every customer is a current member, and the database should keep

track of which customers are currently members, and when their membership expires.

Each gym facility has a city, an address and a name. Two facilities can have the same name,
but only if they are in different cities. Gym facilities can be established in any city across the

world (but you can assume cities have unique names).

The database should also keep a record of times when each customer has accessed any gym
facility. This may include multiple accesses from the same customer to the same facility at

different times.



And now a few words from ours sponsors

At this point you're probably thinking "Wow, it sure is nice
of Jonas to organize this extra exam prep session, if only
there was something we could do for him"

Well — there is! You can answer the course survey (after it
opens that is)

Your opinions (positive and negative) help me improve this
course!

So please answer the course survey!



FDs (2019-08-29)

Consider a relation R(A, B, C, D, E) with the following Functional Dependencies

A->B

B->A

B,D->E

B, C->E

E->A

c) Decompose the relation into BCNF. You only have to provide the final schema, not all the

steps taken to compute it. If you do include all the steps, be sure to clearly indicate which

relations are actually in the final schema (as opposed to intermediate relations).



MVDs

* Give an example of a domain+relation with MVDs but no FDs
* Normalize it to 4NF



SQL

* You know this stuff



Relational Algebra (From SQL of 2019-06)

Below is the schema for a database of users sending messages to each other. Readtime is
either a time when the message was read by the receiver, or null if it has not been read yet

(no other attributes can be null). Logintime is the last time the user was logged in.

Users (username, email, logintime)

Messages (sender, receiver, content, sendtime, readtime)
sender -> Users.username
receiver -> Users.username

a) Write an S| RA Exp [y that finds sender username, sender email, and content of each unread

message sent to the user 'admin', with the oldest message first in the result.

b) Write an SQL query that calculates the average time between reading and sending
messages (for messages that have been read). Assume sendtime and readtime are timestamps
or similar, so the expression readtime-sendtime gives the time between sending and

reading (if the message has been read).



Constraints - quickround

* What is the best way to ensure that a column is e.g. the sum or the
average of something else?

* Answer: Use a view! If a column value is completely decided by
other values, there is no point in allowing the value to be modified
at all, so placing it in a view and computing it from other values
makes sense.



Constraints — Bonus question!

e Suppose we have:
Teams(teamName)
Players(team, number, name, age)

* What is the best way to ensure the following: "If a
team name is modified, the team value of all players
in that team should be modified as well"

A view, constraint or trigger?

* Answer: A constraint, specifically a reference
constraint in Players with ON UPDATE CASCADE



Your task: The database contains dots in a two-dimensional plane and connections between

those dots. The external interface for queries should look like this (constraints not included):
Dots(x_pos, y pos, idnr, radix)
Connections (from_idnr, to_idnr)

This interface can include views and tables, and additional views and tables may be created
as needed. Each row in Dots is a dot, with a position (x_pos, y pos are integer
coordinates), an identification number and a radix (see below). Each row in Connections

represents a line from one dot to another, identified by their id-numbers.

Implement the following constraints in your design. Put letters in the margin of your code

indicating where each constraint is implemented (possibly the same letter in several places):

a) There is at most one dot on any position (x,y-pair) and each dot has a unique idnr.

b) Dots can only connect to valid dots (those that are in Dots), and dots cannot be
connected to themselves. Also there cannot be multiple lines to/from the same dots.

¢) The radix of a dot should be equal to the number of dots it is connected to.

d) The radix cannot exceed eight. Attempting to add additional connections should fail.

e) All connections are bi-directional, meaning if there is a connection from point A to
point B, there must also be a connection from point B to point A.

f) 1If a dot is deleted, all its connections should be automatically deleted as well.



JSON

* Make sure to learn the JSON syntax
* Relatively easy points for things like translating a table to JSON

* Hopefully improved this year since JSON was in the labs

* Also: Understand JSON path. It consists of a small set of operators,
but understanding the concept is perhaps not trivial.



”Other topics”

 Security (SQL injection)
* You have seen this in the labs
* Transactions
* Phenomena (Dirty reads, non-repeatable read, phantoms)
* |solation levels (Read uncommitted/committed, repeatable read, serializable)
* Things like “show how programs that do this can fail horribly”
* Involves showing interleavings of queries in two or more transactions



