

Lecture 5
Classes and Objects

Exam preparation

● Last lecture before exam on Friday 13/12
– Recap of things to appear on the exam
– Send me your suggestions: antonek@chalmers.se

● Exercises on 6/12: solving old exams together
– First half: solve exam questions in groups
– Second half: each group presents their question to

the class

● Everyone registered on the course on
Mon. 2/12 will be registered for the exam

mailto:antonek@chalmers.se

Questions about the material?

● I’m always available during the Friday exercise
sessions

● There’s also a TA, of course
● Please drop by if you have questions!

Exceptions Recap: A Safer Vector Library

Program as List of Instructions

● Model so far:

www.programmingbasics.org

Spaghetti Code

“[T]he primary technical imperative you have as a
programmer […] is to manage complexity.”

- Steve McConnell

Programming Paradigms

● Logic programming
– Give the computer a set of facts and a question, and it deduces

the answer.

● Procedural programming
– Group instructions into procedures, subroutines or functions.

● Functional programming
– Functions can take functions as input and give functions as output

● Object-oriented programming
– A program is a set of objects that send messages to each other.

Programming Principles

● Principle of Least Surprise
● DRY: Don’t Repeat Yourself
● Single Responsibility Principle (“Small is

Beautiful”)

Principle of Least Surprise

public static void doStuff(int[] a, int i, int j) {
 a[i] ^= a[j];
 a[j] ^= a[i];
 a[i] ^= a[j];
}

Principle of Least Surprise

public static void doStuff(int[] a, int i, int j) {
 int tmp = a[i];
 a[i] = a[j];
 a[j] = tmp;
}

Principle of Least Surprise

public static void swap(int[] a, int i, int j) {
 int tmp = a[i];
 a[i] = a[j];
 a[j] = tmp;
}

Classes and Objects

● When a program is running, the memory holds a number of
objects

● Every object has a class
● You write a program by writing the code for a number of classes
● The code for class C tells us:

– what data on object of class C stores (fields)
– how to create an object of class C (constructors)
– what an object of class C can do (methods)

● Together, the fields, constructors and methods are called the
members of the class.

Classes - Syntax

public class ClassName {
 private type1 field1;
 private type2 field2;
 …
 private typen fieldn;

 public ClassName(type1 field1, …, typen fieldn) {
 this.field1 = field1;
 …
 this.fieldn = fieldn;
 }

 public type method1(type arg, …, type arg) {
 …
 }

 public type method2(type arg, …, type arg) {
 …
 }
}

Classes - Syntax

public class ClassName {
 private type1 field1;
 private type2 field2;
 …
 private typen fieldn;

 public ClassName(type1 field1, …, typen fieldn) {
 this.field1 = field1;
 …
 this.fieldn = fieldn;
 }

 public type method1(type arg, …, type arg) {
 …
 }

 public type method2(type arg, …, type arg) {
 …
 }
}

Fields: hold data

Classes - Syntax

public class ClassName {
 private type1 field1;
 private type2 field2;
 …
 private typen fieldn;

 public ClassName(type1 field1, …, typen fieldn) {
 this.field1 = field1;
 …
 this.fieldn = fieldn;
 }

 public type method1(type arg, …, type arg) {
 …
 }

 public type method2(type arg, …, type arg) {
 …
 }
} Methods: operations on fields and arguments

Classes - Syntax

public class ClassName {
 private type1 field1;
 private type2 field2;
 …
 private typen fieldn;

 public ClassName(type1 field1, …, typen fieldn) {
 this.field1 = field1;
 …
 this.fieldn = fieldn;
 }

 public type method1(type arg, …, type arg) {
 …
 }

 public type method2(type arg, …, type arg) {
 …
 }
}

Constructors: special methods describing how
to create new instances of the class

Java Classes

● A public class must be declared in a file
named ClassName.java

● There can be at most one public class in a
file.

● This class can be called from other files. The
other classes cannot.

Methods

● Definition:
[public|private] typereturn methodName(type1 arg1, …, typen argn)
{
 block
}

● typereturn can be void if it does not return a value.

● Method can be called:
o.methodName(exp1, …, expn);
x = o.methodName(exp1, …, expn);

where o is an object of the class

Constructors

● Definition:
public ClassName(type1 arg1, …, typen argn) {
 block
}

● Called using the new keyword:
x = new ClassName(exp1, …, expn);

● Note that name must be the same as name of
class

● “block” should set the values of all the instance
variables

Access Modifiers

● public and private are access modifiers

● public methods can be used by any class

● The private methods of class C can be used inside the
class C

● When designing a class:
– decide what public methods you want
– add private methods when you need them to help write the

public methods

● All instance variables should be private

Getters and Setters

Sometimes we want methods that just read or write the value
of an instance variable.

We use getVar and setVar for methods that read or write to
var
private T var;
public T getVar() {
 return this.var;
}

private void setVar(T val) {
 this.var = val;
}

Getters and Setters

● Don’t overuse getters and setters!
● Only expose the parts of your class that need to be

exposed!
● Don’t let “bad” values slip in through setters!

private void setRadius(double r) {
 if(r < 0) {
 throw new IllegalArgumentException("negative radius");
 }
 this.radius = r;
}

toString()

Every class has a method called toString()

This returns the string representation of the object.

This decides what is printed when the object is passed to
println()

You can write your own method, or use Java’s default.

It is recommended to write your own when you write a
class.
public String toString() {
 …
}

Example: Ponies!

this

The keyword this refers to the current object.

public void setRadius(double r) {
 this.radius = r;
}

…

myCircle.setRadius(42.0);

this

The keyword this refers to the current object.

public Circle(double r) {
 this.radius = r;
}

…

Circle myCircle = new Circle(42.0);
// myCircle.getRadius() == 42.0

this

The keyword this can also be used to chain constructors

public Circle(double r, String color) {
 this.radius = r;
 this.color = color;
}
public Circle(double r) {
 this(r, "green");
}

…

Circle myCircle = new Circle(42.0);
// myCircle is now a green circle with radius 42

this

Chaining must happen first in the constructor

public Circle(double r, String color) {
 this(r);
 this.color = color;
}
public Circle(double r) {
 this.radius = r;
}

…

Circle myCircle = new Circle(42.0, "blue");
// myCircle is now a blue circle with radius 42

Programming Principles

● Principle of Least Surprise
● DRY: Don’t Repeat Yourself
● Single Responsibility Principle (“Small is

Beautiful”)

Class Methods and Instance
Methods

● Instance methods:
– defined without static
– belong to the object, not the class

– can use this

● Class methods:
– defined using the keyword static

– belong to the class, not to the object

– can’t touch this

Black Boxes and White Boxes

www.sw-eng.kr

Black Boxes and White Boxes

● When using a class:
– the class is a black box
– the methods say what the objects can do
– we do not think about how they do it

● When writing a class:
– the class is a white box
– we write methods that do what is required
– we do not think about why they will be called

Example: Hangman

Programming Principles

● Principle of Least Surprise
● DRY: Don’t Repeat Yourself
● Single Responsibility Principle (“Small is

Beautiful”)

Example: Refactoring Hangman

Readings and Exercises

● Readings:
– Java Direkt med Swing 2.7, 2.9, 3.2, 3.4
– Code Complete Chapter 7

● Exercises
– If you did not complete last week's exercises, I recommend doing those

first:

Java Direkt med Swing Exercises 2.1, 2.2, 2.3
– More practice with classes:

Java Direkt med Swing Exercises 2.4, 3.1, 3.2
– Exercises making use of everything we have done so far:

Java Direkt med Swing Exercises 3.6, 3.7, 3.12

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37

